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Abstract: With the rapid development of 5G and the Internet of Things (IoT), the traditional cloud computing
architecture struggle to support the booming computation-intensive and latency-sensitive applications. Mobile edge
computing (MEC) has emerged as a solution which enables abundant IoT tasks to be offloaded to edge services. However,
task offloading and resource allocation remain challenges in MEC framework. In this paper, we add the total number of
offloaded tasks to the optimization objective and apply algorithm called Deep Learning Trained by Genetic Algorithm
(DL-GA) to maximize the value function, which is defined as a weighted sum of energy consumption, latency, and the
number of offloaded tasks. First, we use GA to optimize the task offloading scheme and store the states and labels of
scenario. Each state consists of five parameters: the IDs of all tasks generated in this scenario, the cost of each task,
whether the task is offloaded, bandwidth occupied by offloaded task and remaining bandwidth of edge server. The labels
are the tasks that are currently selected for offloading. Then, these states and labels will be used to train neural network.
Finally, the trained neural network can quickly give optimization solutions. Simulation results show that DL-GA can
execute 75 to 450 times faster than GA without losing much optimization power. At the same time, DL-GA has stronger
optimization capability compared to Deep Q-Learning Network (DQN).
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1. Introduction
With the development and progress of 5G and Internet of things (IoT), many computation-intensive applica-
tions and services are developed, such as augmented reality (AR), intelligent transportation, and intelligent
manufacturing and smart grid [1–6]. However, those applications and services require a network transmission
environment with low latency [7]. For example, AR service is a latency-sensitive service which needs to ensure
that all users interact with the AR environment efficiently and synchronously, which requires high computa-
tional power of the mobile device (MD) [2]. However, it is more common to upload these computationally
intensive tasks to a powerful remote server for processing than to MDs with limited computational power,
battery and storage capacity.

Mobile cloud computing (MCC) is a very popular solution with strong computing and storage capabilities
[8]. However, since the remote servers are far away from MDs, the communication links are blocked when a
∗Correspondence: zmj7745@163.com
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large amount of data are transferred to MCC servers, resulting in high delay and high energy consumption,
which negatively affects latency-sensitive applications [9]. To address this issue, mobile edge computing (MEC)
is proposed as a reliable solution [10]. MEC allows MDs to offload their computing tasks to the MEC servers
deployed near the MDs, which can effectively reduce response latency and energy consumption of MDs and
provide a better user experience [11]. Since the edge servers are distributed at the edge of the network and
provide data processing services in close proximity, they can effectively reduce the risk of user data privacy
leakage and greatly improve data security [12]. In addition, the edge server and the external network can
operate independently, which means it reduces the dependency on the external network and can provide reliable
and stable communication links for MDs [13]. Despite these advantages, MEC still needs to figure out some
obvious problems, which motivate our work. On the one hand, a disorderly task offloading strategy consumes
a lot of unnecessary resources of the edge servers. On the other hand, only a fraction of computational tasks
can be offloaded to the MEC server due to bandwidth and computational resource constraints [14].

In this paper, we aim to not only reduce the energy consumption and latency but also maximize the
number of offloaded tasks by optimizing the task offloading strategy. We apply a deep learning trained by
genetic algorithm (DL-GA) to optimize this problem. In this algorithm, deep neural network (DNN) is applied
as experience collector in DL-GA. GA can be considered an “explorer” which obtains different optimization
schemes in different environment and those optimization schemes can be understood as experience to train the
DNN. Finally, the DNN trained by a large number of experiences can offer the optimization scheme rapidly. The
main contribution of this paper are that the DL-GA algorithm is applied to solve the multiobjective optimization
problem in MEC and the experiment results proves that DL-GA has a good optimization effect similar to GA
and execution time of DL-GA is much faster than GA. Meanwhile, DL-GA has better optimization ability than
deep Q-learning network (DQN).

The rest of the paper is organized as follows. The related work of resource allocation and task offloading
is analyzed in Section 2. Section 3 introduces the system model and formulates the optimal problem. The
detailed process of DL-GA is introduced in Section 4. The simulation results of the algorithm are analyzed in
Section 5. Section 6 concludes this paper.

2. Related work
Resource allocation means that the MEC server allocates its own computing resources and storage to handle
the computing tasks offloaded by the MDs. Task offloading strategy decides whether computing tasks should be
offloaded. If the task decides not to be offloaded, it will be processed locally. If the task decides to be offloaded
to the edge servers, then strategy needs to determine which edge server should process this task. The purpose
of resource allocation and task offloading is to reduce response latency and energy consumption of MDs. There
are some existing studies focusing on reducing the latency. Ning et al. [15] provided an iterative heuristic MEC
resource allocation (IHRA) algorithm to reduce latency efficiently based on multiuser environment. Bai et al.
[16] introduced intelligent reflecting surfaces (IRS) to optimize the proposed MEC system, which can reduce
computational latency efficiently. Tiwary et al. [17] designed a noncooperative extensive game model. In this
model, Karush–Kuhn–Tucker (KKT) conditions and Nash Equilibrium are applied to reduce average latency.
Wang et al. [18] considered the impact of user equipment movement on the delay and designed a reinforcement
learning-based online microservice coordination algorithm to reduce the overall latency. Similarly, there are
also some researchers focusing on saving the energy consumption of UDs. Chen et al. [19] introduced an
energy-efficient dynamic offloading algorithm (EEDOA) to minimize the energy consumption under a condition
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where they try to stabilize the length of the offloading task queue at a low level in an unstable wireless channel
environment. Zhao et al. [20] designed an algorithm based on dynamic programming to minimize the energy
consumption of multiple mobile devices. Yang et al. [21] studied a DQN-based reinforcement learning algorithm
to reduce the energy consumption and applied a conventional optimization algorithm as contrast. Certainly,
the energy consumption and response latency can also be considered to be optimized simultaneously which
is formulated as an NP-hard problem [22]. Nath et al. [23] introduced a deep deterministic policy gradient
(DDPG) method to minimize the weighted sum of energy consumption, latency, and cost of cache contents.
Tong et al. [24] designed a deep reinforcement learning (DRL) method to optimize the energy consumption and
average response time, which works more effectively compared to reinforcement learning (RL). Zhang et al. [25]
tried to minimize the cost which is weighted sum of energy consumption and response delay. They combined
K-means clustering and GA to solve this multiobjective optimization problem.

However, the above studies did not consider the impact of the number of offloaded tasks on the user
experience. Since the limited resources of MEC servers cannot support all tasks when the number of tasks
increases gradually in relevant scenarios, the number of offloaded tasks is also an important optimization
objective. Liu et al. [26] designed an extended marriage algorithm (EMA) to maximize the number of offloaded
tasks before deadline, but the optimization both energy consumption and latency was not considered in this
paper. Li et al. [27] designed further a novel genetic algorithm named M-COGA which tried to maximize
the weighted sum of the number of offloaded tasks and the cost where cost represents the weight combination
of energy consumption and latency. Although the M-COGA has good optimization effect, it still needs to
overcome some defects, that is, the iterative convergence speed of genetic algorithm will be slower and the
algorithm execution time will be longer in the face of more complex scenarios, which greatly affects the user
experience.

In [28], the DL-GA was proposed to solve the path planning of unmanned aerial vehicle (UAV). This
algorithm overcomes the disadvantage of long iterative convergence time of GA. Therefore, we will apply DL-GA
in MEC to solve the multiobjective optimization problem, that is, to maximize the weighted sum of the number
of offloaded tasks and the cost where cost represents the weight combination of energy consumption and latency.

3. System model and problem formulation

In this section, we will model both MDs and MEC servers. We will then formulate this multiobjective problem.
All notations used commonly are shown in Table 1.

3.1. System model

The MEC model consisting of n MDs and m base stations (BSs) is shown in Figure 1. Each BS is deployed
with an edge server to process the data received by the BS, which constitutes a complete MEC server.

In this research, we assume that each MD has only one task. In other words, MDi generates a task Ti ,
where MDi denotes the id of the MD which generated task Ti . MDi can process Ti locally if it has enough
resources. The local processing time of a task Ti can be described as

ti =
di
fi
, (1)

where di represents the required local CPU cycles for task Ti , and fi represents CPU cycles of MDi per

500



GU et al./Turk J Elec Eng & Comp Sci

Table 1. Commonly used terms in the MEC model.

Notation Definition
n Number of MD
m Number of BS
MDi Id of MD
Ti Id of task
ti Local processing time of Ti

di Required local CPU cycles for Ti

fi CPU cycles of MDi per second
Ji Energy consumption coefficient per CPU cycle
ei Local energy consumption of MDi

B Channel bandwidth of BS
S Average power of signal
N Average power of noise
CB Channel capacity
Bi Bandwidth of subchannel
Cs(i) Channel capacity occupied by offloaded task Ti

Cost(i) Weighted sum of energy consumption and latency
λt Weight parameter of ti
λe Weight parameter of ei
Nt Total number of offloaded tasks
Cv Total cost of offloaded tasks
θ(Nt) Normalized Nt

θ(Cv) Normalized Cv

λNt
Weight parameter of Nt

λCv
Weight parameter of Cv

ϕ(Nt, Cv) system effectiveness
Li Whether to offload Ti

min(Nt) Theoretically minimum number of offloaded tasks
max(Nt) Theoretically maximum number of offloaded tasks
min(Cv) Theoretically minimum total cost of offloaded tasks
max(Cv) Theoretically maximum total cost of offloaded tasks
min(Cost) Theoretically minimum cost
max(Cost) Theoretically maximum cost

second. Then, the local energy consumption of MDi for computing the task Ti can be described as

ei = Jidi, (2)

where Ji is the energy consumption coefficient per CPU cycle. Generally, the time and energy consumption
required for each CPU cycle will not be exactly the same. However, it is difficult to accurately calculate the time
and energy consumption of processing a task due to the complex working mechanism of the CPU. Therefore,
fi and Ji can be understood as a coefficient in this model.

In this MEC server, BS is configured to receive the data to be offloaded from MDs through wireless
transmission and send it to the edge server for processing. The maximum transmission rate of BS can be
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Figure 1. The task offloading in the MEC system.

assumed as

CB = B log2(
S

N
), (3)

where B is the channel bandwidth, S present the average power of signal and the N represents the average power
of noise. CB is also called channel capacity. Usually, the actual value is often smaller than the theoretical value
CB due to the influence of the real environment [27]. When task Ti will be offloaded to the BS, the task Ti

needs to occupy a certain channel capacity called subchannel, which can be expressed as

Cs(i) = Bi log2(
Si

N
), (4)

where Bi is the bandwidth of this subchannel, and the Cs(i) indicates the channel capacity occupied by
offloaded task Ti . From Eqs. (3) and (4), limited channel capacity cannot carry unlimited tasks transmission,
that is, CB ≥

∑n
i=1 Cs(i) . Generally, if the channel quality is bad, it is more suitable to process task locally

rather than offloading to the MEC server, because a large part of energy is wasted in data transmission. If the
channel quality is efficient, it is more suitable to offload all tasks to the MEC [29]. However, the influence of
channel quality on offloading strategy will not be discussed in this paper.

3.2. Problem formulation
The main purpose of resource allocation and task offloading is to reduce energy consumption and response
latency of MDs. We denote Cost(i) as the weighted sum of energy consumption and response latency, which
can be described as

Cost(i) = λtti + λeei. (5)
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Tasks with high Cost will be preferentially offloaded to BS. λt and λe are the weight parameter which
influence the optimization ability. In other words, if we focus on reducing the UDs’ response latency, we can
set λt > λe, λt, λe ∈ [0, 1] and vice versa.

In addition to the Cost(i) , the MD can also decide whether to request offloading task. We denote
Li ∈ {0, 1} . MDi determines to request offloading Ti if Li = 1 , and if Li = 0 , the task Ti will be processed
locally. Thus, the task is defined by several important attributes, i.e. Ti = {MDi, Cost(i), Cs(i), Li} . In
this study, we assume that all offloaded tasks can be fully processed. In other words, we assume that the
resources of MEC server are sufficient to calculate all uploaded tasks. Therefore, we want to offload more tasks
simultaneously with limited channel capacity while guaranteeing a high Cost of tasks, which will be formulated
as

max n and

n∑
i=1

Li ∗ Cost(i)) (6)

s.t. CB ≥
n∑

i=1

Li ∗ Cs(i)

In order to better analyze the research results, we use system effectiveness ϕ(Nt, Cv) to quantify the
above optimization objectives, which is defined as

ϕ(Nt, Cv) = λNtθ(Nt) + λCvθ(Cv), (7)

where λNt
, λCv

∈ (0, 1) denote weight coefficients and θ is the normalization function that keeps the two
parameters at the same dimensions. θ(Nt) represents the total normalized number of offloaded tasks which is
defined as

θ(Nt) =
Nt −min(Nt)

max(Nt)−min(Nt)
, (8)

where Nt is the actual total number of offloaded tasks, min(Nt ) is the theoretically minimum number of
offloaded tasks and max(Nt ) is the theoretically maximum number of offloaded tasks. And θ(Cv) is the total
normalized cost of offloaded tasks, which is defined as

θ(Cv) =
Cv −min(Cv)

max(Cv)−min(Cv)
, (9)

where Cv is the actual total cost of offloaded tasks, min(Cv ) is the theoretically minimum total cost of offloaded
tasks and max(Cv ) is the theoretically maximum cost of offloaded tasks. min(Cv ) and max(Cv ) are defined as{

max(Cv) = max(Nt) ∗max(Cost),
min(Cv) = min(Nt) ∗min(Cost),

(10)

where max(Cost) and min(Cost) are the maximum and minimum theoretical cost value.

4. Resource allocation based on DL-GA
In this section, we introduce DL-GA, which is an algorithm that can be divided into two steps. We first use
GA to collect states and labels as a dataset, which is then trained by a deep neural network.

503



GU et al./Turk J Elec Eng & Comp Sci

4.1. Genetic algorithm

GA is one of the heuristic algorithms with strong generalization and local search ability. In this system, the
algorithm is divided into the following steps.

4.1.1. Establish initial population

First of all, an initial population is established as a matrix P

P =


τ1,1 τ1,2 · · · τ1,q
τ2,1 τ2,2 · · · τ2,q
· · · · · · · · · · · ·
τM,1 τM,2 · · · τM,q

 , (11)

where M represents the number of individuals. Each row of this matrix represents a possible offloading strategy
for task set T = {T1, T2, · · · , Tq} , which means τM,i ∈ T, i ∈ (1, q) . After establishing the population, the
fitness value of each row will be calculated. Fitness is the evaluation criterion of each row which represents
the individual viability. In GA, the system effectiveness is called fitness value. The fitness computation can be
described by Algorithm 1.

Algorithm 1 Fitness computation
Input: Population P
Output: Fitness set F

1: Initialize population with matrix P
2: Initialize empty fitness set F
3: for k = 1,M do
4: Initialize channel capacity of BSs
5: Initialize total cost Cv = 0 and total number Nt = 0
6: for j = 1, n do
7: Select maximum remaining channel capacity of BSs as Cres(B)
8: if Cres(B) ≥ Cs(τk,j) then
9: Cv+ = Cost(τk,j)

10: Nt+ = 1
11: Cres(B)− = Cs(τk,j)
12: else
13: break
14: end if
15: end for
16: F.append(λNt

θ(Nt) + λCv
θ(Cv))

17: end for
18: return F

4.1.2. Roulette algorithm (RA)

After calculating the fitness value of each row by Algorithm 1, a set F will be obtained, and then the survival
probability of each individual can be calculated as

Pr(i) =
F (i)∑M

m=1 F (m)
, (12)
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A new survival probability set Pr(i = 1, 2, 3, · · · ,M) can be generated by equation (12). And next,
the population will be randomly selected for M times, and a new population matrix PIN will be formed. As
individual with greater fitness are easier to survive, individual with greater Pr are more likely to be selected
multiple times. In order to create next generation individuals to continue the selection, the crossover operation
(CO) and mutation operation (MO) will be used after that.

4.1.3. Crossover operation

Crossover and subsequent mutation are important methods to ensure that GA has good global and local search
ability. CO randomly selects two adjacent rows from PIN , which is described as row Pj = [τj,1, · · · , τj,q]and
Pk = [τk,1, · · · , τk,q] . And we randomly select an index i, i ∈ (1, q) to exchange τj,i and τk,i . Then, we exchange
the τj,g and τk,h where τj,g = τk,i and τk,h = τj,i . A crossover probability Pc will be introduced to replace the
random selection of individuals, which means we determine whether the two rows need crossover by producing
a random number compared with Pc . After repeating the above steps M-1 times, a new matrix PINC will be
generated and continue the mutated.

4.1.4. Mutation operation

MO randomly exchanges two elements in one row. In other words, MO interchanges the τs,j and τs,k in the
same row from PINC . Here, a mutation probability Pm is also introduced to replace the random selection of
row. After repeating M times of mutation operation, the new matrix PINM can be obtained. Besides, in order
to preserve the optimal individual in the initial population, an individual with the largest fitness value in initial
matrix P was selected and added it to the matrix PINM at the M+1 rows.

The row with the lowest fitness value from PINM will be deleted and a new matrix Pnew of size M × q

will be obtained. Then iterating will continue until we find a stable individual with best fitness.

4.2. The deep learning trained by genetic algorithm

Eventually, we can get a queue set τ = {τ1, τ2, · · · , τn} with best fitness after computing through Algorithm 2,
which is the optimal scheme of task offloading in that current environment. If the tasks of MDs are changed,
we have to get result by recomputing Algorithm 2, which spends too much time and influences the experience
of users. It indicates that GA is not applicable to time-sensitive problems. Therefore, we try to apply DL-GA
to solve this problem due to the faster computation speed.

In DL-GA, the result obtained by GA can be understood as experience. And the convolution neural
network (CNN) is chosen to study the experience because of the excellent feature extraction ability [28]. After
sufficient training, CNN can quickly solve the optimization schemes according the different parameters.

It is necessary to reshape our experience into a state matrix and label because of the application of CNN.
The state matrix stores the features as input, and label stores an optimized offloading task queue as output.
The state matrix with size of

√
n×

√
n× 4 was shown as in Figure 2.

Figure 2 shows that the state matrix can be understood as four layers and each layer is
√
n×

√
n,

√
n ∈

N+ . The first three layers are used to store attributes of tasks, and last layer stores relevant features of the
BS. In order to train the CNN more efficiently, the range of values stored in this matrix will be set from 0
to 1. Therefore, the first layer stores C ′

s(i) which is normalization values of Cs(i) . The second layer stores
Cost′(i) which is normalization values of Cost(i) . The third layer stores Li which determines whether it is
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Algorithm 2 Offloading strategy based on GA in MEC
Input: Population (P)
Output: Individual with best fitness

1: Initialize population with matrix P and channel capacity of BSs
2: while x < 800 do
3: Calculate fitness value by Algorithm 1
4: Find individual with best fitness Best
5: function RA
6: Initialize a new empty matrix PIN

7: pro = 0, i = 0
8: repeat
9: randomly generated seed Pseed, Pseed ∈ (0, 1)

10: repeat
11: pro+ = Pr(i)
12: if pro > Pseed then
13: PIN .append(P (i))
14: break
15: else
16: i+ 1
17: end if
18: until M times
19: return PIN

20: until M times
21: end function
22: function CO
23: repeat
24: random a seed
25: if seed < Pc then
26: Crossover operation
27: end if
28: until M − 1times
29: end function
30: function MO
31: repeat
32: random a seed
33: if seed < Pm then
34: Mutation operation
35: end if
36: until M times
37: end function
38: Calculate fitness value by Algorithm 1
39: Find individual with best fitness value as NewBest
40: if NewBest = Best then
41: x+ = 1
42: else
43: x = 0
44: end if
45: end while
46: return individual with best fitness value NewBest
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Figure 2. Matrix with collected features.

offloaded or not. Li will be randomly assigned a value in the experiment. The fourth layer is used to collect
the remaining channel capacity of m BSs. The first three columns of the fourth layer represent the remaining
channel capacity of BSs set B = {β1, · · · , βm} , respectively. In other words, the first column of the fourth layer
stores the Cres(β1) , the second column of the fourth layer stores the Cres(β2) , the third column of the fourth
layer stores the Cres(β3) , and the rest of the fourth layer has a value of 0.

To train the CNN better, it is important to collect enough state matrices and labels from the optimal
results by GA. Next, we will introduce how to collect state matrices and labels from an assumed optimal result

τ = {τ1, τ2, · · · , τn} . At the beginning, a state matrix Ft1 = [C ′
s(i), Cost′(i), L

{1}
i , C

{1}
res (βi)] and an empty

label set L = {} are initialized. The Cres(β1) , Cres(β2) , Cres(β3) are initialized to 1 before offloading tasks,
and then L adds a label τ1 from set τ described as L = {τ1} , which means the MEC system will offload
task τ1 in the current state Ft1 . When the first task τ1 is offloaded, the system selects a BS with maximum
remaining channel capacity to receive the task τ1 and process. Then the working BS will subtract the channel
capacity occupied by task τ1 , which is described as

Cres(βi) = Cres(βi)−
Cs(τ1)

CB(βi)
, (13)

where βi is the BS with maximum remaining channel capacity. Cs(τ1) is the channel capacity occupied by task
τ1 , CB(βi) is the maximum channel capacity of βi . After offloading the task τ1 , the Li of task τ1 changes

from 1 to 0, and then a new state matrix Ft2 = [C ′
s(i), Cost′(i), L

{2}
i , C

{2}
res (βi)] with the same scale as Ft1 is

produced to store the new feature which is changed after offloading a task. And the label L also adds a new
task τ2 described as L = {τ1, τ2} , which means that the system will offload the task τ2 in the changed states
Ft2 . This process will be described in Algorithm 3.

After repeating the above step, we will get a state matrix set Ft = {Ft1, F t2, · · · , F tS−1} and the label
L = {τ1, τ2, · · · , τS−1} . And the element of both Ft and L correspond in order and are combined into a set of
training sets as the input of the CNN. However, training CNN needs large datasets. Thus, we need to repeat
Algorithm 3 to generate more datasets.

After collecting the relevant data, a CNN will be constructed with the structure shown in Figure 3. Here,
the classification result represents the label of the task being offloaded, and then we can input the state matrix
to get the best task queue to be offloaded. Since the CNN computation process does not require iteration and
convergence, it can quickly compute a reasonable result. The task offloading process of DL-GA can be described
by the algorithm 4

In Algorithm 4, this trained CNN may choose the MD that does not need to offload the task to the BS.
This is because the optimization capability of the CNN relies on the large amount of experience gained from
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Algorithm 3 datasets collection
Input: Optimal scheme τ from GA
Output: Fitness set F

1: Obtain individual with maximum fitness from Algorithm 2 (Supposing it is τ )
2: Initialize state matrix Ft1
3: Store C ′

s(i), Cost′(i), Li and Cres(βi) in the Ft1
4: L.append(τ1) and S = 1
5: while ture do
6: selecting the Cres(βi) with maximum remaining channel capacity
7: if Cres(βi) ≥ Cs(τS)

CB(βi)
then

8: Cres(βi) = Cres(βi)− Cs(τS)
CB(βi)

9: Li = 0, Li ∈ τS
10: L.append(τS+1)
11: Copy matrix FtS to FtS+1

12: Restore new Cres(βi) and Li in FtS+1

13: S = S + 1
14: else
15: break
16: end if
17: end while

Figure 3. Matrix with collected features.

the GA rather than theoretical computations. In this case, the CNN’s offloading strategy is designed to select
a task with the minimum channel capacity to offload to the BS.

5. Simulation result
In this simulation, there are 100 MDs covered by 3 BSs and each BS can link all 100 MDs within the same
distance. In other words, we ignore the effect of transmission distance on transmission rate. Since the Cres(βi)

stored in matrix is normalized to a percentage value, each BS can be designed to have the same channel
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Algorithm 4 Offloading strategy by CNN.
Input: An initialization state matrix Ft1
Output: Optimal scheme L

1: Initialize n UDs including C ′
s(i), Cost′(i), Li and Cres(βi)

2: Initialize m BSs including CB(βi) of BSs
3: Reshape data above into matrix Ft1
4: Initialize task queue L and x = 1
5: while ture do
6: Input Ftx to CNN and get the task τx . select the Cres(βi) with maximum remaining channel capacity
7: if Li = 1, Li ∈ τx then
8: if Cres(βi) ≥ Cs(τx)

CB(βi)
then

9: Cres(βi) = Cres(βi)− Cs(τx)
CB(βi)

10: Li = 0, Li ∈ τx
11: L.append(τx)
12: x = x+ 1
13: Reshape new matrix Ftx
14: else
15: return L
16: end if
17: else
18: Select task τj with minimum channel capacity
19: if Cres(βi) ≥ Cs(τx)

CB(βi)
then

20: Cres(βi) = Cres(βi)− Cs(τx)
CB(βi)

21: Li = 0, Li ∈ τj
22: L.append(τj)
23: else
24: return L
25: end if
26: end if
27: end while

bandwidth with no effect on the simulation results. We use a probability of 0.5 to determine the Li of each
task Ti . The parameter of channel bandwidth is assumed as B = 5 MHz [30], the average power of signal
S = 100 mw, and the average power of noise N = −100 dbm [31]. All important simulation parameters and
hyperparameter are shown in Table 2.

The diversity and validity of datasets are one of the key factors for the successful operation of DL-GA.
We have to repeat GA in different initialization environments in order to collect sufficient datasets for the CNN.

Figure 4 shows one of the convergence curves of optimal GA-based results, which indicates that the fitness
can converge efficiently. In this MEC system, fitness presents the system effectiveness defined by equation (7).
Due to the large difference between the theoretical extremes and the random values, the fitness values usually
appear small.

After training the CNN based on a sufficient dataset, the experimental procedure is described as follows.
At first, we initialize the MDs and BSs. Then, we reshape them into an initialized state matrix. Finally, this
matrix is fed to the trained CNN and an optimal task offloading scheme is obtained by the algorithm 4. Several
factors are used to evaluate the DL-GA, including the total number of selected offloading tasks, the total cost
of selected offloading tasks, the system effectiveness, and the solving time. To demonstrate the superiority
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Table 2. Experience parameters and hyperparameter setting.

Parameters Value
m 100
n 3
B 5 MHz
S 100 mw
N -100 dbm
di random(0, 3× 108) Hz
fi 1 GHz
Ji 8.9× 10−12 J/cycle
Cs(i) random(0.175× 105, 0.5× 105)

M 80
Pm 0.7
Pc 0.3
λNt

0.7
λCv

0.3
λt 0.3
λe 0.7
Activation function Relu
Loss function Crosse-entropy
Mini-Batch size 1024
Optimizer Adam
Number of datasets 424536

Figure 4. Convergence curve.

of DL-GA, GA, DQN, and random selection are used as comparisons. DQN is another commonly used task
offloading algorithm, which consists of DL and RL. The following are the results of GA, DL-GA, DQN, and
random selection based on the average value after 100 executions, respectively.

In GA, the value of Li is randomly assigned as 0 or 1 with probability 0.5. In other words, the generation
rate is set to 0.5, which means the experience of CNN learning is also based on the task generation rate of 0.5.
Therefore, we set the axis X to the task generation rate from 0.2 to 0.9 to demonstrate the fitting ability of
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DL-GA in the simulation experiment. When the task generation rate is 0.1, the channel capacity of all BSs is
sufficient to offload all generated tasks simultaneously, which is not meaningful task offloading. Figures 5 and
6 shows the performance of GA, DL-GA ,DQN, and random choosing.

From Figures 5 and 6, as the task generation rate increases, the total number and cost of offloading tasks
selected using GA, DL-GA, and DQN are much larger than those of random selection, which leads to much
higher effectiveness of the three algorithms than the results of random selection. Although the total number of
offloading tasks using DQN is larger than that of DL-GA, the total cost of offloading tasks using DQN is much
smaller than that of DL-GA. This means that the offloading strategy of DQN is to offload as many tasks as
possible without considering the cost of the tasks. Therefore, this DQN algorithm is not effective in reducing
the energy consumption and delay of MD compared to DL-GA. The system effectiveness of DQN is similar to
that of DL-GA due to the large weight of the number of tasks in the system effectiveness equation 7 in the
experiment.

(a) The total number of selecting offloading tasks (b) The total cost of selecting offloading tasks
Figure 5. The total number and cost of offloading tasks in several algorithms.

Figure 6. The system effectiveness of several algorithms.

In addition, the total cost and number of using GA is slightly more than that of using DL-GA. We
can observe that the system efficiency of GA is higher than that of DL-GA, but the change is not significant.
However, from Figure 7 and Table 3 we observe that the average solution time of GA is about 75–450 times
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higher than that of DL-GA, which shows the superiority of DL-GA. The experimental results show that DL-GA
exhibits faster algorithm execution than GA at the cost of slightly weaker optimization.

Figure 7. Ratio of average solving time of GA and DL-GA.

Table 3. Average solving time of GA and DL-GA.

Task Generation Rate 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DL-GA(s) 0.165 0.119 0.123 0.129 0.125 0.128 0.129 0.129
GA(s) 15.36 28.14 34.15 42.06 45.22 49.70 57.21 55.72

In order to better demonstrate the optimization capability of DL-GA in different environments, we use
the number of BSs as the environment variable to test the optimization capability of DL-GA, GA, DQN, and
random selection. As the number of base stations increases, the total number of tasks that can be handled by
the edge server increases. We increase the number of BSs sequentially from 1 to 6 and set the task generation
rate to 0.5.

From Figure 8, we can see that the system effectiveness of all three algorithms, DL-GA, GA, and DQN,
is much higher than random selection as the number of BSs increases. However, we can see from Figure 9 that
the total cost of using DL-GA is much larger than that of DQN when the number of offloading tasks using
the DQN strategy is slightly larger than that of using DL-GA. This indicates that when the number of BSs
increases, DL-GA is still better than DQN in reducing energy consumption and delay.

Figure 8. The system effectiveness at different numbers of BSs.
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(a) The total number at different numbers of BSs (b) The total cost at different numbers of BSs

Figure 9. The total number and cost of offloading tasks at different numbers of BSs.

Overall GA has better optimization effect than DL-GA. However, when the number of BSs gradually
increases, the number of offloading tasks that the BSs can accommodate at the same time also increases, so the
complexity of the environment for the GA also increases, which can largely affect the iterative convergence time
of the GA. Therefore, it can be seen from Figure 10 that the overall solution speed of GA tends to increase as the
environment complexity increase. This experiment also demonstrates the superiority of the DL-GA algorithm.

Figure 10. Ratio of average solving time of GA and DL-GA at different number of BSs.

6. Conclusion
Based on the consideration that the number of offloading tasks also affects the user experience, we aim to
maximize the weighted sum of the total number of offloading tasks and the total cost. We apply DL-GA to
solve this optimization problem. In this approach, we collect a large number of optimal results by GA and
classify these results into states and labels. Then, we use these states and labels to train a CNN. After that,
the trained CNN will quickly give the optimal solution. Simulation experiments show that the average solution
time of DL-GA is much less than that of GA, and DL-GA still has similar optimization capability as GA, which
proves the superiority of DL-GA for application in MEC environment.

However, DL-GA also has a drawback that the output of the neural network depends heavily on the
training of the dataset. Therefore, once the input matrix structure changes, for example, a new environmental
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factor is added, the optimization capability of DL-GA is much weaker. At this point, the CNN can only be
retrained using the GA.
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