
Turk J Elec Eng & Comp Sci
(2023) 31: 596 – 611
© TÜBİTAK
doi:10.55730/1300-0632.4004

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Quadratic programming based partitioning for Block Cimmino with correct value
representation

Zuhal TAŞ, F. Şükrü TORUN∗

Department of Computer Engineering , Yıldırım Beyazıt University, Ankara, Turkey

Received: 22.09.2022 • Accepted/Published Online: 30.04.2023 • Final Version: 28.05.2023

Abstract: The block Cimmino method is successfully used for the parallel solution of large linear systems of equations
due to its amenability to parallel processing. Since the convergence rate of block Cimmino depends on the orthogonality
between the row blocks, advanced partitioning methods are used for faster convergence. In this work, we propose a
new partitioning method that is superior to the state-of-the-art partitioning method, GRIP, in several ways. Firstly,
our proposed method exploits the Mongoose partitioning library which can outperform the state-of-the-art methods
by combining the advantages of classical combinatoric methods and continuous quadratic programming formulations.
Secondly, the proposed method works on the numerical values in a floating-point format directly without converting them
to integer format as in GRIP. This brings an additional advantage of obtaining higher quality partitionings via better
representation of numerical values. Furthermore, the preprocessing time is also improved since there is no overhead
in converting numerical values to integer format. Finally, we extend the Mongoose library, which originally partitions
graphs into only two parts, by using the recursive bisection paradigm to partition graphs into more than two parts.
Extensive experiments conducted on both shared and distributed memory architectures demonstrate the effectiveness of
the proposed method for solving different types of real-world problems.

Key words: Parallel computing, graph partitioning, quadratic programming, Mongoose, recursive bisection, block
Cimmino.

1. Introduction
Solution of systems of linear equations is required in a variety of domains, including structural analysis [1],
chemical engineering [2], network theory [3], fluid dynamics [4], data analysis [5], and circuit theory [6]. These
domains give rise to linear systems of equations in each of which the coefficient matrices are large sparse matrices.
Although much progress has been made in computer hardware over the last few years in order to perform as
many processes per second as possible, solving these systems still requires quite an amount of time. One way to
alleviate this problem is to perform computations by using parallel computing platforms in an efficient manner.

There are mainly two types of methods for solving systems of linear equations: direct and iterative
methods. Direct methods work by factorizing a permutation of the input coefficient matrix. These methods
have the potential for large memory usage when solving large linear problems. However, direct methods are
known to be robust and reliable. On the other hand, iterative methods are based on matrix-vector operations.
Thus iterative methods have the advantage of low and predictable memory consumption. Iterative methods
generally require preconditioning techniques for faster convergence by enhancing the numerical properties of
∗Correspondence: fstorun@aybu.edu.tr

This work is licensed under a Creative Commons Attribution 4.0 International License.
596

https://orcid.org/0000-0002-0234-3221
https://orcid.org/0000-0002-6662-2502

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

the matrix. For large and sparse linear systems iterative methods are preferred generally due to the minimal
memory usage and amenability to parallelism.

Hybrid methods emerged later as an alternative method that can combine the robustness of direct
methods and the memory economy of iterative methods. Domain Decomposition Methods (DDM) are one of
the categories of hybrid methods that aim to exploit all computing resources of parallel platforms, by dividing
the entire linear system into subproblems that can be addressed separately. A direct solver is then applied in
parallel to each subproblem, and a global iterative approach is used to integrate the obtained partial solutions
to assure the consistency of the global solution.

The block Cimmino method, which is a block-row projection method, is one of the well-studied hybrid
methods [7–12]. Among the row projection methods, Kaczmarz [13] and Cimmino [14] are two well-known
instances. Kaczmarz uses the product of orthogonal projection to obtain the solution, while Cimmino uses
the sum of orthogonal projections. Usually, the Cimmino method is preferred for the parallel solution of large
linear systems [7] since it is more amenable to parallelism than the Kaczmarz method due to the summation
of independent orthogonal projections. The Cimmino method, on the other hand, requires a larger number
of iterations than Kaczmarz. The block Cimmino method [8] is a block-row version and requires a relatively
small number of iterations for convergence since the projections are computed on row blocks instead of all rows
one by one. To compute the projections of the row blocks one needs to use additional methods which can
be classical direct and iterative methods. If a direct method is preferred then the block Cimmino method for
solving sparse linear systems has the advantage of using both direct and iterative methods together to solve
smaller independent systems in a simple iterative framework.

The number of iterations in the block Cimmino method depends on the orthogonality between row
blocks. In order to decrease the number of iterations, several partitioning methods are proposed [9, 10]. The
main objective of these tools is the closer to orthogonal row blocks, the less number of iterations [7]. The
most recent method [10] (GRIP) proposes a graph theoretical approach for determining the row blocks of the
matrix. GRIP aims to minimize inner products between row blocks which leads to significantly fewer iterations
for convergence.

In this work, a new method is proposed and implemented to fulfill some drawbacks of the implementation
of GRIP. GRIP uses a state-of-the-art partitioning tool (METIS [15]) to partition the row-inner-product graph.
However, METIS cannot keep the floating-point values of the edge weights of the graph in floating-point format
since the data structures used in METIS can store only integer-type values. In GRIP, to alleviate this limitation
of METIS, floating-point values were scaled and then rounded to a certain integer range (e.g., [1,100]). This
results in the loss of important numerical information due to the use of a much smaller numerical range instead
of using double-precision floating-point representation. In order to identify row blocks correctly during the
partitioning phase, the numerical values of the graph are crucial and should be used as are. Although using
a larger integer range (e.g.,[1,1,000,000]) may overcome this issue to some degree, we observe integer overflow
problems in large matrices during partitioning. Furthermore, this scaling and rounding process also causes an
extra preprocessing overhead which increases the execution time of the method.

In the new method1, we utilize Mongoose [16] multilevel graph partitioning library. Mongoose is a sophis-
ticated library such that it can leverage classical combinatoric methods and continuous quadratic programming
formulations together for graph partitioning. Besides these advantages of Mongoose, it allows floating-point
values in the edge weights of its graph data structure. This in turn leads to better and more direct graph rep-

1ABCD with Mongoose [online]. Website https://github.com/AYBU-ParLab/ABCD_Mongoose [accessed 9 March 2023]

597

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

resentation for the partitioning problem of block Cimmino by keeping the numerical values in double-precision
floating-point format without casting them to integer as in METIS. Additionally, it has also been shown that
Mongoose can provide better quality partitioning than METIS due to its advanced features such as quadratic
programming formulations and some advanced coarsening methods [16].

Furthermore, in the new method, we adopt and implement a recursive bisection paradigm to obtain more
than two parts since the current implementation of Mongoose allows only binary graph partitioning. Then,
we compare our new partitioning method against GRIP in terms of the number of iterations required for the
convergence in block Cimmino and the total parallel solution time by using two different parallel architectures.

The rest of the paper is organized as follows. We give background information about the block Cimmino
method, graph partitioning via the GRIP method, Mongoose, and its features in Section 2. In Section 3, we
explain the proposed approach and its implementation details. In Section 4, we demonstrate the performance
of the proposed method by comparing it with the state-of-the-art method in two different parallel computing
architectures. Finally, we conclude the paper with a summary and discussion in Section 5.

2. Background
2.1. Block Cimmino method
In this study, we consider a linear system of equations of the form

Ax = f, (1)

where A is a n × n sparse nonsymmetric nonsingular matrix and x and f are column vectors of size n . One
popular choice to solve (1) is block Cimmino method [9–12, 17]. In block Cimmino, the blocks are defined by
partitioning the system (1) into p blocks of rows with p≤n as follows:

A1

A2

...
Ap

x =

f1
f2
...
fp

 . (2)

Algorithm 1 shows the steps of the classical block Cimmino method. At line 4, the row block projections
are computed independently. Here, A+

k denotes the minimum 2-norm solution of an underdetermined linear
system where the right-hand-side vector is (fk − Akx

(j)) . At line 6, the computed projections are summed up
and used for updating the new solution vector after being scaled by the relaxation parameter ϕ . The algorithm
is very convenient for parallel computation since the most time-consuming part can be computed perfectly
parallel without any communication. Only at line 6, the communication across processors is needed to gather
δk vectors.

Algorithm 1 Block Cimmino method
1: Choose x(0)

2: while j = 0, 1, 2, . . . , until convergence do
3: for k = 1, . . . , p do
4: δk = A+

k (fk −Akx
(j))

5: end for
6: x(j+1) = x(j) + ϕ

p∑
k=1

δk

7: end while

598

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

The block Cimmino iteration is described by

x(j+1) = x(j) + ϕ

p∑
i=1

A+
i (fi −Aix

(j)) (3)

=

(
I − ϕ

p∑
i=1

A+
i Ai

)
x(j) + ϕ

p∑
i=1

A+
i fi (4)

= (I − ϕH)x(j) + ϕ

p∑
i=1

A+
i fi (5)

= Q̂x(j) + ϕ

p∑
i=1

A+
i fi, (6)

where Q̂ is called the iteration matrix. In [7, 8], the Conjugate Gradient (CG) acceleration is proposed to
enhance the convergence rate of the block Cimmino method. The CG accelerated block Cimmino method is
applied to the following system

ϕHx = ϕ

p∑
k=1

A+
i fk, (7)

where H =
∑p

i=1 A
+
i Ai (see (5)) and x is the same solution vector in (1). We take ϕ as one since it exists on

both sides of the equation in (7) and does not affect the convergence of CG applied to (7). It has been shown
that the CG accelerated block Cimmino method has high robustness and successfully solves large sparse linear
systems [7].

2.2. Partitioning

The row-block partitioning of block Cimmino, that is, the decision of which rows of the matrix will be in which
row blocks, plays an important role in the convergence. We note that internal ordering within row blocks does
not affect the convergence [9]. In the solution of (7) via CG, the number of iterations is directly related to the
eigenvalue spectrum of H , which is only affected by the row-block partitioning of A . Column ordering of A

does not have any impact on the convergence of the system (7) [9]. In fact, the convergence of CG accelerated
block Cimmino is associated with the convergence of CG applied on (7).

Let the QR factorization of AT
i be defined as QiRi = AT

i . Then, the H matrix can be rewritten by
using the Qi factor of each AT

i as follows [8];

H =
p∑

i=1

AT
i (AiA

T
i)

−1Ai

=
p∑

i=1

QiQ
T
i

= (Q1, . . . , Qp)(Q1, . . . , Qp)
T .

(8)

Since the spectrum of (Q1, . . . , Qp)(Q1, . . . , Qp)
T is identical to the spectrum of (Q1, . . . , Qp)

T (Q1, . . . , Qp)

599

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

[18], H can be shown as

In1×n1 Q1
TQ2 . . . Q1

TQp

Q2
TQ1 In2×n2

. . . Q2
TQp

... . . .
.

Qp
TQ1 Qp

TQ2 . . . Inp×np

, (9)

where ni is the row size of Ai and the eigenvalues of each off-diagonal block Qi
TQj represent the cosines of the

principal angles between the subspaces spanned by the rows of Ai and Aj [19]. In [20], these angles ({θi}qi=1

where q ≥ 1 and q = min(dim(R(AT
i), dim(R(AT

j)))) between these subspaces are also defined successively
by,

cos(θk) = max
u∈R(AT

i)
uT [u1, . . . , uk−1]=0

max
v∈R(AT

j)
vT [v1, . . . , vk−1]=0

uT v

||u|| ||v||
, (10)

where ui and vi are the principal vectors and the principal angles ({θi}qi=1) satisfy 0 ≤ θ1 ≤ . . . ≤ θq ≤ π/2 .
If two subspaces R(AT

i) and R(AT
j) are orthogonal to each other, then all principal angles between these

subspaces {θi}qi=1 = π/2 . In the (9) matrix, the wider angles between subspaces, the closer the matrix is to the
identity matrix. In the extreme case, if all row blocks are orthogonal to each other, in other words, all inner
products between different Ai blocks are zero, then H will be an identity matrix, and the solution obtained
through only one iteration of block Cimmino. If the off-diagonal blocks of the (9) matrix are smaller, more
eigenvalues would be clustered around one. Consequently, this leads to a fewer number of CG iterations.

Several partitioning methods [9, 10, 21] are proposed to decrease the number of iterations required for the
convergence of the block Cimmino method. The most recent work [10] proposes a novel graph-based partitioning
method (GRIP) that minimizes the row inner product values between different Ai blocks. In their work, the
numerical values of the matrix are taken into account to find a good partitioning that leads to fewer iterations.
In [10], a graph G(A) = (V,E) is constructed, where V holds vertex vi for each row ri of A . There is an edge
(vi, vj) ∈ E if an inner product of row ri and rj is different from zero. Each edge (vi, vj) is associated with a
cost cost(vi, vj) = |⟨ri, rj⟩| .

In the edge cut graph partitioning problem, a graph is partitioned into balanced subgraphs (parts) while
minimizing cut edges between the parts and it is known as an NP-complete problem [22]. If vi and vj are
located in different parts after the partitioning then the edge (vi, vj) becomes a cut edge. The cut size is defined
as the sum of the costs of cut edges. The balance between parts is determined by the sum of vertex weights
in each part. Edge-cut partitioning aims to reduce the cut size, which is the sum of the costs of the cut edges.
With this definition, the aim of GRIP corresponds to obtaining a row-block partitioning of A where the row
inner products between row blocks are minimized. After GRIP partitioning, we expect wider angles between
Ai row blocks by putting the rows that have larger inner product values into the same part and the rows that
have smaller values to the different parts. This results in a significantly decreased number of iterations in block
Cimmino for the convergence.

In GRIP, the cost of each edge (vi, vj) is equal to the cosine of the angle between the rows ri and rj

600

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

assuming the rows are scaled to have 2-norm equal to one. Then, the minimizing cut size objective of GRIP
corresponds to minimizing the sum of cosines of the angle between all row pairs which are located in different
row blocks.

In GRIP, firstly, the row-inner product graph (GRIP) is constructed and then partitioned by the METIS
[15] multilevel graph partitioning tool. However, METIS is limited to using only integer edge weight values
whereas the edge weight values of GRIP are floating-point values in the half-closed interval of (0,1]. As a
result, METIS is not capable of representing the cost of edge weights in GRIP directly. In [10], to get rid of
this limitation of METIS, floating-point values are scaled and then rounded to a certain integer range (e.g.,
[1,100]). It is clear that rounding to integer values can cause a dramatic loss of information which is important
to correctly identify row blocks during the partitioning. Furthermore, this scaling process also requires extra
preprocessing time which increases the execution time of the method. In addition, we observe that the cut size
in METIS can be out of range of integer data type for large graphs, which causes integer overflow problem and
decrease the quality of partitioning.

2.3. Mongoose

Mongoose [16] is a library for binary graph partitioning which computes edge cuts on a graph in a multilevel
way. The binary graph partitioning problem is defined as the process of dividing a graph into balanced two
subgraphs (parts) while minimizing the edges between parts. Similar to METIS, Mongoose adopts a multilevel
approach rather than computing an edge cut on the input graph directly. There are mainly 3 levels; coarsening,
initial partitioning, and refinement.

In the coarsening level, Mongoose coarsens the graph to obtain a relatively smaller but structurally similar
graph. Here Mongoose offers some more advanced strategies besides heavy-edge matching, such as Brotherly
matching and Community matching. Brotherly matching allows to group vertices that share a neighbor even
if there is no edge physically linking them. Community matching basically allows matching two vertices if
their neighbors are matched together. Figure 1 shows coarsening of a sample graph after applying heavy-edge,
brotherly, and community matchings.

Figure 1. Heavy-edge, brotherly, and community matchings in coarsening.

After coarsening phase, an initial partitioning is computed on the small graph. Mongoose offers an option
to use the quadratic programming solver to compute an initial partitioning. Finally, in the refinement phase,

601

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

an inverse operation of graph coarsening is performed. In the refinement, the quadratic programming solver
and combinatorial methods are used together as a default approach.

Mongoose is an advanced graph partitioning tool since it combines different partitioning methodologies
to obtain high-quality partitioning. These are quadratic programming solutions and a state-of-the-art iterative
refinement heuristic. In [23], a continuous optimization formulation is proposed, which depicts that the binary
graph partitioning problem is equivalent to the continuous quadratic programming problem as;

min
x∈Rn

(1− x)
T
(A+ I)x subject to 0 ≤ x ≤ 1, l ≤ 1Tx ≤ u, (11)

where A is the adjacency matrix of the graph, and l and u are the lower and upper bounds of a partition at
the target size. In Mongoose, a gradient projection algorithm is used to solve this formulation.

In addition to quadratic programming, the Fiduccia-Mattheyses (FM) method [24], which is a traditional
iterative refinement heuristic, is also utilized in the refinement phase of Mongoose. FM works iteratively and in
each iteration (pass) set of vertices is moved from one part to another aiming to improve the edge cut quality.
These moves continue even if there is no immediate improvement in order to discover better quality cuts and not
to get stuck in local optima. If there is no improvement after some predefined number of moves, the partitioning
with the best cut is reverted by looking at the past moves. The next pass is started from the best cut obtained
from the previous pass, and these passes are repeated a predefined number of times. Until reaching the final
graph partitioning, both the FM and the quadratic programming algorithms are used to refine the graph at
each level of the iterative refinement phase.

In this work, we exploit Mongoose due to its three main features. Firstly, the weights of the edges in
the graph can be kept as floating-point values. In this way, row inner product values of the matrix can be
directly used in the graph, instead of rounding them to integer values as in METIS. In this way, better quality
partitioning can be obtained which leads to faster convergence in block Cimmino. Recall that METIS can use
only integer values for the edge weights in its graph structure. The second reason is that since METIS uses
integer data type to keep the cut size value, for large graphs this can easily cause an integer overflow problem.
Therefore, it can result in low-quality partitioning because of the negative cut size values which must always be
positive typically. The last reason is that since GRIP scales and rounds all floating-point values of the row inner
product values to integer values for METIS, it is clear that the preprocessing overhead is decreased without
this operation. For instance, we observe that on average 5% of the preprocessing time is consumed by this data
type conversion operation in GRIP.

The main drawback of Mongoose is that it enables partitioning into only two parts, whereas METIS can
partition a graph into any number of parts. To alleviate this drawback of the Mongoose, in this work, we utilize
a recursive bipartitioning approach [25–27]. Thus, we extend the Mongoose library to partition a graph into
more than two parts. In the current implementation of the proposed work, Mongoose is utilized to partition
graphs only into powers of two parts. We leave the implementation of partitioning a graph into any number of
parts by using Mongoose as future work.

3. Proposed recursive bipartitioning based algorithm

In the proposed method, we partition a graph into more than two parts by utilizing the Mongoose graph
partitioning tool which can actually partition a graph into only two parts. Our method applies a recursive
bipartitioning approach in which 2-way partitioning on a subgraph is performed recursively at each level.

602

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

Firstly, the entire graph is partitioned into two parts by using Mongoose. Then, two subgraphs are created
according to the partitioning information of Mongoose. After creating these subgraphs, the relation of the
original indexes with local indexes in each subgraph is kept in a map data structure. This allows us to find the
global index of each vertex by transforming its local index after all recursive calls are completed. The recursion
continues until the target total number of parts is reached.

Algorithm 2 shows the steps of the proposed recursive bipartitioning method. In the algorithm, the
edge_cut function is the only function that we adopt from the Mongoose library. At line 1, we maintain the
desired maximum allowed imbalance ratio (imb) among vertex parts by setting the target_split parameter in
Mongoose. The imbalance ratio is calculated as the ratio of the maximum loaded part over the average load,

imb = 1− loadmax

loadavg
. (12)

Therefore if we allow a maximum load imbalance of 1%, the load of the largest part can be at most 1%
larger than the average load. In Mongoose, the default value for target_split of 0.5, which leads to perfectly
balanced parts. Since at the end of the recursive calls we desire at most imb percent imbalance among parts,
we set target_split = 0.5 − (imb(1/log(p)) − 1)/2 , where log(p) shows the number of levels which is required
to get the target number of parts. The output of the recursive function is partvector is a vector that stores
the partitioning information of the graph, where the value of each index specifies the part of the respective
vertex. After successful successive recursive calls of the RecursiveBipartitioning method, partvector will be
the output of the proposed method.

The main parameters passed to the RecursiveBipartitioning function are shown at line 3 of Algorithm
2, where p represents the number of parts to be split, G is the first graph created with Mongoose, target_split

is the load imbalance threshold and partvector is the output parameter that keeps partitioning information. In
RecursiveBipartitioning , the same value for target_split is used in each recursive call, whereas parameters
of G , p , and partvector are modified in each call. At lines 4–6, the stopping rule of the recursion is shown.
At line 7, the Mongoose :: edge_cut function in Mongoose API returns a result object in which the partition

vector keeps the partitioning information of the vertices. Note that the edge_cut function partitions G into
only two parts. At line 8, in the divideGraph function, two subgraphs are created named Gleft and Gright by
using the information of partition vector. In Gleft and Gright , the vertices and internal edges that connect to
those vertices are extracted from G according to the partitioning. In addition, in the divideGraph function,
we create map data structure in which the relation of the global indexes with local indexes in each subgraph
is stored. We use map to recover the global indexes of the original graph after the successive recursive calls
and relabeling the vertices of subgraphs. At lines 9–11, part_left and part_right are created and initialized,
then the graph bipartitioning process continues by calling the same function twice recursively for each subgraph
Gleft and Gright . Meanwhile, the number of parts is halved (i.e. p/2) at each level and this process continues
until p becomes 1. At line 12, the vectors part_left and part_right, which respectively contain the partitioning
information of Gleft and Gright , are used to update partvector through map . Finally, we return the summation
of level information (l_lvl and r_lvl) of the recursive bipartitioning functions to correctly differentiate part ids
of vertices in each recursive call for updating partvector (at line 12). At the end of the recursive calls, partvector
keeps the final partitioning information with p parts of G .

In the implementation of the proposed method, firstly, the input matrix A is read and rows of A are
scaled such that 2-norm of each row is equal to one. In this way, the value of the inner product of two rows

603

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

Algorithm 2 The proposed method via recursive bipartitioning approach
Input: Graph G
Output: partvector

1: target_split = 0.5− ((log(p)
√
imb)− 1)/2

2: RecursiveBipartitioning(G , target_split, partvector, p)
3: function lvl = RecursiveBipartitioning(G , target_split, partvector, p)
4: if p≤1 then
5: return 1
6: else
7: result = Mongoose::edge_cut(G , target_split) ▷ Bipartitioning with Mongoose
8: [Gleft ,Gright , map] = divideGraph(G , result) ▷ Divide G into 2 subgraphs using result
9: Create and initialize part_left and part_right

10: l_lvl = RecursiveBipartitioning(Gleft , target_split, part_left, p/2)
11: r_lvl = RecursiveBipartitioning(Gright , target_split, part_right, p/2)
12: partvector = Update_partvector(part_left, part_right, map , l_lvl, r_lvl)
13: return l_lvl + r_lvl
14: end if
15: end function

directly corresponds to the cosine angle between the respective rows and the partitioning objective of obtaining
less connected rows between row-blocks corresponds to more orthogonal row-blocks. Then we construct the row-
inner-product graph G and create the respective graph data structure by using the Graph ::create function in
Mongoose API. Here, we can directly represent G with Mongoose’s graph data structure thanks to the allowing
edge weights in double-precision floating-point format. Graph ::create takes several parameters to create a
graph such as the number of vertices, the number of edges, the adjacency lists of the graph, and the lists of
edge and vertex weights.

In Mongoose API, the EdgeCut_Options ::create() method creates an option object which is initially
filled with default values. We can set user-defined options by modifying this object. For instance, we set our
desired load imbalance threshold by modifying the target_split member of option . We note that, since we
partition the graph recursively, the load imbalance threshold should be chosen carefully at each level of the
recursion. Otherwise, the imbalance ratio among the final parts can overflow the maximum allowed partitioning
imbalance. Therefore, we use the below formula (Eqn. (13)) in each recursive call of the bipartitioning so that
the target load imbalance (imb_ratio) among parts is ensured within the desired ratio

imb_ratio = (
log(p)

√
imb)− 1. (13)

For Mongoose one needs to subtract imb_ratio from 0.5 to define the maximum allowed load imbalance among
parts

target_split = 0.5− imb_ratio

2
. (14)

4. Experimental results

In the experiments, we adopt the CG accelerated block Cimmino implementation of the ABCD Solver package2.
The current implementation of the ABCD solver includes several methods to obtain row blocks. Among these,

2The Augmented Block Cimmino Distributed Solver [online]. Website https://bitbucket.org/apo_irit/abcd/src/Dev-IRIT/,
2022. ABCD Solver v1.1. [accessed 1 September 2022]

604

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

the GRIP partitioning method is superior to the others by achieving a faster convergence rate for most of the
matrices [10]. We have embedded our proposed partitioning method as a new partitioning method in ABCD
Solver. We use the maximum number of iterations as 5000 and the relative norm-wise backward error [28] for
the convergence checking at iteration (j) as

||Ax(j) − f ||∞
||A||∞||x(j)||1 + ||f ||∞

< 10−11. (15)

In the experiments, we compare the performance of our proposed row-block partitioning method with
the state-of-the-art row-block partitioning method GRIP which uses METIS as a partitioner. As a partitioning
constraint, we allow at most 1% load imbalance among row-block sizes in both methods. Other options are
left as their default values. In the implementation, C/C++ programming language and pure MPI [29] based
parallelism is used.

Table 1 shows the properties of 15 large sparse unsymmetric matrices used in the experiments from the
SuiteSparse matrix collection [30]. Those matrices arise from 9 different kinds of real-world applications whose
categories are shown in the last column of the table. In the table, matrices are sorted in ascending order
according to their sizes.

Table 1. The properties of matrices (n : size, nnz : number of nonzeros).

Matrix name n nnz Kind
rajat26 51,032 247,528 Circuit Simulation Problem
ecl32 51,993 380,415 Semiconductor Device Problem
2D_54019_highK 54,019 486,129 Semiconductor Device Problem
bayer01 57,735 275,094 Chemical Process Simulation Problem
TSOPF_RS_b39_c30 60,098 1,079,986 Power Network Problem
venkat01 62,424 1,717,792 Computational Fluid Dynamics Problem Sequence
shyy161 76,480 329,762 Computational Fluid Dynamics Problem
ASIC_100ks 99,190 578,890 Circuit Simulation Problem
torso2 115,967 1,033,473 2D/3D Problem
cage12 130,228 2,032,536 Directed Weighted Graph
majorbasis 160,000 1,750,416 Optimization Problem
shar_te2-3 200,200 800,800 Combinatorial Problem
cage13 445,315 7,479,343 Directed Weighted Graph
rajat30 643,994 6,175,244 Circuit Simulation Problem
cage14 1,585,705 27,130,349 Directed Weighted Graph

4.1. Experimental framework

In the experiments, we have used two parallel architectures; shared and distributed memory. In our lab, we
have a shared memory machine that consists of 40 GB DDR4 memory and two NUMA sockets each has Intel
Xeon E5-2620 v3 6-core CPU. On the other hand, the distributed memory architecture is a subset of sariyer

HPC cluster of UHEM 3. In the HPC experiments, we use 10 distributed nodes of sariyer cluster each node
has 128 GB DDR4 memory and two NUMA sockets. In each NUMA socket, Intel Xeon E5-2680 v4 14-cores
CPU is installed. Extensive numerical experiments are conducted on the shared memory architecture to test the

3UHEM. National Center for High Performance Computing. http://www.uhem.itu.edu.tr, 2021.

605

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

influence of the proposed method against GRIP by comparing the required number of iterations for convergence
on all test matrices. Since we have no core-hour limitation in this machine, we have run exhaustive experiments
with different combinations of part counts and parameters. However, this machine has a relatively small number
of cores therefore we perform timing experiments only in the distributed memory system. In the distributed
memory system, we have conducted time-critical tests by using only 256 cores due to the core-hour limitation
of the HPC system.

4.2. Experiments on shared memory architecture

Table 2 shows the results of experiments in terms of the number of iterations for 2, 4, 8, 16, 32, 64, 128, and 256
parts (blocks) on the shared memory architecture. Experiments are conducted with linear systems of equations
whose coefficient matrices are partitioned according to one of the following methods; GRIP, Mongoose, and
Mongoose with Community Matching enabled. The best results for each test matrix are shown in bold and blue
text. In the table, N denotes the associated linear system that does not reach the desired accuracy in 5000
iterations, F denotes the failures of the solver, and M denotes the failure of insufficient memory.

As seen in Table 2, the proposed method can decrease the required number of iterations in 14 matrices
out of 15. Only in ASIC_100ks , the proposed method cannot achieve fewer iterations for all part counts. Since
this matrix has very dense columns and exhibits power-law distribution, our recursive bipartitioning scheme
seems to have difficulty in discovering high-quality cuts. However, out of 120 test instances (15 matrices with
8 different numbers of parts), the proposed method with classical Mongoose gives better results in 92 instances
which shows 77% better performance overall. When we enable community matching in Mongoose, we have not
seen any remarkable improvement in the results. The last 3 rows of the table show the number of best results
for each method. For most of the part count values, the proposed method that uses the default Mongoose
gives the best results. Mongoose with community matching enabled does not outperform both methods in any
number of parts. Thus, in the rest of the experiments, we do not enable this feature of Mongoose.

Two factors play crucial roles in the success of the proposed method; utilizing floating point values in
GRIP instead of integer values and using Mongoose instead of METIS. To see the effect of utilizing floating
point values on the convergence of the block Cimmino method, we conduct another experiment with rajat30 .
In this experiment, we construct GRIP with integer edge-weight values as in GRIP, however, this time we
use Mongoose to partition GRIP instead of METIS. We call this new method Mongoose-int. We have seen
a dramatic degradation in the performance with Mongoose-int. For 256 parts, Mongoose-int required 206
iterations, whereas the proposed method (Mongoose + floating points edge-weight values) and GRIP require
84 and 237 iterations, respectively. Similarly, for 128 parts, Mongoose-int required 133 iterations, whereas the
proposed method and GRIP require 62 and 234 iterations, respectively. These results also confirm the validity
of the importance of the use of floating-point values versus integers in edge weights.

In Table 2, as the number of parts increases, the number of iterations required for convergence increases
in general. This is mainly due to the fact that, with the increasing number of parts, the conditioning of H gets
worsens in general. This behavior is common for the block Cimmino algorithm. However, for some matrices,
it seems there are decreases in iteration counts for increased part counts. We believe that the reason for this
issue stems from the heuristics used in Mongoose and METIS. For some part counts, these partitioners cannot
obtain good partitionings due to being stuck in local optima which causes more iterations in block Cimmino.

606

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

Table 2. The number of iterations for varying numbers of parts on the shared memory architecture.

The number of parts
Matrix Method 2 4 8 16 32 64 128 256

rajat26
GRIP 122 1585 N N N N N N
Proposed 96 373 513 661 1090 1291 1612 2797
Proposed(with CM) 91 342 525 896 849 1604 1806 F

2D_54019_highK
GRIP 322 387 187 618 317 701 642 775
Proposed 233 715 579 415 1213 286 430 692
Proposed(with CM) 286 798 488 633 196 214 325 480

ecl32
GRIP 316 580 729 941 1135 1807 2378 3022
Proposed 137 319 470 521 718 909 1155 1313
Proposed(with CM) 199 307 425 591 725 920 1082 1392

bayer01
GRIP 95 133 260 740 1286 3420 3363 N
Proposed 93 65 366 657 769 1714 3477 4792
Proposed(with CM) 35 110 293 909 863 F F F

TSOPF_RS_b39_c30
GRIP 769 1396 1847 2343 2393 2690 2836 2411
Proposed 44 116 285 616 706 1192 1994 2316
Proposed(with CM) 56 141 362 688 709 1448 1908 2514

venkat01
GRIP 30 33 38 39 43 48 51 57
Proposed 30 34 36 39 44 46 52 58
Proposed(with CM) 29 33 37 39 43 51 51 58

shyy161
GRIP 9 F F 29 25 25 26 27
Proposed 8 F F 24 25 25 26 31
Proposed(with CM) 10 F F 31 24 25 25 32

ASIC_100ks
GRIP 17 18 20 20 22 20 22 22
Proposed 26 44 53 50 106 96 89 92
Proposed(with CM) 23 66 F 50 98 98 104 F

torso2
GRIP 11 17 17 17 19 20 19 20
Proposed 11 13 15 15 17 18 18 19
Proposed(with CM) 12 13 15 16 18 17 F 18

cage12
GRIP 7 9 13 13 13 14 16 15
Proposed F 10 11 12 13 14 14 15
Proposed(with CM) 8 11 10 12 13 14 F F

majorbasis
GRIP 17 18 19 19 21 21 25 25
Proposed 16 19 20 19 20 21 24 25
Proposed(with CM) 17 F 19 19 20 22 24 24

shar_te2-3
GRIP F F F F F F F F
Proposed F 21 22 21 22 23 22 21
Proposed(with CM) F 21 21 23 23 24 23 22

cage13
GRIP M M M 13 14 14 16 16
Proposed M F 12 12 13 14 14 15
Proposed(with CM) M F 12 12 F 13 15 F

rajat30
GRIP 19 20 22 66 67 123 234 237
Proposed 26 28 56 43 64 67 62 84
Proposed(with CM) 21 22 24 33 46 45 75 F

cage14
GRIP M M M M M 14 16 16
Proposed M M M F F F F 15
Proposed(with CM) M M M F F F F F

Bests
GRIP 4 6 5 2 3 5 4 4
Proposed 6 4 5 12 8 9 7 9
Proposed(with CM) 3 5 5 4 7 5 6 3

CM: Community Matching, N: does not converge in 5000 iterations, F: failure of the solver, M: insufficient memory.

607

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

4.3. Experiments on HPC
Table 3 shows the results of the experiments using 256 cores on the HPC system. Here, we partition the
matrices into 256 blocks each of which is assigned to a core. In HPC experiments, in addition to the iteration
count analysis that is done in Table 2, a parallel solution time analysis is performed by measuring the parallel
execution time (in seconds) of the solution of the linear systems via CG accelerated block Cimmino excluding the
sequential preprocessing steps of conversion and partitioning of the matrix. According to the experiments, the
decrease in the number of iterations directly reflects the parallel solution time. The proposed method achieves
a better number of iterations and faster parallel solution times in 11 matrices. On the other hand, only in 3
matrices, GRIP gives better results. The block Cimmino method requires the same number of iterations and
similar parallel solution times in cage12 for both methods.

Table 3. Number of iterations and parallel solution times in seconds on HPC system.

GRIP Proposed Method
iterations Parallel time # iterations Parallel time

rajat26 N 2797 49.9
2D_54019_highK 775 12.7 692 10.8
ecl32 3022 50.7 1313 22.3
bayer01 N 3374 59.1
TSOPF_RS_b39_c30 2411 70.8 2316 65.1
venkat01 57 1.2 58 1.2
shyy161 27 0.7 31 0.9
ASIC_100ks 22 0.8 92 3.3
torso2 20 0.9 19 0.8
cage12 14 0.1 14 0.1
majorbasis 24 1.5 23 1.5
shar_te2-3 F 21 2.0
cage13 16 3.3 15 2.9
rajat30 237 289.0 84 86.8
cage14 16 8.3 15 7.9

N: does not converge in 5000 iterations, F: failure of the solver.

We present Figure 2 to compare the two methods comprehensibly. Figure 2 shows the normalized time and
the number of iterations improvements of the proposed method with respect to the GRIP method. According
to the experiments, the proposed method achieves the best improvement in rajat30 with 3.33 times faster
parallel solution time. On the other hand, the worst performance is obtained in ASIC_100ks with 4.16 times
slower time. For rajat26 , bayer01 , and shar_te2−3 , our method is a clear winner due to the failure of the
other method, thus, gradient unlimited column bars are used to represent the results of those matrices in the
figure. These results confirm the validity of the proposed method by achieving better performance in most of
the problems in terms of the number of iterations and parallel solution time through higher-quality row-block
partitionings of the block Cimmino method.

5. Conclusion
In this work, we propose a new partitioning method for the block Cimmino method. The proposed method
which is based on a recursive bipartitioning paradigm is employed to obtain more orthogonal row blocks in

608

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

raj
at2

6

2D
_5

40
19

_h
igh

K
ec

l32

ba
ye

r01

TS
OPF_R

S_b
39

_c
30

ve
nk

at0
1

sh
yy

16
1

ASIC
_1

00
ks

tor
so

2

ca
ge

12

majo
rba

sis

sh
ar_

te2
-3

ca
ge

13

raj
at3

0

ca
ge

14
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

1.59

2.27

1.09 0.98 0.83

0.24

1.06 1.00 1.06 1.15

3.33

1.05

Time improvement (normalized) Iteration count improvement (normalized)

Figure 2. Normalized parallel solution time and the number of iterations improvements of the proposed method with
respect to GRIP.

the block Cimmino method. The effectiveness of the proposed method is evaluated by comparing it with the
state-of-the-art partitioning method. The proposed method is superior to the other method due to a better
representation of numerical values which is quite important to determine orthogonality between row blocks.
With this contribution, the qualities of the partitionings are improved considerably. Furthermore, since the
direct representation of numerical values of the matrices does not require an extra step to convert them to other
data formats, the preprocessing time is also improved by 5% on average. According to the experiments, the
proposed method achieves faster parallel solution time by decreasing the number of iterations thanks to the
higher quality row-block partitioning in most of the test matrices.

Acknowledgment

Computing resources used in this work were provided by the National Center for High Performance Computing
of Turkey (UHeM) under grant number 4012882022.

References

[1] Wilson EL, Bathe K, Peterson F, Dovey H. Sap—a structural analysis program for linear systems. Nuclear
Engineering and Design 1973; 25 (2). https://doi.org/10.1016/0029-5493(73)90048-4

[2] Liang Yz, Fang Kt, Xu Qs. Uniform design and its applications in chemistry and chemical engineering. Chemometrics
and Intelligent Laboratory Systems 2001; 58 (1): 43–57. https://doi.org/10.1016/S0169-7439(01)00139-3

[3] Borgatti SP, Halgin DS. On network theory. Organization science 2011; 22 (5): 1168–1181.
https://doi.org/10.1287/orsc.1100.0641

[4] Anderson JD, Wendt J. Computational fluid dynamics, volume 206. Springer, 1995. https://doi.org/10.1007/978-
3-540-85056-4

[5] Wang JL, Chiou JM, Müller HG. Functional data analysis. Annual Review of Statistics and Its Application 2016;
3: 257–295. https://doi.org/10.1146/annurev-statistics-041715-033624

[6] Dickson BG, Albano CM, Anantharaman R, Beier P, Fargione J et al. Circuit-theory applications to connectivity
science and conservation. Conservation Biology 2019; 33 (2): 239–249. https://doi.org/10.1111/cobi.13230

609

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

[7] Bramley R, Sameh A. Row projection methods for large nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing 1992; 13 (1): 168–193. https://doi.org/10.1137/0913010

[8] Arioli M, Duff I, Noailles J, Ruiz D. A block projection method for sparse matrices. SIAM Journal on Scientific
and Statistical Computing 1992; 13 (1): 47–70. https://doi.org/10.1137/0913003

[9] Drummond T, Duff IS, Guivarch R, Ruiz D, Zenadi M. Partitioning strategies for the block cimmino algorithm.
Journal of Engineering Mathematics 2015; 93 (1): 21–39. https://doi.org/10.1007/s10665-014-9699-0

[10] Torun FS, Manguoglu M, Aykanat C. A novel partitioning method for accelerating the block Cimmino algorithm.
SIAM Journal on Scientific Computing 2018; 40 (6): C827–C850. https://doi.org/10.1137/18M1166407

[11] Dumitrasc A, Leleux P, Popa C, Ruede U, Ruiz D. Extensions of the augmented block cimmino method to
the solution of full rank rectangular systems. SIAM Journal on Scientific Computing 2021; 43 (5): S516–S539.
https://doi.org/10.1137/20M1348261

[12] Duff I, Leleux P, Ruiz D, Torun FS. Row replicated block cimmino. Technical report, CERFACS, 2022.

[13] Karczmarz S. Angenaherte auflosung von systemen linearer glei-chungen. Bull. Int. Acad. Pol. Sic. Let., Cl. Sci.
Math. Nat. 1937; pages (in German). 355–357.

[14] Cimmino G. Estensione dell’identita di Picone alla piu generale equazione differenziale lineare ordinaria autoag-
giunta: nota. Bardi, 1929 (in İtalian).

[15] Karypis G, Kumar V. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed
computing 1998; 48 (1): 96–129. https://doi.org/10.1006/jpdc.1997.1404

[16] Davis TA, Hager WW, Kolodziej SP, Yeralan SN. Algorithm 1003: Mongoose, a graph coarsening and partitioning
library. ACM Transactions on Mathematical Software (TOMS) 2020; 46 (1): 1–18. https://doi.org/10.1145/3337792

[17] Duff IS, Guivarch R, Ruiz D, Zenadi M. The augmented block cimmino distributed method. SIAM Journal on
Scientific Computing 2015; 37 (3): A1248–A1269. https://doi.org/10.1137/140961444

[18] Golub G, Kahan W. Calculating the singular values and pseudo-inverse of a matrix. Journal of the Society for Indus-
trial and Applied Mathematics, Series B: Numerical Analysis 1965; 2 (2): 205–224. https://doi.org/10.1137/0702016

[19] Björck Å, Golub GH. Numerical methods for computing angles between linear subspaces. Mathematics of compu-
tation 1973; 27 (123): 579–594. https://doi.org/10.1090/S0025-5718-1973-0348991-3

[20] Golub GH, Van Loan CF. Matrix computations. JHU press, 2013.

[21] Zenadi M. Méthodes hybrides pour la résolution de grands systèmes linéaires creux sur calculateurs parallèles.
Ph.D. thesis, École Doctorale Mathématiques, Informatique et Télécommunications (Toulouse); 142547247, 2013
(in French).

[22] Johnson DS, Garey MR. Computers and intractability: A guide to the theory of NP-completeness. WH Freeman,
1979.

[23] Hager WW, Krylyuk Y. Graph partitioning and continuous quadratic programming. SIAM Journal on Discrete
Mathematics 1999; 12 (4): 500–523. https://doi.org/10.1137/S0895480199335829

[24] Fiduccia CM, Mattheyses RM. A linear-time heuristic for improving network partitions. In 19th design automation
conference. IEEE, 1982; pages 175–181. https://doi.org/10.1109/DAC.1982.1585498

[25] Chamberlain BL. Graph partitioning algorithms for distributing workloads of parallel computations. Technical
report, University of Washington, 1998.

[26] Drechsler R, Gunther W, Eschbach T, Linhard L, Angst G. Recursive bi-partitioning of netlists for large number
of partitions. In Proceedings Euromicro Symposium on Digital System Design. Architectures, Methods and Tools.
IEEE, 2002; pages 38–44. https://doi.org/10.1109/DSD.2002.1115349

[27] Hendrickson B, Leland R. An improved spectral graph partitioning algorithm for mapping parallel computations.
SIAM Journal on Scientific Computing 1995; 16 (2): 452–469. https://doi.org/10.1137/0916028

610

TAŞ and TORUN/Turk J Elec Eng & Comp Sci

[28] Arioli M, Duff I, Ruiz D. Stopping criteria for iterative solvers. SIAM Journal on Matrix Analysis and Applications
1992; 13 (1): 138–144. https://doi.org/10.1137/0613012

[29] Snir M, Gropp W, Otto S, Huss-Lederman S, Dongarra J et al. MPI–the Complete Reference: the MPI core,
volume 1. MIT press, 1998.

[30] Davis TA, Hu Y. The university of florida sparse matrix collection. ACM Transactions on Mathematical Software
(TOMS) 2011; 38 (1): 1–25.

611

	Introduction
	Background
	Block Cimmino method
	Partitioning
	Mongoose

	Proposed recursive bipartitioning based algorithm
	Experimental results
	Experimental framework
	Experiments on shared memory architecture
	Experiments on HPC

	Conclusion

