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Abstract: In this study, a feasible swarm intelligence algorithm is proposed that computes the inverse kinematics solution
of 6 degree of freedom (DOF) industrial robot arms, which are frequently used in industrial and medical applications.
The proposed algorithm is named as Boomerang algorithm due to its recursive structure. The proposed algorithm aims to
reduce the computation time to feasible levels without increasing the position and orientation errors. In order to reduce
the computational time in swarm optimization algorithms and increase feasibility, an alternative definition method was
used instead of the DH method in defining the robot arm kinematic configuration. The effect of the proposed alternative
definition method in reducing the computational time is presented through example inverse kinematic analysis. The
proposed algorithm was compared with 3 different particle swarm optimization (PSO) variants that include orientation
in the inverse kinematic solution of 6 DOF robot arms. Comparative simulation studies were carried out with 20 randomly
selected position and orientation data from the workspaces of PUMA 560 and ABB IRB120 manipulators to measure
performance of the algorithms. Using the error and computation time values obtained from the simulation results, the
algorithms are compared using the Wilcoxon nonparametric statistical test. When the simulation results are analysed by
considering the calculation time, positioning accuracy and solution finding rates, it is seen that the Boomerang algorithm
is more feasible than the other PSO variants. Verification of the simulation results, and the physical applications were
carried out with the ABB IRB120 6 DOF robot arm. Simulation studies and experimental studies showed that the
proposed algorithm may be an efficient method for inverse kinematics of time-critical applications.
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1. Introduction
Positioning of open chain serial manipulators is of great importance in robotics, mainly in industrial and
medical applications. Independent from force and moment, motion and position analysis of industrial robots
are examined within the scope of robot kinematics which has two subbranches as forward and inverse kinematics
[1]. In forward kinematics, identified joint variables of the industrial robot are used as inputs to calculate position
and orientation of the end effector. Forward kinematics always reaches a single unique solution as opposed to
inverse kinematics [2]. Since same position and orientation of end effector can be obtained with different
joint values, inverse kinematic analysis convergences to a much more complicated and nonlinear structure
with the increase of DOFs. Also inverse kinematic must reach a proper and precise solution for trajectory
generation and path planning. Inverse kinematic analysis of robot arms is basically performed with analytical
and numerical methods. Analytical methods depend on the robot configuration and use closed-form solutions
∗Correspondence: dilsad.engin@ege.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
342

https://orcid.org/0000-0002-1327-7493
https://orcid.org/0000-0003-0159-275X


DUYMAZLAR and ENGİN/Turk J Elec Eng & Comp Sci

that are algebraically obtained with the help of 4th or higher order polynomials or geometric functions [1].
However, since the algebraic method is only convenient for specific robot configurations, and the geometric
method is inefficient and complex except for planar robots with 3 or less degrees of freedom, they cannot be
used flexibly [2–4]. Alternatively, numeric methods mostly rely on the inverse Jacobian of the manipulator which
causes singularities, and they are not cost-effective for higher degrees of freedom in computational means [5].
Also numeric algorithms using Jacobian-transpose to compute inverse kinematics may have a low convergence
rate [6]. In this article, remainder sections are structured as follows. In Section 1, we explained the basics of
robot kinematics and the use of PSO variants and drawbacks in inverse kinematics. In Section 2, we proposed
a recursively structured PSO variant algorithm named Boomerang that reduces the computational time and
achieves inverse kinematic solutions without increasing positioning and orientation errors of 6 DOF robot arms.
Also, explained functioning of the proposed algorithm and its mathematical background with differences from
the classical PSO algorithm. In Section 3, Boomerang algorithm and the algorithms to be compared are
analyzed and how the parameters are determined is explained. We proposed to use an alternative method to
define kinematic structure and to obtain fitness function used to reduce computation time and compared DH
based fitness function over elapsed time in subsection 3.1. It was detailed how the selection of the optimum
parameters for the Boomerang algorithm was done in subsection 3.2. Determination of the searcher, throw and
total iteration parameters used in the Boomerang algorithm is presented. The studies carried out to determine
the selection criteria and parameters of the PSO algorithms to be compared were explained in subsection 3.3.
In subsection 3.4, selected PSO variants and Boomerang algorithm are compared over same dataset contains 20
sample pose from two different industrial robots. In conducting the comparative analysis, the inverse kinematic
analyses of the PUMA560 and ABB IRB120 robot arms were simulated with the same computer hardware.
Obtained results from the simulation environment were compared, analyzed with nonparametric Wilcoxon test
and the results are interpreted. In Section 4, we presented the physical implementation results of the proposed
algorithm on ABB IRB120 to verify the simulation results. In Section 5, the robot arm joint angles are calculated
using the Boomerang algorithm for an assembly application requiring concentricity, and the results obtained
with the application images are shown and interpreted. Finally, we discussed the obtained results in Section 6
and pointed out the achievements and possible drawbacks of the proposed algorithm in Section 7.

1.1. PSO variants for inverse kinematics

As an alternative to analytical and numerical methods, swarm intelligence-based optimization algorithms which
mimic the hunting and searching behaviour of the swarms are also widely used for inverse kinematics and
are the subject of research [7]. Optimization algorithms reduce inverse kinematics problem to an objective
function and search optimal solution by minimizing the error. PSO algorithm [7] and its variants as PSO
algorithm for 7-DOF serial robots [8], a modified artificial bee colony algorithm approach for optimization
problem in inverse kinematics of robots [9], a fast successive approximation algorithm for the solution of the
inverse position analysis of a general serial robot [10], PSO algorithm for 6-DOF serial robots [11], a soft-
computing approach [12], improved PSO algorithms [13, 14] are mostly preferred optimization algorithms for
inverse kinematics because of its simplicity and its efficient convergence structure [15]. In addition to inverse
kinematics of relatively simply configured planar robots [16]–[20], PSO variants can also be used in the solution
of higher degree of freedom industrial robots [8]–[13], [21]–[25]. For PSO variant based inverse kinematics,
Euclidean distance in (1), which only takes the end effector position error into consideration, is widely used
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[8, 9, 14, 17, 21, 23, 25, 26] as fitness function.

EuclideanDistance(∆P ) =

√
∆Px

2 +∆Py
2 +∆Pz

2. (1)

In Euclidean distance formula, ∆P notates the absolute difference between targeted Cartesian space
parameters (x, y, and z) and the current parameters which are calculated using forward kinematics calculation
over current joint variables. Another common fitness function used in swarm optimization based inverse
kinematics [16, 22, 24, 27] is mean square errors (MSE) as in (2), which uses both position and orientation.
MSE includes the absolute orientation error between the desired and current orientation of the end effector in
terms of angular values.

MSE =
√
∆P 2

x +∆P 2
y +∆P 2

z +∆R2
x +∆R2

y +∆R2
z. (2)

For numerical and optimization algorithms, in each iteration, every data set, which contains joint angles,
must be tested using forward kinematics. Along with the analytical and numerical methods, swarm optimization
algorithms mostly use transformation matrix multiplication for forward kinematics calculations. Denavit-
Hartenberg (DH) parameters are used to obtain transformation (T) matrices of each link from base to end
effector as a generalized method [23] for forward kinematics as in (3) and (4).

Ti = Rotz(θ) · Transx(a) · Transz(d) ·Rotx(α). (3)

Ti =


cθi −sθi · sαi sθi · sαi ai · cθi
sθi cθi · cαi −cθi · sαi ai · sθi
0 sαi cαi di
0 0 0 1

 (4)

DH notation uses four parameters as a , α , d and θ to define i.th link relative to i − 1.th link of
serial robots. Parameters represent distance between Zi and Zi−1 , angular difference between Zi and Zi−1

measured on the Xi axis projection and distance between Xi and Xi−1 , angular difference between Zi and Zi−1

measured on the Xi axis projection, respectively. For simplicity, cos and sin functions also represented with
‘c’ and ‘s’ letters, respectively. By a sequential multiplication of transformation matrices in (5), homogeneous
transformation matrix H , which consist both position vector P in (6) and orientation matrix R in (7) are
obtained.

H = Tn
0 = T 1

0 · T 2
1 · T 3

2 · · ·Tn
n−1 =

[
R3x3 P3x1

01x3 1

]
(5)

P = [Px Py Pz]
T (6)

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 =

nx sx ax
ny sy ay
nz sz az

 (7)

Utilizing DH notation to define kinematic structure of the robot and checking the positioning errors with
forward kinematics, which uses matrix multiplication or the obtained final equations, increases the computa-
tional load of the recursive or iterative algorithms in each loop. In PSO algorithms, which already have local
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minimum and early convergence problems [13], an increase in computation time is added as a drawback for
inverse kinematic cases. Therefore, most challenging problems for PSO based inverse kinematics algorithms
are achieving the fitness function properly and reducing the computational time [26]. Nonlinearity of inverse
kinematics problems increases with higher DOF nonplanar robots and orientation becomes more important
along with the positioning of the end effector. Since construction of a proper fitness function that includes both
position and orientation is challenging, fixed orientation may be used or it may completely be excluded from the
fitness function for some applications [15, 18, 23]. However, the computed joint angles may provide an arbitrary
access to a point in three-dimensional space when we exclude orientation from the inverse kinematics. The
computational time reaches to about 2 seconds where PSO variant computes solutions for both position and
orientation [12, 21], and then the PSO variant becomes inefficient for applications where computational time is
of importance. PSO variants that use orientation in inverse kinematic analysis has a high computational load
but fixing or excluding the orientation to reduce computation time makes PSO variant algorithms unfeasible
for most industrial applications.

2. Boomerang algorithm for inverse kinematics
In this study, we proposed an algorithm named as Boomerang algorithm that includes orientation in the inverse
kinematic analysis of industrial robots and reduces the computation time to acceptable levels for applications
where time efficiency is important.

2.1. An alternative definition of kinematic structures
The robot configurations defined with DH parameters and forward kinematic calculations obtained with matrix
multiplications or with expressions containing too many trigonometric functions which are obtained once outside
of the loop, are used in each iteration for each unique particle. Consequently, the computational load and time
increases. To reduce the computational load, we propose an algorithm and named it as Boomerang algorithm
which uses ortho-parallel manipulator with spherical wrist (OPW) parameters [28], an analytical method that
restricts the robot arms to a standard offset position. With the OPW method, robot arms up to 6 degrees of
freedom with Euler wrist configuration, which is mostly preferred in industrial and medical applications [1, 29]
can be defined with only 7 scalar values as

• L1 is vertical distance from base to 2nd joint axis

• L2 is vertical distance between 2nd and 3rd joint axes

• L3 is vertical distance between 3rd and 5th joint axes

• L4 is vertical distance between 5th joint axis and end effector

• O1 is horizontal distance between the base joint and the second joint axis

• O2 is horizontal distance between the 3rd and 4th joint axes

• O3 is horizontal distance between the base joint and the 3rd joint axis measured in the back view of the
robot.

Physical equivalents of the dimensions used in the identification of robot configuration are shown on Figure 1
with Kuka KR30 and ABB IRB120 robots.
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Figure 1. OPW parameters and physical meanings via KUKA KR30 and ABB IRB120 industrial robots.

Current position of the robot is calculated with (8) to (16) for each solution set obtained in iteration.
Px , Py and Pz are Cartesian space coordinates of the end effector and θn is joint angular value of the nth

joint.

Xk = −O3sθ1 + cθ1(O1 + sµ)

√
O2

2 + L3
2 + L2sθ2 (8)

Yk = O3cθ1 + sθ1(O1 + sµ)

√
O2

2 + L3
2 + L2sθ2) (9)

Zk = L1 + c(µ)

√
O2

2 + L3
2 + L2cθ2), (10)

where
µ = θ2 + θ3 + atan2(O2, L3) (11)

Xj = L4(sθ23cθ1cθ5 − sθ1sθ4sθ5 + cθ23cθ1cθ4sθ5) (12)

Yj = L4(sθ23cθ5sθ1 + cθ1sθ4sθ5 + cθ23cθ4sθ1sθ5) (13)

Zj = L4 · (cθ23 · cθ5 − sθ23 · cθ4 · sθ5), (14)

where
θ23 = θ2 + θ3 (15)

Px = Xk +Xj ;Py = Yk + Yj ;PZ = Zk + Zj . (16)

Equations (17) to (19) are used to derive R matrix in (20) and from the R matrix, orientation of the end
effector is calculated with Roll, Pitch and Yaw Euler angles which are shown in (21) to (23), respectively.

Rk =

c(θ2 + θ3)cθ1 −sθ1 s(θ2 + θ3)cθ1
c(θ2 + θ3)sθ1 cθ1 s(θ2 + θ3)sθ1
−s(θ2 + θ3) 0 c(θ2 + θ3)

 (17)
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Rj =

c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5

−s5c6 s5s6 c5

 , (18)

where
ci = cθi and si = sθi (19)

R = Rk +Rj (20)

φ = atan2(r21, r11) (21)

ϑ = atan2(−r31,
√
r322 + r332) (22)

ψ = atan2(r32, r33). (23)

2.2. Boomerang algorithm structure and differences from PSO variants
Boomerang algorithm is a PSO variant with recursive structure for inverse kinematics of industrial robots that
reinitializes angle sets. The proposed algorithm imitates boomerangs that can return to the point where it
started as a way of working. In Boomerang algorithm, presented in Figure 2a, the predetermined total number
of iterations is divided into subiterations and each subiteration is called a throw. Thus, the throw is repeated
in cases where no suitable solution for inverse kinematics can be found with the optimized values of randomly
determined starting angle sets.The PSO algorithm is given in Figure 2b for comparison of the two algorithms.

The algorithm uses a similar method with the PSO variant called as RPSO (restart particle swarm
optimization) to prevent from premature convergence that consumes time. But RPSO keeps the best particle of
former iteration [30] in contradistinction to Boomerang algorithm that eliminates all joint values at each throw.
In Boomerang algorithm, there are no limitations for reinitialization of random angle sets except physical joint
limits which are specific for the robot configuration.

2.3. Essential points of the proposed algorithm

We used weighted Euclidean norm as in (24) for fitness function which includes both position and orientation.
Through empirical observations, weight coefficient of the position error, ∆P was chosen as 60 while weight
coefficient of orientation error, ∆RPY was 40.

fitness = ∥60 ·∆P + 40 ·∆RPY ∥2 (24)

For a semirandom change of the joint variables in each iteration, maximum, (25), and minimum, (26),
amount of change is determined by taking solution set number into consideration at the beginning of the
algorithm. θmax and θmin indicate upper and lower physical constraints of joints and ξ indicates number of
discrete solution sets, which contains joint variables needed as much for the degree of freedom of the robot. For
a standard PSO algorithm ξ variable corresponds to the number of particles and D corresponds to the particle
velocity.

Dmax = (θmax − θmin)/(5 · ξ) (25)
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(a) (b) 

Figure 2. (a) Boomerang algorithm, (b) PSO algorithm flow charts.

Dmin = (θmax − θmin)/(−5 · ξ) (26)

For calculating the amount of change in robot arm joint angles, (27) derived from PSO algorithm is used
with a weight constant w , which depends on total iteration number λ in (28). ∆θ is the amount of change in
angular position, i is the current iteration step, and the random numbers used in the equations are shown with
’rn ’, the range of values they can take is specified as subscript. Best fitness score obtained by each solution
set until the current iteration is named as Lb , and the joint variables that give the most accurate kinematic
solution among all solution sets are named as Gb . If the computed angular change amounts are not between
the limits determined at the beginning of the algorithm, they are equaled to random limits as presented in (29)
and (30).

∆θi+1 = w ·∆θi + rn0:2 · (Lb − θ) + rn0:2 · (Gb − θ) (27)

w = 1− λ/1000 (28)

∆θi+1 ≤ Dmin → ∆θi+1 = Dmin (29)

∆θi+1 ≥ Dmax → ∆θi+1 = Dmax (30)

If the updated joint values in (31) exceed the physical limits of the joint, a random value assignment is made
within the physical joint limits as shown in (32) and (33).

θi+1 = θi +∆θi+1 (31)
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θi+1 ≥ θmax → θi+1 = θmax · rs0:1 (32)

θi+1 ≤ θmin → θi+1 = θmin · rs0:1 (33)

2.4. Differences between the optimization characteristic of PSO and Boomerang algorithms

The convergence patterns of a PSO and the proposed Boomerang algorithm for the inverse kinematics solution
are compared and optimization process for reducing the number of iterations is presented graphically in Figures 3
and 4. In order to graphically illustrate the solution search characteristics of a standard PSO algorithm and
the recursive Boomerang algorithm, the inverse kinematic problem of a basic 2 DOF planar robot is solved by
both algorithms and the results are shown in Figure 3. This example, which is easy to interpret graphically
and to be solved by any optimization algorithm since it does not contain orientation data, is examined. If we
focus on a single optimization process as in Figure 4, it is seen that PSO algorithm consumes time in premature
convergences while reaching the desired tolerance. In Boomerang algorithm, for a single optimization case,
primary purpose for reducing the number of iterations and the computational time is to search for a better
starting point by restarting the solution with the thought that current variable values are not suitable.

 

(a) (b) 

Figure 3. Searching pattern of (a) PSO algorithm, (b) Boomerang algorithm sampled with 11 discrete tests each.

 

(a) 
(b) 

Figure 4. Optimization process of (a) PSO algorithm, (b) Boomerang algorithm.
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3. Simulation studies on comparison of algorithms and selection of parameters

As with optimization algorithms in general, the success of particle swarm optimization variants varies depending
on the parameters chosen and the fitness function used in the case. For the theoretical and simulation comparison
of the Boomerang algorithm, we used three different PSO variants and tested all algorithms with the same
position-orientation pair. Since the algorithm we designed is an inverse kinematics algorithm that includes
orientation, we gave importance to select PSO variants from the literature for the same case. For this reason,
in order to make an objective comparison, the algorithms were implemented and the results were obtained by
considering the number of iterations and population sizes used by the authors in each publication. In subsection
3.1, we analyzed OPW method we used in Boomerang algorithm and DH based forward kinematics functions and
shared the effects on computational load of algorithms. In subsection 3.2, we decided the optimum parameters
for proposed algorithms and shared results and in subsection 3.3 we gave selected PSO variants major points
and parameter selection methods. We tested all the algorithms with same dataset and measured the mean
absolute errors (MAE) for position and orientation and average computation time for each data and analyzed
results with nonparametric Wilcoxon test which is suggested for a fair comparison in the literature [31–33].

3.1. Comparison of OPW and DH based objective functions

For creating the fitness function to be used in the developed algorithm, the effect of defining the manipulator
with DH or OPW and as a result, the effect of the forward kinematic functions used to improve the results
during optimization on the computational load was examined. Both methods give single solution set for given
joint angles but OPW uses less complex equation than DH based forward kinematic equations. And algorithms
use obtained forward kinematic equations in each iteration to reduce the positioning error may increase the
computation time. Therefore, we investigated whether the OPW method used in the developed algorithm
reduces the computational load compared to the DH parameters, since the formulae used in these forward
kinematic calculations of the robots up to 6 DOF are less complex with less trigonometric expressions. One
hundred randomly selected samples from the workspace were tested using the Boomerang algorithm with the
same parameters by only changing the DH and OPW based forward kinematic equations. The graphical results
of the comparative analysis given in Figure 5 reveal that a significant advantage is provided in computation
times when the objective function defined by OPW is used.

Figure 5. Effects of OPW and DH based fitness functions on computation times.
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3.2. Determining the optimum parameters of the Boomerang algorithm

To determine the searcher, throws and total iteration parameters to be used in the Boomerang algorithm,
analyses were carried out. As seen in Figure 6, in the inverse kinematics problem, running the whole iteration
with a single loop or using the throw number in high amounts increases the computation time. Similarly, the
increase in the number of multiple particles, called searcher, which searches for the solution simultaneously in
the loop, negatively affects the calculation time when the number of throws is kept constant. To determine
the optimum values of the searcher, throws and total iteration parameters of the Boomerang algorithm to
minimize the computation time, tests were performed using the position and orientation data of a pose. The
aim of the tests is to find the parameters that minimize the computation time. At first step, using only one
particle, total iteration, and subiteration (throws) values were obtained from each throw-total iteration value
pair that produced solutions with minimum computation times. The points where minimum computation times
were obtained from the tests are indicated by the red arrow in Figure 6a. In the next step, using the same
position-orientation input, the regions where throw-searcher pairs reached a successful solution with minimum
computation time were determined. The results of the second test, where the optimum computation times were
obtained, are shown in Figure 6b with red areas. As a result of the intersection of both analyses, the searcher,
throw and total iteration parameters were chosen as 10, 8, and 5500, respectively.

 

(a) (b) 

Figure 6. (a) Optimal throws and total iteration parameters based on total computation time, (b) effects of variations
of throws and searcher values on computation time and selected local minimum areas.

3.3. Structure of the algorithms to be compared and selection of parameters

Boomerang algorithm has been compared with 3 different PSO variants [12, 22, 24] that have been used for
inverse kinematic analysis of 6 DOF robot arms. All the compared algorithms take orientation into consider-
ation for computing the inverse kinematic solution. The computation time and convergence characteristics of
particle swarm optimization algorithms vary according to the population size, the objective function and the
maximum number of iterations. For this reason, in order to make an objective comparison, the algorithms were
implemented and the results were obtained by considering the number of iterations and population sizes used
by the authors in each publication. PSO1 variant, developed by Nguyen et al. [22], uses the standard PSO
algorithm with the fitness function in (34), that is proposed for a 6 DOF industrial robot. As suggested in the
study, the population size was set to 300 and the number of iterations was limited to 500.

fPSO1 =
√

60(∆Pxyz) + ∆Rxyz, (34)
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where
∆Pxyz = ∆Px2 +∆Py2 +∆Pz2 (35)

∆Rxyz = ∆Rx2 +∆Ry2 +∆Rz2. (36)

PSO(2) variant uses a weighted fitness function given in (37) to (40) which is proposed for 6 DOF Puma
560 robot arm by Lopez-Franco et al. [12]. Algorithm terminated as suggested if the algorithm achieves the
total number of iterations (1000) or the fitness value reaches a value of tolerance and the population size is set
to 30 individuals.

Perror =
√
∆Pxyz/

√
x2 + y2 + z2 (37)

Rerror =
√
∆Rxyz/

√
Rx2 +Ry2 +Rz2 (38)

ρ = 0.7 · e−Rerror + 0.3 (39)

fPSO2 = ρ · Perror + (1− ρ) ·Rerror (40)

The PSO(3) variant developed by Alkayyali and Tutunji [24], uses the same fitness function of Lopez–
Franco et al.[12], along with the rate of change modification in (41) with total iteration limited to 1000. Particle
velocity weight constant denoted as K , was recalculated in each iteration (43). Variables that take random
values are denoted by the letters rn , while subscripts indicate the value range in (44) and new joint angles are
updated as given in (45).

Vi = K · [w · Vi−1 + rni · (Lb −Xi−1) + rni · (Gb −Xi−1)], (41)

where
rni = rn2:4 · rn0:1 (42)

Ki = 2 · rn0:1/
∣∣∣2− ri −

√
ri2 − 4 · ri

∣∣∣ (43)

ri = rn0:1 · rn2:4 + rn0:1 · rn2:4 (44)

NewJointAngles = FormerJointAngles+ Vi. (45)

3.4. Comparative simulation studies of the algorithms
Six DOF ABB IRB120 and PUMA 560 industrial robot arms with anthropomorphic configurations were used
for simulations. By using the open-source Robot Kinematics Simulator (RoKiSim) software tool, ten random
position and orientation data for two industrial robots were obtained which are presented in Table 1.

Existence of the inverse kinematic solution is guaranteed by taking the selected positions and orientations
from the workspace. Boomerang algorithm and PSO variants were coded as proposed by Alkayyali and Tutunji
[24], Lopez-Franco et al. [12], and Nguyen et al. [22], then run in same environment [MATLAB] on same
hardware for a fair comparison. For each position and orientation input, all the algorithms were simulated
ten times for same data and MAEs obtained as shown in Table 2. Mean values of success rate of reaching
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Table 1. Selected positions and orientations for PUMA 560 and ABB IRB120 robots.

PUMA 560 ABB IRB120
Data X Y Z Roll Pitch Yaw X Y Z Roll Pitch Yaw
1 431 139.7 489.58 0 0 0 374 0 630 90 0 45
2 920.58 139.7 0 0 90 0 374 0 630 0 90 0
3 618.04 139.7 208.48 0 30 45 239 0 593.82 0 90 0
4 431 139.7 489.58 90 0 45 240 0 590 0 90 45
5 588.86 500.98 73.11 –43,24 58.51 –70.53 264.45 –264.45 630 0 90 45
6 704.32 405.01 84.30 –160 0 180 294.03 270.22 269.67 –126.43 16.40 169.03
7 748.48 435.64 155.40 32.10 73.96 –2.83 –70 0 934 0 0 0
8 765.13 –154.38 252.52 26.99 –7.71 28.65 302 0 558 180 0 180
9 506.31 139.7 –482.99 –180 0 180 302.84 158.28 259.04 80.96 –46.97 178.61
10 300 150 400 0 0 0 0 362.06 395.97 –180 0 165

a solution, computational time in seconds and errors (mm for cartesian space x ,y ,z positions and degree for
Roll , Pitch , Y aw orientations) were shown as an abstraction of the collected results of Table 2 in Table 3.
Concerning the comparison parameters, success rate indicator measures whether the algorithm reached a solution
until termination criteria, computational time indicates the elapsed time until termination, and error indicates
position-orientation difference between the obtained and desired outputs. Simulations for 20 different position
and orientation data showed that the Boomerang algorithm achieves the second-best positioning and minimum
orientation error values within the compared PSO variants as depicted in Table 3.

A feasibility function η as in (46) is established using mean absolute errors, calculation time and success
rate to measure whether the algorithms are suitable for field applications.

η = 1− Succ.Rate−1 + Comp.T ime+MAE

3
(46)

Feasibility analysis of the algorithms resulted in 60.13% for PSO1, 73.00% for PSO2, 75.97% for PSO3,
and 85.79% for the Boomerang algorithm revealing that Boomerang algorithm is more suitable than the other
PSO variants if computational time, position and orientation errors and success rate are correlated.

In order to confirm the results shown and interpreted in Tables 2 and 3 with a nonparametric statistical
method, Wilcoxon rank test was used. Wilcoxon nonparametric test is convenient method to measure statisti-
cally if the proposed algorithm really differs meaningfully with the compared ones. H1 hypothesis is that there
is a meaningful difference between the compared results and H0 is the null hypothesis. A confidence level of 95%
(gamma is 0.05) was used and each PSO variant was individually subjected to the Wilcoxon nonparametric test
with the Boomerang algorithm using the values in Table 2. The results of the statistical analysis are presented
in Table 4. As can be seen from Table 4, similar findings to the previous conclusions are obtained. As the
Wilcoxon comparative analysis confirms, there is no significant superiority between the PSO(3) variant and the
Boomerang algorithm in positioning accuracy, but in all other parameters the Boomerang algorithm is better.
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4. Experimental results

Besides simulation results, success of the Boomerang algorithm was tested on physical systems. Firstly, the
positions and orientations used in the analysis of the robot arm with simulation were tested with the physical
robot shown in Figure 7. Secondly, the spring element concentric placement, which is a precise assembly
operation, was performed with joint angles calculated by the Boomerang algorithm. For both experiments,
joint angles calculated by Boomerang algorithm for the desired position and orientation were transferred to the
IRC5 robot controller using TCP/IP socket communication.

 

(a) (b) 

Figure 7. Application of the inverse kinematic solution of the Boomerang algorithm on ABB IRB120 robot in operation
with (a) RobotStudio Flexpendant runtime screen, (b) Physical robot and Flexpendant screen.

4.1. Physical application of the algorithm

In this application, the algorithm runs on a client computer and the robot controller works as a server. The
desired position and orientation were solved by Boomerang algorithm to obtain the joint angles. These calculated
joint angles were then transferred to IRC5 robot controller via TCP/IP socket communication. The IRC5 that
operates as a server waits for the joint angle data by continually listening TCP/IP port. When the joint angles
are transferred to the server, the client is informed that the transfer has been successfully performed and the
robot arm starts moving to the calculated joint angles simultaneously. Final position and orientation by the
robot arm were observed through the Flexpendant input-output device in Figure 7 and compared with the
desired position and orientation. Performed tests verified that the proposed algorithm successfully solves the
inverse kinematics of industrial robots in various cases as in a 6 DOF industrial robot. Consequently, the
physical application of Boomerang algorithm on a physical robotic system proved that the proposed algorithm
could be an alternative method for inverse kinematics of industrial robots.

4.2. Assembly application

After computational accuracy of the developed algorithm was demonstrated experimentally, we also used the
algorithm in precision assembly operations on a case. Boomerang algorithm was used for the assembly operation
of the prototype, which consists of a cylindrical metal part used as a base, a spring used as a damping element
and a cover. The inner diameter of the spring to be assembled is 13.25 mm and the outer diameter of the socket
of the base piece is 12.85 mm. The position and orientation information shown on the Flexpendant screen in
Figure 8a shows the position required to assemble the two parts concentrically. However, due to the difference
in diameter between the base and the spring, a deviation of 0.225 mm can be accepted in this operation.
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With another saying, considering the diameter difference of the two parts, the assembly operation has an error
tolerance of 0.225 mm, and the assembly operation fails in case of positioning errors exceeding the tolerance.
The position and orientation data required for concentric centering were entered into the Boomerang algorithm
and the inverse kinematic solution was performed and the robot arm moved to the position shown in Figure 8b
with the angles obtained. As can be seen from the Flexpendant screen in Figure 8b, the desired position and
orientation errors are much better than the precision required for assembly. As shown in Figure 8c, the spring
assembly handled correctly with positioning errors 0.1 mm, 0 mm and 0.1 mm for x, y and z coordinates,
respectively.

 

(a) (b) (c) 

Figure 8. Assembly application with Boomerang Algorithm and positioning errors (a) desired position-orientation
values, (b) Boomerang algorithm solution, (c) assembled spring position with calculated joint values.

As a result of the tests carried out, it has been seen that the joint angles calculated with the Boomerang
algorithm provide the required positioning accuracy for the properly performed precise assembly applications.
Also, with the demonstrated assembly application, it has been shown that the Boomerang algorithm is suitable
for use in assembly applications where positioning accuracy is important.

5. Discussion
In this study, we have proposed a PSO-variant algorithm called Boomerang for solving inverse kinematics
of industrial robots. Boomerang algorithm has recursive structure and uses an alternative method to DH
parameters, named OPW, to define robot kinematic structure for reducing computational load. It has been
proven that the OPW method used in the developed algorithm reduces the computational load compared to
the DH parameters. One hundred random samples taken from the workspace were tested using the Boomerang
algorithm with the same parameters by changing the DH and OPW based objective functions. It has been shown
that a significant advantage is provided in the computation times when the objective function defined by OPW
is used. We have compared Boomerang algorithm with formerly proposed PSO algorithms over two different
industrial robots with same dataset and hardware in simulation studies. The success rate of PSO1 algorithm
is 100%, but its computation time, and position and orientation errors are relatively high. PSO2 has good
results in position and orientation error but has moderate computation time and the least success rate. PSO3
has the least position errors with 85% success rate, but computation time (13.7625 s) is the worst amongst.
Boomerang algorithm obtained the best orientation with a MAE of 0.0761◦ and fairly good position with a
MAE of 0.0408 mm. The success rate of the proposed algorithm is 95%. Moreover, proposed algorithm reaches
to a precise inverse kinematics solution in 0.7825 s. From the simulation and nonparametric statistical tests, we
found that the proposed Boomerang algorithm is more effective compared to the other PSO variants in terms
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of computational time, position and orientation errors, and its convergence to a solution. For the feasibility
assessment of the PSO variant algorithms a “feasibility” function is defined which correlates computational
time, position and orientation errors and success rate. PSO1 algorithm has a feasibility of 60% where PSO2 and
PSO3 algorithms’ feasibility measures are 73% and 76%, respectively. The feasibility of Boomerang algorithm
is found to be more superior by 8% compared to the other PSO variants. The accuracy of the simulation
results has been tested by using the Boomerang algorithm in a physical application on ABB IRB120 robot
arm. As a result of the tests performed, we have observed that the Boomerang algorithm can reach an inverse
kinematic solution with a computational time of less than a second with a mean average position error of 0.04
mm and orientation error of 0.07◦ . Experimental results were also supported by the successful completion of
the assembly application, which was performed using the Boomerang algorithm without exceeding needed error
tolerance of 0.225 mm for the selected application. The angles calculated by the Boomerang algorithm resulted
in a positioning error of 0.1 mm, 0 mm, and 0.1 mm for respectively x, y, and z coordinates and an orientation
error of 0.1, 0, and 0.1 degrees for roll, pitch, and yaw angles. The biggest disadvantage of the algorithm is
that although it produces a solution with a high probability (95%), it does not guarantee to find a solution as
in other PSO variants. Moreover, since the algorithm generates a solution for a pose, possible poses can be
dangerous in dynamic environments and for obstacle avoidance.

6. Conclusion
From the simulation results, statistical nonparametric tests, and physical applications, we observed that the
proposed method succeeded in solving the inverse kinematics of industrial robots. Boomerang algorithm can
bring the end effector to the desired position and orientation. With the proposed algorithm, the inverse kinematic
analysis of randomly selected positions in the workspace can be performed as statistically shown probability
of 95%, but as with all other optimization-based methods, the solution is not guaranteed to be found and it
may not appropriate to achieve the desired pose when the dynamic obstacles is case, because the proposed
algorithm seek for a solution to a single pose with desired position-orientation pair not path. It is also shown
that the OPW method, which is the DH alternative we propose for use in optimization-based inverse kinematics
algorithms, and the forward kinematics equations used to obtain the solution reduce the computation time and
can be an alternative and useful to implement in applications. Furthermore, according to the nonparametric
tests and feasibility comparison results in terms of computational time, position and orientation errors and
success rate of the PSO variant algorithms, the proposed algorithm obtained the best performance. Wilcoxon
nonparametric statistical analysis based on MAEs of position and orientation show that Boomerang algorithm
demonstrates a significant improvement against other PSO variant algorithms. The mean absolute errors of
the inverse kinematic solutions obtained by the proposed method are 0.0408 mm for positioning and 0.0761◦

for orientation. Also, the physical tests and assembly application on an industrial robot arm verified that the
proposed algorithm successfully solves the inverse kinematics in less than a second. Consequently, the simulation
and experimental results showed that the proposed algorithm is an alternative way to define kinematic structure
and has ability to solve inverse kinematic of 6 DOF serial manipulators.
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