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Abstract: Lung cancer has the highest death rates among all types of cancer worldwide. Detection of lung cancer in
its early stages significantly increases the survival rate. In this study, the aim is to improve the lung cancer detection
performance of electronic noses (e-noses) with breath analysis by using two different types of gas sensor-based e-nose.
The developed e-nose system consists of 14 quartz crystal microbalance (QCM) sensors and 8 metal oxide semiconductor
(MOS) sensors. Breath samples were collected from a total of 100 volunteers, including 60 patients with lung cancer,
20 healthy nonsmokers, and 20 healthy smokers, and were classified using decision tree (DT), support vector machine
(SVM), k-nearest neighbour (kNN), and random forest (RF) algorithms. Principal component analysis (PCA) and
linear discriminant analysis (LDA) algorithms were used for dimension reduction. A classification accuracy of 86.34%
and 75.48% was obtained using MOS and QCM sensor data, respectively. The overall results have shown that combining
the sensor data increases the accuracy to 88.54%. Additionally, it can be indicated that the PCA and LDA algorithms
have a positive effect on the performance. By using PCA and LDA algorithms, the accuracy increased up to 92.67% and
95.36%, respectively.
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1. Introduction
Motivation: Lung cancer is the most important cancer type that causes death all over the world [1]. According
to World Health Organization (WHO), the number of people who lose their lives annually due to lung cancer
is higher than kidney, bowel, and prostate cancer [2]. For the individuals with lung cancer to be healthy again,
the cancer should be detected as early as possible, and patients should be treated immediately. If the lung
cancer is detected in advanced stages, the five-year survival rate is around 10%, while this rate rises to 80%
if it is detected in early stages [3]. This information reveals the importance of detecting lung cancer at early
stages. Since lung cancer has few symptoms in the early stages, medical imaging techniques are the most widely
used methods to find cancer-related tumors [4]. For early detection of lung cancer, individuals included in the
high-risk group were examined together with many medical methods. These methods are generally salivary
cytology, biomarker tumors in the body, examination of the protein structure of the blood, magnetic resonance
combinations such as chest tomography and nuclear magnetic resonance (NMR), chest radiography (or chest
X-ray), and low-dose computed tomography (CT). Since these methods, which have been used for years, have
limited diagnostic features, studies to increase their performance are being carried out. Chest radiography
∗Correspondence: umitozsandikci@ktu.edu.tr
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(CXR) is one of these methods that have failed to provide a significant decrease in the mortality rate of lung
cancer patients in the past few decades [5, 6]. The sensitivity of this method is low and it also produces high
false negative values. In addition, the high radiation intensity in the CXR method limits its usage in this area.
Mazzane et al. stated that the computer-assisted tomography (CT) method can fix some of the deficiencies of
the traditional CXR method, but there are still aspects that need improvement [7]. The CT method produces
a large number of false negatives and misses a lot of first-level lung cancer disease states. In addition, because
CT detects lesions smaller than 1 mm in diameter, it produces a significant amount of false positive results [8].
To prevent this negative situation, a verification process is performed using positron emission scanning (PET)
[9]. However, the high costs of the CT and PET methods limits their use in early detection of lung cancer.
Since imaging methods have not achieved much success in detecting lung cancer in its early stages and reducing
the death rate, researchers have tended to work on breath analysis.

Proposed approach: Pauling et al. investigated the content of human breath in their study in 1970 and
identified more than 200 chemical compounds in human breath using gas chromatography (GC) [10]. After this
pioneering work, scientists have continued researching breath analysis. In the past few decades, the content
of human breath has been determined in general with the help of medical electronic devices [11]. As a result
of the experiments, it was determined that there are basically 3 types of chemicals in the content of human
breath: inorganic compounds such as nitrogen monoxide (NO), carbon dioxide (CO2 ) and carbon monoxide
(CO); volatile organic compounds (VOCs) such as isoprene, ethane, pentane, and acetone; and nonvolatile
compounds such as cytokines, isoprostanes, and nitrogen [12]. VOCs form as a result of the functioning of human
metabolism and circulate around the body through the bloodstream. These compounds pass tissues according
to certain biological rules and diffuse from the bloodstream into the lung air space across the alveolar wall.
Then, VOCs are released from the blood with all metabolites prior to exhalation [13]. It has been determined
that the number of VOCs in human breath is around 3000 [11]. The types of these VOCs include saturated
and unsaturated hydrocarbons, oxygen-containing compounds, sulphur-containing compounds and nitrogen-
containing compounds [12]. Saturated hydrocarbons such as ethane and pentane come into existence when the
w3 and w6 fatty acids react with reactive oxygen species in the cell membrane [14]. Isoprene is an unsaturated
hydrocarbon and a significant portion of isoprene forms as a result of cholesterol synthesis. In addition, a small
amount of isoprane originates from the bacteria existing in the body [15]. Oxygen-containing compounds such as
acetone, acetaldehyde, methanol and ethanol occur as a result of decarbonization of acetoacetate. Acetaldehyde
occurs with the oxidation of ethanol produced in the body. The source of ethanol is bacteria which live in the
intestines [16, 17]. Sulphur-containing compounds, such as dimethyl sulfide and methyl and ethyl mercaptans,
generally occur as a result of irregularities in the excretory system. For this reason, the number of sulphur-
containing compounds increases in the breath of individuals with kidney disease [18]. Nitrogen-containing
compounds in human breath are ammonia and di/trimethyl amine. These VOCs are found especially in the
breath of individuals with renal disorder [19]. Since VOCs circulate inside the human body and pass a lot
of tissues, any disorder in organs causes some changes in the levels of VOCs [20]. Chen et al. summarized
the exhaled breath analysis studies in the literature and their study gives important information about breath
composition versus some common diseases [21]. It is determined in the literature that the chemicals found in
lung disease cases are carbon-based compounds [22], alpha-olefin, styrene, and dodecane-4-methyl [23]. In cases
with airway inflammation disease, it is reported that adenosine [24], H2O2 [25], NO [26], 8-isoprostaglandin
[27] and periosteum [28] are encountered. Studies regarding gastrointestinal disorders have shown that 12
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VOCs, including pentanoic acid [29], 2-propenenitrile, furfural, and 6-methyl-5hepten-2-one [30], are found
in breath composition. One of the most common chemical is acetone for metabolic disorders and Shin et
al. analysed this chemical by using stannic oxide-based gas sensors [31]. Other studies have been performed
regarding metabolic disorders and significant findings were obtained [32, 33]. In another study, Moon et al.
investigated kidney diseases, one of the most common disease types, and detected H2S, NH3 and NO [34].
Also, studies of breath analysis show that the pentane concentration in breath increases in case of febrile and
sepsis diseases [35, 36]. High levels of methyl nitrate and acetone compounds are also found in the breath of
individuals with diabetes, which is one of the most common diseases all over the world [37, 38]. Peng et al.
researched the exhaled breath of people with different cancer types. They identified a number of VOCs, which
are present in > 80% of cancer patients and healthy subjects. The number of these VOCs is 33 for LC, 39
for colon cancer (CC), 54 for breast cancer (BC) and 36 for prostate cancer (PC). They determined that for
the most appropriate VOCs there was no overlap in abundance between healthy controls and cancer patients.
These VOCs for lung cancer are 1-methyl-4-(1-methylethyl)benzene, toluene, dodecane, 3,3-dimethyl pentane,
2,3,4-trimethyl hexane and 1,1-(1-butenylidene)bis benzene. For colon cancer (CC), the determined VOCs are
1,1-(1-butenylidene)bis benzene, 1,3-dimethyl benzene, 1-iodo nonane, [(1,1-dimethyl ethyl)thio]acetic acid and
4-(4-propylcyclohexyl)-4-cyano[1,1- biphenyl]-4-yl ester benzoic acid. In their study, they determined five VOCs
associated with breast cancer (BC): 3,3-dimethyl pentane, 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile,
5-(2-methylpropyl)nonane, 2,3,4-trimethyl decane and 6-ethyl-3-octyl ester 2-trifluoromethyl benzoic acid. The
last cancer type that they studied is prostate cancer (PC). The VOCs whose levels differ in healthy and cancer
patients are toluene, 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile, p-xylene and 2,2-dimethyl decane [39].
Jia et al. published a review article on lung cancer disease, and they listed VOCs identified as a lung cancer
biomarker in four or more studies. These were propanol, isoprene, acetone, pentane, hexanal, toluene, benzene,
ethyl benzene, heptane, 2-butanol, styrene, propanal, pentanal, ethanol, butanol, decane, undecane1-hexane,
1,2,4, trimethyl, propylene heptanal [40]. Poli et al. found aldehydes in the exhaled breath of nonsmall cell lung
cancer patients (NSCLC) in their study. They revealed that VOC levels in the breath of lung cancer patients
significantly differ from healthy people. The exhaled aldehyde levels can be seen in Table 1. (In Table 1 GM,
GSD and pM represent geometric mean, geometric standard deviation and concentration level in 10−12Molar,
respectively.)

Breath analysis studies focus on identifying and detecting VOCs in the breath that can be disease biomark-
ers. Because lung cancer detection by breath analysis is a noninvasive, sensitive, and simple method, this subject
has attracted substantial attention from researchers. In the literature, it is seen that gas chromatography–mass
spectrometry (GC-MS), selected ion flow tube–mass spectrometry, laser absorption spectrometry and infrared
spectroscopy are widely used to determine VOCs in the breath. However, these devices are quite expensive and
the performed tests are time consuming. In addition, these methods require predensification of breath samples
in order to improve performance of VOC detection.

Hardware approaches: E-noses are one of the devices which are used in breath analysis. These devices were
developed with inspiration from the human olfactory system. They can detect odours and VOCs with the help
of sensor arrays in their structures. E-noses allow us to distinguish simple or complex odours by using artificial
intelligence and pattern recognition subsystems in their structure. These devices mainly consist of three units: a
sensor unit, an electronic unit, and a pattern recognition unit. To detect target gases with high accuracy, sensors
must be selected very carefully. In the literature, gas sensitive materials can be classified as “electrochemical
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Table 1. Exhaled aldehyde levels.GM [GSD] and median values (25–75th percentile) [41].

Exhaled
Aldehyde

NSCLC NSCLC Controls
Non-/exsmokers Smokers

Propanal (pM) 53.6 [1.5]
52.4 (42.4–72.6)

47.9 [1.4]
49.8 (40.7–61.3)

59.3 [1.6]
66.3 (47.8–81.7)

30.6 [2.8]
24.4 (17.1–46.9)

Butanal (pM) 26.2 [1.8]
26.2 (18.7–41.0)

24.5 [1.7]
23.6 (17.9–33.8)

27.9 [2.0]
28.6 (19.1–46.1)

10.9 [2.4]
10.8 (6.9–18.6)

Pentanal (pM) 19.1 [2.4]
17.7 (12.7–42.6)

16.1 [2.4]
17.1 (12.8–22.3)

22.2 [2.5]
20.3 (12.1–49)

7.6 [2.7]
8.2 (4.4–14.7)

Hexanal (pM) 37.3 [1.9]
38.1 (26.6–57.7)

37.1 [1.6]
38.2 (26.7–54.6)

37.5 [2.2]
35.9 (20.9–66.7)

8.5 [2.7]
10.3 (7.0–13.8)

Heptanal (pM) 13.9 [1.8]
16.1 (9.3–21.3)

15.2 [1.6]
15.4 (10.4–21.3)

12.9 [2.1]
17.0 (8.4–24.0)

6.1 [2.0]
6.9 (3.8–10.1)

Octanal (pM) 23.0 [1.7]
23.6 (17.7–33.2)

25.7 [1.5]
26.9 (19.1–33.5)

20.8 [1.9]
22.4 (16.9–34.2)

10.0 [1.8]
11.6 (7.2–16.2)

Nonanal (pM) 44.0 [1.8]
48.2 (31.6–62.5)

50.9 [1.7]
51.7 (32.4–72.1)

38.5 [1.9]
36.5 (31.1–60.1)

12.7 [1.8]
13.3 (7.2–22.7)

principals” and “other principals”. Electrochemical principals contain a metal-oxide semiconductor (MOS),
conductive polymer composites (CPCs) and carbon nanomaterials (CNs). Other principals contain acoustic
wave sensors (AWS) and catalytic sensors [42]. MOS sensors are the most popular gas sensors for e-nose
applications. Their high sensitivity, low cost, stability and compatibility with modern electronic devices make
them very attractive for e-nose applications. These sensors are coated with sensing materials such as SnO2 ,
ZnO, CuO, TiO2 , WO3 , and NiO. The sensing materials react with gases at an appropriate temperature. As
a result of this reaction, the conductivity of the sensor changes. The change of sensor conductivity is converted
to electrical signals by the electrical unit of e-noses and is then transferred to a computer. To maintain the
appropriate temperature for sensors, an external heating voltage is applied to MOS sensors. It can be seen in
the literature that MOS sensors are used in both commercial and custom made e-noses [43]. Another commonly
used gas sensor for e-noses is quartz crystal microbalance (QCM) sensors, which consist of a quartz disk placed
between two gold, parallel electrodes. Quartz is a piezoelectric material and when an alternating current is
applied to electrodes a mechanical deviation occurs on the quartz. Also if the frequency of the current is equal
to the resonant frequency of a QCM sensor, a standing wave is generated in the resonator. This standing wave
is related to the mass of the sensor. QCM sensors are coated with a thin film and this film is sensitive to
target gases. When particles of a target gas are absorbed by the thin film, the resonant frequency of the sensor
changes. This change is calculated and transferred to the computer by the appropriate electronic circuit. By
using this frequency deviation, meaningful information can be obtained about the target gases. It can be seen
in the literature that QCM sensors are used in both commercial and specially made e-noses [44].

Data analysis approaches: In the literature, significant studies have detected lung cancer with a breath
analysis using e-noses. Tirzïte et al. used a Cyranose 320 e-nose device (Sensigent, Baldwin Park, CA, USA).
They collected breath samples from 223 healthy and 252 lung cancer patients. They used raw sensor data
without preprocessing. In their study, they used logistic regression analysis as a data classifier and they reached

553



ÖZSANDIKCIOĞLU and ATASOY/Turk J Elec Eng & Comp Sci

a 91% specificity value for first-stage lung cancer patients [45]. Koronov et al. used an e-nose consisting of
MOS sensors in their study, in which 53 healthy volunteers and 65 lung cancer patients participated. They used
PCA and logistic regression (LR), as well as the k-NN, random forest (RF), LDA, SVM, and ANN algorithms
for data processing and classification. A sensitivity value of 85%–95% and a specificity value of 81.2%–100%
were obtained [46]. Krauss and his colleagues used an aeoNose brand e-nose (The eNose Company, Zutphen,
The Netherlands) to collect data from 120 LC patients, 33 healthy controls (HC) and 23 chronic obstructive
pulmonary disease (COPD) patients. They used the ANN algorithm and obtained 84% sensitivity and 97%
specificity values on LC and HC data [47]. Wang and colleagues carried out experiments with an e-nose which
included 9 MOS, 3 electrochemical, 1 catalytic combustion and 1 thermal gas sensors. A total of 52 volunteers,
including 24 lung cancer patients, 5 volunteers with different respiratory diseases, 10 healthy smokers and
13 nonsmoker healthy volunteers, participated in this study. The dimension of the data was reduced with
PCA, LDA, Laplacian eigenmaps (LE), locally linear embedding (LLE) and t-distributed stochastic neighbour
embedding (t-SNE) methods. Classification results were obtained as 91.59% accuracy and 91.6% sensitivity by
using fuzzy k-NN and SVM classifiers [48]. Kort et al. used the aeoNose commercial e-nose for data collection
from 138 subjects with nonsmall cell lung cancer (NSCLC) and 143 controls without NSCLC. In this study,
researchers used ANN and multivariate logistic regression algorithms for data classification. They obtained
sensitivity values of 94.2%–95.7% and specificity values of 49.0%–59.7% [49]. Chernov et al. collected breath
samples from 59 people which included patients with a confirmed diagnosis of respiratory tract cancer. Their
sampling device included 14 MOS sensors. To process the data, they used a neural network with perceptron
architecture. They obtained a sensitivity value of 90.73% and a specificity value of 61.39% [50]. Huang et al.
used a sensor array consisting of carbon nanotubes as a sensing material for lung cancer detection, with 56
volunteers with lung cancer and 188 healthy individuals participating in their study. LDA and SVM algorithms
were used for classification. Their results showed that the accuracy values ranged from 85.4% to 92.7% [51].
When studies regarding lung cancer detection using e-nose are examined, it can be clearly seen that most studies
include only one type of gas sensor [52]. In our study, MOS and QCM sensors were used together, and thus
both conductivity and frequency information were obtained. As seen in the results, using the information from
both sensors significantly improves the system performance.

2. Materials and methods
In this study, an e-nose system has been designed to detect lung cancer by analysing human breath samples.
The e-nose system used in this study consisted of MOS-type and QCM-type gas sensors. When the literature
was investigated, almost all e-noses consist of one type of gas sensor, while usage of a different type gas-sensor
based e-nose, especially in breath analysis, is limited. It can be clearly seen in the result section that using
different typea of gas sensor data can improve system performance.

2.1. Experimental Setup

A block diagram of the e-nose system that was developed for this study is shown in Figure 1.
The MOS sensors used in this study are commercial-type sensors. To select the MOS sensors, we searched

for VOCs which have different concentrations in the breath of lung cancer patients and healthy individuals.
MOS sensors used in this study and their target gases are given in Table 2. The second type of sensor used in
the experimental system is the QCM sensor. The QCM sensors used in this study were produced by TÜBİTAK
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Marmara Research Center (Gebze, Kocaeli, Turkey). The researchers at TÜBİTAK MAM have used AT-cut
quartz crystals (Klove Electronics, Westerlo, Belgium). Also the QCM sensors were freed from the remaining
solvent in a dry air stream prior to use. The MOS and QCM sensors used in this study can be seen in Figure 2.

Figure 1. Block diagram of the developed e-nose system.

Table 2. Used sensors and target gases.

Sensors Target gases
TGS 813 Carbon monoxide, methane, ethanol, propane, isobutane, hydrogen
TGS 816 Carbon monoxide, methane, ethanol, propane, isobutane, hydrogen
TGS 826 Isobutane, hydrogen, ammonia, ethanol
TGS 832 R-12, R134a, ethanol, R-22
TGS 2602 Hydrogen, ammonia, ethanol, hydrogen sulfide, toluene
TGS 2610 Ethanol, hydrogen, methane, isobutane, propane
TGS 2612 Ethanol, methane, isobutane, propane
TGS 2620 Methane, carbon monoxide, isobutane, hydrogen, ethanol

Figure 2. MOS and QCM sensors used in the experimental setup.

Figure 2a–2c represent the TGS826, TGS813 and TGS2620 sensors, respectively. To transfer the dry air
and the breath samples in the appropriate direction, six solenoid valves were used. JELPC brand valves (JELPC,
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Ningbo, Zhejiang, China) with operating values of 24 V (DC) and 4.8 W were employed. The whole system
was cleaned with dry air (21% Oxygen + 79% Nitrogen) before and after the experiments. Breath samples
were collected from volunteers by using five-liter volume Tedlar Air Sample Bags (CEL Scientific, Cerritos, CA,
USA) and transferred to the sensors with a JH12-65 model vacuum pump. The vacuum pump works on a 12
V (DC) power supply and it has a five-liter/minute flow capacity. Data obtained via the MOS sensors were
transferred to the computer using a USB-6218 Multifunction I/O Device (National Instruments, Austin, TX,
USA). Data obtained from the QCM sensors were transferred to the computer via a frequency meter circuit
which is integrated with the QCM sensor chamber. Experiments with the developed e-nose consist of four
stages. In the first stage, the whole system is cleaned with dry air during 130 s and then the valves are closed.
After the first cleaning, the breath sample is transferred to the MOS and QCM sensor chambers during 40 s
through a vacuum pump. Then, all the valves are closed and the sensors are allowed to respond to the breath
samples for 30 s. Finally, the system is cleaned with dry air for 140 s and is ready for the next experiment. The
positions of the valves in the e-nose system during an experiment are given in Table 3.

Table 3. Stage of valves during an experiment.

Experiment processes times
State of valves (open-close)
V1 V2 V3 V4 V5 V6

Prepurging stage (130 s) Open Close Close Open Open Open
Odor sampling stage (40 s) Close Open Open Close Close Close
Breathing stage (30 s) Close Close Close Close Close Close
Postpurging stage (140 s) Open Close Close Open Open Open

The dry air flow rate was fixed at 10 L/min through a regulated valve of the dry air tube. Thus, the
entire system was successfully cleaned before and after the experiment with the same flow rate. By applying
constant voltage to the vacuum pump, the breath samples were transferred to the sensor chambers at the same
rates. The supply voltage of the vacuum pump was determined as 6 Volts during installation of the e-nose
system. At this stage, considering the volumes of the sensor chambers and tedlar bags, the breath samples were
delivered to the sensors with a flow rate of 3.6 L/min.

2.2. Collection of breath samples
During this study, a total of 338 experiments were carried out. The breath samples were collected from 40
healthy volunteers and 60 volunteers with lung cancer. LC patients were treated in the Faculty of Medicine,
Farabi Hospital, at Karadeniz Technical University. All necessary ethics committee documents were obtained
from Karadeniz Technical University before the study and the ethical clearance number is 24237859-517. LC
patients participated in this study after their bronchoscopy and biopsy results. The cancer stages of LC patients
were determined by the 7th version of the TNM method, which evaluates tumour width (T), regional lymph
node metastases (N) and distant metastasis (M), as determined by the American Joint Committee on Cancer
(AJCC). The patients did not undergo any surgical operation before breath samples were collected. Patients
who were unable to give breath sample were excluded from the study. At least two experiments were performed
with the breath samples taken from each volunteer. The healthy volunteers who participated in the study did
not have any health complaints and had not been diagnosed with any disease in the last month. In addition, no
cases of pregnancy were present in the healthy patients. Half of the healthy volunteers were smokers. Collection
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of the breath samples was completely voluntary for both patients and healthy individuals. Information about
patients and healthy volunteers is given in Table 4. The breath samples from each volunteer were collected by
using tedlar bags and each volunteer used only one tedlar bag.

Table 4. Characterstic of study subjects.

LC patient (60 Person) Healthy volunteer (40 Person)
Age (mean/std. deviation) 60.7 / 8 48.2 / 9
Sex (female/male) 13/47 10/30
Smokers/Nonsmokers 0/60 20/20
Exsmokers 45 0

Since tedlar bags do not allow gas leaks from inside or outside, experiments can be carried out without
any change in the content of breath samples. The tedlar bags have a polypropylene fitting to collect breath
samples and this apparatus provides direction to exhaled breaths. The polypropylene fittings of the tedlar bags
can be seen in Figure 3.

Figure 3. Polypropylene fitting of the tedlar bags.

The breath samples are exhaled along the direction indicated by 1. If it is desired to fill the breath inside
the tedlar bag in the direction 2, the pipeline which is indicated by 3 must be closed. If this pipeline is open,
breath exhaled along the direction 1 is transferred out of the bag using path 3. To collect alveolar air rather
than the upper part of the respiratory system, a timing method was used. In this study, it was assumed that
a deep breath takes 6 s. Therefore, as the volunteers exhaled, the pipeline indicated by 3 remained open for
3 s and then closed. Thus, the first part of the breath was discarded and only the breath from the lungs was
collected. Volunteers participating in the experiments did not eat anything during the night and gave breath
samples while they were hungry. Smoking volunteers also did not smoke for 2 h prior to the test. Lung cancer
cell type and cancer stage of the lung cancer patients participating in this study are given in Figure 4 as circular
graphics.
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Figure 4. Percentage of patients according to histological type of cancer (left). Percentage of patients according to the
cancer stage (right).

2.3. Data analysis and feature extraction

Before extracting the features from the MOS and QCM sensor data, some data preprocessing was performed. To
visualize the data properly and extract useful information, the data were processed with mathematical formulas.
In this study, reference correction was applied to both MOS and QCM sensor data by using equations given in
(1) and (2), respectively.

vn,s,r(t) = vn,s(t)− vn,s(0) (1)

fn,s,r(t) = fn, s(t)− fn,s(0) (2)

For MOS sensor data, vn,s(t) represents raw MOS sensor data, vn,s(0) represents MOS sensor data
obtained when the breath sample is transmitted to the sensors and vn,s,r(t) represents reference-corrected
sensor data. For QCM sensor data, fn, s(t) shows raw frequency data, fn,s(0) shows the sensors’ nominal
frequency value and fn,s,r(t) shows reference-corrected sensor data. When the electronic nose studies were
reviewed, it was determined that the conductivity information was used rather than the voltage information
obtained from the MOS sensors. In this study, the voltage data obtained from the load resistors were converted
to conductivity data by using the equation given in (3).

Gn,s,r(t) =
vn,s,r(t)

(Vc−vn,s,r(t))RLS
(3)

In (3), Vc , RLS , and Gn,s,r(t) show the supply voltage, load resistance series with sensors and the conductivity
data of the MOS sensors, respectively. The graphs given in Figure 5 show the raw data obtained from the MOS
sensors and the reference-corrected conductivity data obtained by using 1 and 3. Figure 6 shows the raw QCM
sensor data and the reference-corrected QCM sensor data obtained by using 2. Additionally, in Figure 6 the
constant frequency value in the prepurging stage indicates the resonant frequency of the sensors.

A total of 338 experiments were carried out during the study. Two hundred and nineteen 219 of these
experiments were conducted with lung cancer patient volunteers and 119 experiments were performed with
breath samples collected from healthy volunteers. In this study, maximum, mean, variance, kurtosis and
skewness values and the slope of sensor data between specific time intervals were used as features. The feature
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matrix sizes were obtained as (338 × 91) and (338 × 7) for the MOS sensor data and the QCM sensor data,
respectively. PCA and LDA methods were used to reduce the dimension of feature matrices. As a result of the
dimension reduction, dimension-reduced data contain 95% of the original data. The dimension of the feature
matrix obtained from the MOS sensor data was reduced from (338 × 91) to (338 × 14) by using the PCA and
LDA algorithms. The dimension of the feature matrix obtained from the QCM sensor data was reduced from
(338 × 7) to (338 × 5) and to (338 × 6), respectively, by using the PCA and LDA algorithms. The dimension
of the feature matrix which was created by combining the feature matrices obtained from the MOS and QCM
sensor data was reduced from (338 × 98) to (338 × 19) by using both PCA and LDA algorithms. Using PCA
and LDA reduced the dimension of the feature matrices and increased the classification accuracy. The effect of
the LDA algorithm on the scatter plot can be seen in Figure 7 In this figure LD1 and LD2 represent the first
feature and the second features obtained as a result of LDA, respectively. It can be seen in Figure 7 that using
the LDA algorithm can discriminate classes as much as possible. Also, the positive effect of the LDA algorithm
on classification accuracy is given in Section 3.

Figure 5. Raw MOS sensor data (left). Preprocessed MOS sensor data (right).

Figure 6. Raw QCM sensor data (left). Preprocessed QCM sensor data (right).
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Figure 7. Scatter plot of dimension-reduced feature matrix data.

3. Results
After signal processing, the data were classified using the DT, k-NN, SVM, and RF algorithms. In the k-NN
algorithm, the parameter (k) was determined as 3 and the Mahalanobis distance function was used as the
distance measurement as it gave the highest accuracy. While classifying with the SVM algorithm, the effects
of kernel functions were examined. The last classification algorithm used in this study was the RF algorithm.
The most important parameters affecting the performance of the RF algorithm are the number of trees to be
developed (N) and the number of variables used in each node to determine the best split (m). In this study,
the best results were obtained when using N = 30 and m = 100. A 5-fold crossvalidation method was used to
determine the performance of the classification algorithms. Each classification process was repeated 10 times
for each classification algorithm. In Table 5, sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV) and the average classification accuracy values for the best performing algorithms can
be seen. The specified feature matrices are given by abbreviation according to which sensor data were used
and which dimension-reduction algorithm was used. For example, if the feature matrix is obtained from the
MOS sensor data and is not reduced, it is represented as “MOS”. If the feature matrix is reduced by the PCA
algorithm, it is represented as PCA (MOS). The average success rate, maximum success rate, minimum success
rate and standard deviation values of the success rate for each classifier are given in Table 6.

Table 5. Classification details for extracted features.

Feature matrix–classification algorithm Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)
MOS-RF 92.28 75.74 87.39 83.33 86.34
PCA (MOS) -RF 95.21 88.60 92.11 90.59 92.62
LDA (MOS)-RF 93.41 89.73 94.01 87.60 92.12
QCM-RF 87.16 55.80 78.18 69.47 75.48
PCA (QCM)-RF 94.27 72.57 86.19 86.86 86.64
LDA (QCM)-RF 80.83 67.57 81.94 65.55 74.96
(MOS+QCM)-QSVM 91.83 82.37 90.54 84.34 88.54
PCA (MOS+QCM)-RF 95.83 85.79 92.47 91.07 92.30
LDA (MOS+QCM)-LSVM 95.82 93.90 96.31 91.73 95.36
PCA (MOS) + PCA (QCM)-RF 95.92 89.18 94.17 92.17 93.74
LDA (MOS) + LDA (QCM)-RF 95.07 91.19 94.93 90.75 93.68
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Table 6. Classification results for extracted features and classification algorithms.

Classification algorithms

Ty
pe

s
of

fe
at

ur
es

DT Linear SVM Quadratic SVM Cubic SVM k-NN RF

MOS 80.26
82.4–77.5–1.66

82.82
84.6–81.1–1.25

83.76
84.6–83.1–0.65

82.82
87.3–79.6–2.66

80.30
83.1–78.1–1.98

86.34
87.6–85.2–1.17

PCA(MOS) 91.98
92.6–91.4–0.49

64.62
66.8–63.9–0.84

75.46
76.6–72.5–1.67

90.20
90.8–89.6–0.47

91.52
92.6–91.1–0.62

92.6
93.8–91.1–1.18

LDA(MOS) 89.02
91.1–87.9–1.23

91.82
92.3–90.5–0.75

90.86
91.7–89.6–0.91

87.24
88.2–85.8–1.22

88.2
89.1–87.3–0.76

92.12
93.2–91.4–0.69

QCM 70.88
71.9–68.9–1.36

64.14
65.4–63–0.95

74.84
76.9–72.2–1.75

72.5
74.5–70.4–1.55

74.88
77.2–72.8–1.59

75.48
78.4–74.3–1.78

PCA(QCM) 80.78
82.2–79.00–1.32

64.8
64.8–64.8–0

86.52
88.5–83.4–2.14

83.06
84.6–81.7–1.19

88.30
89.3–87.3–0.83

86.64
88.5–84.6–2.02

LDA(QCM) 69.44
71.6–68.3–1.29

71.90
73.7–70.4–1.29

74.44
75.1–73.4–0.82

71.60
74.6–68.6–2.40

77.32
79.9–75.1–1.82

74.96
76.1–73.7–0.93

MOS+QCM 78.52
80.8–76.00–2.17

81.14
82.5–79.9–1.01

88.54
89.9–87.9–0.84

88.28
89.9–86.7–1.41

81.62
82.5–81.1–0.53

86.52
87.9–85.2–1.09

PCA(MOS+QCM) 90.76
92.3–89.1–1.26

64.60
65–64–0.54

64.60
65–64–0.54

86.40
88.2–84.9–1.25

90.5
91.1–89.6–0.63

92.30
92.9–91.4–0.60

LDA(MOS+QCM) 93.26
93.8–92.6–0.53

95.36
96.2–94.7–0.57

95.00
95.3–94.7–0.30

93.08
93.8–92.6–0.54

90.04
90.8–88.8–0.77

95.30

96.2–93.8–1.01

PCA(MOS)+LD(QCM) 91.46
92.6–90.2–1.58

64.60
65–64–0.54

83.18
84.9–82–1.06

89.3
91.1–87–1.69

93.26
94.1–92.6–0.53

93.74
94.4–92.9–0.57

LD(MOS)+LDA(QCM) 91.22
91.7–90.8–0.34

92.7
93.2–92.3–0.45

92.6
93.5–91.1–0.90

90.62
91.7–89.6–0.75

89.25
87.6–91.4–1.43

93.68
95.9–92.6–1.31

4. Discussion
In this study, an electronic nose system consisting of 14 different QCM sensors and 8 different MOS sensors was
developed. Unlike the studies in the literature regarding electronic noses, two different types of sensors were used
in this study. Since the information in electronic nose systems is produced using sensors, the number, type and
features of these sensors directly affect the performance. Therefore, we aimed to obtain maximum information
from breath samples. In this study, the voltage and conductivity information was obtained using MOS sensors,
while the frequency deviation information was obtained using QCM sensors. It can be clearly seen from Table 6
that using two different sources of sensor data together has increased the classification accuracy. A total of 100
volunteers, 60 patients with lung cancer, 20 healthy nonsmokers and 20 healthy smokers participated in this
study and a total of 338 experiments were performed. In this work, the PCA and LDA algorithms were used
for dimension reduction, and for data classification the DT, SVM with different kernel functions, k-NN and RF
algorithms were used. The best classification result was obtained as 95.36% by using the SVM algorithm with the
LDA (MOS+QCM) feature matrix. When the results are examined, it can be seen that the classification results
obtained by using only MOS sensor data are better than the results using only QCM sensor data. Moreover,
classification results show that using MOS and QCM sensor data together provide a significant improvement in
the classification results. The algorithms used to reduce the size of the feature matrices have also increased the
classification success considerably. The PCA method has reduced the size of the feature matrix by eliminating
the unrelated features. With this method, the computation time has decreased and the classification success
has increased. The LDA algorithm has also increased the classification accuracy up to 95.36% by taking the
projection of the feature matrix. Thus, the separation between the classes has been maximum. To see the
effect of the LDA algorithm on the classification accuracy, breath samples from healthy nonsmokers (HnS) and
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healthy smokers (HS) were also classified. The confusion matrix of this classification, which was carried out
with the RF algorithm, is given in Figure 8.

Figure 8. Confusion matrix before LDA (left). Confusion matrix after LDA (right).

When the performances of the classification algorithms used in this study are examined, the superiority
of the ensemble learning algorithms comes into prominence. The RF algorithm has given better performance
in most cases. The results show that digital signal processing methods have an important place in the success
of the implemented systems as well as the used sensors and their types. Obtained features, size reduction
algorithms and classification algorithms each significantly affect e-nose performance. This study is the first and
pioneering study in Turkey regarding lung cancer detection by using a hybrid sensor-based e-nose. We believe
that our study will find a wide application area in the detection of lung cancer in practice.
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