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Abstract: Federated learning (FL) is a communication-efficient and privacy-preserving learning technique for collabo-
rative training of machine learning models on vast amounts of data produced and stored locally on the distributed users.
This paper investigates unbiased FL methods that achieve a similar convergence as state-of-the-art methods in scenarios
with various constraints like an error-prone channel or intermittent energy availability. For this purpose, we propose FL
algorithms that jointly design unbiased user scheduling and gradient weighting according to each user’s distinct energy
and channel profile. In addition, we exploit a prevalent metric called the age of information (AoI), which quantifies the
staleness of the gradient updates at the parameter server and adaptive momentum attenuation to increase the accuracy
and accelerate the convergence for nonhomogeneous data distribution of participant users. The effect of AoI and mo-
mentum on fair FL with heterogeneous users on various datasets is studied, and the performance is demonstrated by
experiments in several settings.
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1. Introduction
The need to store, process, and use the big data produced by various types of devices is one of the main focuses
of up-to-date machine learning (ML) applications. While traditional ML approaches require an orchestral
server that collects, stores, and processes the data produced by the devices, it is neither feasible nor efficient
for a centralized server to work with that substantial amount of data. In addition, the data produced by
a device can be sensitive and private, and privacy violations may occur because of the need to upload it.
Motivated by providing a solution to these problems, Google researchers introduced a concept named “federated
learning” (FL) [1], and then it became a popular and promising method for private and communication-efficient
machine learning/deep learning to train ML models on vast amounts of data produced and stored locally on the
participant users. It allows users to be part of a global machine learning model training without sharing their
local data. Training is performed using distributed stochastic gradient descent (SGD) coordinated by a central
server responsible for the global model. To train the global model, each user uses their local dataset, and the
goal is to train a machine learning model on the combined dataset.

While designing a method for an FL setup with several communicative constraints, such as error-prone
wireless channels and intermittent availability of energy, ensuring that there is no bias between heterogeneous
users is an important performance indicator in terms of convergence and accuracy. A prevalent metric called the
Age of Information (AoI) quantifies the staleness of the information at the destination. It is defined as the time
elapsed since the generation time of the most recent status update packet successfully received at the destination
∗Correspondence: cakirzeynepp@gmail.com
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[2, 3]. Especially for applications that require timely updates, such as IoT, machine-type communications, and
FL, AoI is a critical performance indicator. In the FL framework, AoI can be considered as the time elapsed
between receiving the local updates from a participant user. It is an essential and unique metric for increasing
the performance of FL algorithms and provides a new perspective to existing methods and applications.

In this work, we consider AoI-aware FL algorithms that jointly design unbiased user scheduling and
gradient weighting according to the energy and channel profile of each user. Extensive experiments show that
the proposed algorithms provide high test accuracy and convergence guarantees comparable to the state-of-the-
art algorithms with no energy or channel constraints.

2. Related work
Since first introduced by Google researchers in 2016 [1], FL and its applications have become a popular approach
for privacy and energy concerns. A training scenario where K users work together is considered to train a model
in FL. Each user has a local dataset, and the goal is to train a machine learning model on the combined
dataset. Training is performed using distributed stochastic gradient descent (SGD) coordinated by a central
server responsible for the global model. The server sends users the current estimate of the model parameters
after each training round. Users then update their model by calculating a local gradient on local datasets.
The server then collects users’ local updates, updates the global model, and returns the updated model to the
users. Along with the first introduction of FL by Konecny et al. [4], [1], another reference guide is presented
by McMahan et al. [5] in 2017. This study explains the concept of FL, and the FederatedAveraging algorithm,
which forms the basis of many following studies, is introduced. Each participant user performs local training
on the current global model in this algorithm using its local dataset. The parameter server takes a weighted
average of the locally trained model parameters. The convergence analysis of this algorithm was carried out by
Li et al. in [6], and it was carried out separately for the datasets that are equally and not equally distributed.
Additionally, a method called “momentum” for increasing the efficiency of stochastic gradient descent can be
applied in FL 1. It is an extension of the stochastic gradient descent method and is essential in accelerating the
convergence or increasing the accuracy for nonhomogeneous data distribution on participant users. There are
many applications of momentum in FL [7–9]. Xu et al. studied expanding the FederatedAveraging algorithm
introduced in [5], by adding a momentum factor to it, supported by the convergence analysis and experiment
[7]. Kim et al. proposed another method named FedAGM, to deal with the challenge of low convergence rate
[8]. FedAGM uses momentum to accelerate the model training process and aims to improve the convergence
and accuracy of the model.

Energy harvesting, which comprises the gathering of electrical energy without wires using time-dependent
electric, magnetic, or electromagnetic fields, has been indicated as a feasible preference for numerous communica-
tion systems [10–12]. Güler et al. [13, 14] studied a sustainable FL framework by considering energy harvesting
users, which motivated adding new measures to the FL. Gündüz et al. [15] studied federated edge learning
(FEEL), inspected the divergence of existing coding and communication schemes and learning algorithms, and
suggested new approaches to combine these concepts. Özfatura et al. [16] studied the demonstration of how
taking wireless channel characteristics such as resource allocation, scheduling, etc. into consideration may con-
siderably enhance the speed and overall performance of distributed learning approaches. In [17], we studied
an FL setup for IID datasets in which users harvest energy from the environment and collaboratively train

1Brownlee J (2021). Gradient Descent With Momentum from Scratch [online]. Website
https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/ [accessed 12 03 2023].
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a machine learning model under the constraints of intermittent energy arrivals and channel availability. The
main focus was to develop an algorithm that achieves a similar convergence as modern FL methods. FEEL is
a version of FL performed by wireless devices, with constrained energy and bandwidth, on their local datasets,
supported by a remote parameter server. A concept of weighting model differences by a “cooldown multiplier,”
based on the time elapsed between the two most recent energy arrivals, is introduced [18].

The AoI was introduced by Kaul et al. in [2] and [3], to adjust the freshness of information in status-
update systems. The AoI quantifies the staleness of the information at the destination and is defined as the
time elapsed since the generation time of the most recent status update packet successfully received at the
destination. In the FL area, AoI can be considered as the time elapsed between receiving the local updates from
a participant user. Yang et al. studied a metric called “age of update” (AoU) and proposed a scheduling policy
to find the minimum AoU, with the constraints of maximum transmit power, avoiding interference and rate
exceeding a threshold [19], Büyükateş et al. studied the metric of the average AoI of each client to define the
AoI-optimal number of total and earliest participant users. They suggested a strategy that ensures timeliness
and reduces average iteration durations [20]. Liu et al. studied an age-aware communication method for FL
over wireless networks to achieve efficient model training over non-IID data [21].

This work explores FL strategies that achieve a similar convergence as state-of-the-art FL methods in
contexts with diverse restrictions, such as error-prone channels or intermittent energy availability. To the best
of our knowledge, this is the first work that studies the effect of AoI on FL with channel and energy-aware
scheduling combined with the dynamic weighting of the updates and the acceleration of AoI-aware momentum.

3. System model
We consider an FL system with K distinct users on the network, which collaborate through a centralized
parameter server to train an ML model. These users are connected to the central parameter server over error-
prone channels and receive intermittent energy through energy harvesting. Energy can be provided by the
environment in various ways, where the arrival of energy can be either deterministic or stochastic. The channels
between the users and the parameter server are either available or unavailable in each time slot, depending
on the channel error probabilities. A user should have sufficient energy to compute local model updates and
transmit those updates to the parameter server. In addition to the energy constraint, channel availability is
also a criterion for the user to participate in the training. A user can join the training only if there is enough
energy and the channel is available. In such terms, the parameter server may give particular importance to
users who can participate in the process more frequently and produce better results than the other users. This
situation leads to a bias in FL. It is a situation not desired because the parameter server would prefer the users
that are more advantageous than the other users in terms of participation, resulting in a performance loss due
to heterogeneous data distribution. The aim is to minimize a global loss function under the energy and channel
state awareness, guaranteeing that there is no bias or unfairness between users. The illustration of the system
model is in Figure 1.

3.1. Federated learning model

Assuming that a user i ∈ {1, . . . ,K} has Di data points in its local dataset, the total number of data points
for all users can be defined as D . With these definitions, the global loss function can be defined as follows:

F (w) =

K∑
i=1

piFi(w), (1)
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Figure 1. System model.

In this equation, K is the number of users, pi is the ratio of the user i ’s local dataset size to the entire dataset
size (pi = Di

D ,
∑K

i=1 pi = 1), w is the up-to-date estimation of the model parameters, and the function Fi(w)

represents the local loss function. The local loss function of user i is defined as follows:

Fi(w) =
1

Di

Di∑
j=1

l(w, xij), (2)

The value l(w, xij) in this equation indicates the loss of the point xij in user i in the local dataset.
Training is performed by using the distributed SGD method. In this method, the model parameters are

constantly updated in the negative direction of the gradient. Estimation of the model parameters for the global
round t ∈ {0, 1, 2, ..} is represented by w(t) . The parameter server sends the value w(t) to participating users.
The number of local training iterations (local rounds) performed by the participant user is defined by L . Users
i ∈ {1, 2, ...,K} calculate a local stochastic gradient with L local iterations:

gi(w
(t), ξti) = ∇Fi(w

(t), ξ
(t)
i ), (3)

The value ξ
(t)
i specifies a uniformly random sample from the local dataset. This ensures that the stochastic

gradient is not biased. Under this assumption, the actual gradient value of user i can be defined as:

E
ξ
(t)
i
[∇Fi(w

(t), ξ
(t)
i )] = ∇Fi(w

(t)), (4)

In this equation, the value ∇Fi(w
(t)) specifies the gradient of the local loss function. The gradient of the global

loss function is defined as follows:

∇F (w(t)) =

K∑
i=1

pi∇Fi(w
(t)) (5)
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After users complete their local calculations, local gradient values are sent to the parameter server. The
parameter server updates the model as follows:

w(t+1) = w(t) − η

K∑
i=1

pigi(w
(t), ξ

(t)
i ), (6)

where η denotes the learning rate. After the update, the model is sent back to participating users, and the cycle
continues until the global training process is complete. The proposed method in this work considers scheduling
of the participating users and also modifies the Equation (6) in the sense that the local updates received from
the participant users are calculated by using the momentum, resulting in the global update equation being
altered, which is going to be explained in Section 4.

3.2. Energy and channel model
In this study, we consider users powered by energy harvested from the environment by energy-scavenging devices.
It is assumed that a step in the SGD method, including the local gradient computation and transmission to the
parameter server, costs each user a unit amount of energy. It is also assumed that each user has a unit battery
that stores enough energy for one SGD step. The energy arrival process of user i at global round t is denoted
by Et

i : if there is an energy arrival, Et
i = 1 , otherwise Et

i = 0 . The distribution of energy arrivals varies
depending on whether the harvesting process is deterministic or stochastic. In the case of deterministic energy
arrival, users know when the energy will arrive. It is assumed that there is only one unit of energy arriving
in the same global round. In the case of stochastic energy arrival, users do not know exactly when the energy
will arrive, but they know the probabilistic model of the energy arrival process. As a stochastic energy arrival
method, binary energy arrival is defined as a Bernoulli process with energy arrival probabilities as βi for each
user i . The user i receives one unit amount of energy with probability βi per global round. The value of βi is
between 0 and 1 and may vary from user to user.

Et
i =

{
1, with the probability βi

0, with the probability 1− βi
(7)

Users are assumed to deliver their local updates to the remote parameter server through an imperfect wireless
channel. The channel state of each user is assumed to change randomly at each global round. Let Qt

i denote
whether the channel of user i is available at global round t or not, and is assumed to follow a Bernoulli process
with channel error probabilities as qi , i ∈ {1, . . . ,K} . The channel of user i is available with probability 1−qi .
The value of qi is between 0 and 1, which may vary from user to user.

Qt
i =

{
0, with the probability qi
1, with the probability 1− qi.

(8)

Ti , referred to as the “energy arrival parameter”, specifies the frequency of the energy arrivals of the user
i . For deterministic energy arrivals, it is a constant integer; but for stochastic energy arrivals, it is determined
by dividing 1 by the channel availability probability 1− qi .

4. Proposed methods
This section presents the proposed FL algorithms for deterministic and stochastic energy arrival scenarios. We
utilize momentum as an extension of the gradient descent optimization aiming to accelerate the convergence or
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increase the accuracy for nonhomogeneous data distribution on participant users. AoI metric is also exploited
in gradient update and momentum attenuation factor computation to train the model in a more balanced and
accurate way. Next, two FL algorithms are going to be explained in detail.

4.1. Federated learning with deterministic energy arrivals

The scheduling process starts by checking the energy status of the user. If energy arrival occurs, the user
randomly chooses a global round to join the training process and determines an integer J with a certain
probability in the range of 0 to Ti − 1 , and the user is scheduled for (t+ J)th round. The value of this integer
depends on the energy arrival parameter of the participating user and the error probability of the channel,
which will be determined using the following probability distribution.

P (J = 0) =
1

Ti − Tiqi + qi
(9)

P (0 < J ≤ Ti − 1) =
1− qi

Ti − Tiqi + qi
(10)

The derivation of these probabilities is provided in Appendix S1. At each global round, it is checked whether
users can participate in the learning process in accordance with the scheduling, taking the channel availability
into account. The user can participate in the learning process if the channel is available at the current global
round. If not, the user is scheduled to participate in the next global round.

The parameter server sends the model parameters to the participating users, and the users perform the
learning process by making local gradient calculations. The information gathered from the user that participates
in the training process less often is more critical and must be included in the process on a greater scale. In
other words, if the time elapsed between the two most recent participation of the corresponding user is long,
the scaling coefficient must be greater than the other users; since that user cannot participate in the training
process frequently, the information obtained from that user must be important. To ensure this assumption,
while scaling the local gradients, the AoI of the user is taken into account. AoI, denoted as ∆t

i , is defined as
the time elapsed between the most recent participation in the training process and the current global round t

for user i . The scaling coefficient is defined as the ratio of the AoI of the corresponding user to the total AoI

of the users, ∆t
i

∆t
. During the local training, user-specific local gradient values are scaled as follows:

g
(t+L)
i =

∆t
i

∆t
(gi(w

(t), ξti)) (11)

We also introduce a parameter named “momentum attenuation factor,” aiming to regulate the quantity
of previous data to incorporate in the update equation: a large value of the momentum attenuation factor
means that the current update is strongly affected by the previous update, whereas a lower value means the
reverse 2. The momentum attenuation factor ranges from 0 to 1, and 0 corresponds to gradient descent without
momentum. The momentum update is given as:

mi(t+ 1) = δtimi(t)− η ∗ g(t+L)
i (12)

2Brownlee J (2021). Gradient Descent With Momentum from Scratch [online]. Website
https://machinelearningmastery.com/gradient-descent-with-momentum-from-scratch/ [accessed 12 03 2023].
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where the term mi(t) is generally referred to as “velocity”, which is an instrument of the momentum-included
SGD calculations and includes the previous and current information provided by the user i . In addition, the
momentum attenuation factor of participant user i is denoted as δti . Similar to the approach explained for
the gradient scaling factor, if the user cannot participate in the training process because of its energy arrival
or channel availability processes that user’s previous data must be taken into account on a grander scale. To
achieve that, the momentum attenuation factor must be set at a higher value, because the information gathered
from that user becomes more critical due to the lack of participation in the process. On the other hand, if the
user participates in the training process more frequently, the momentum attenuation factor must be determined
as a smaller value. Consequently, the momentum attenuation factor is determined in the scheduling process
according to the AoI of the corresponding user:

δti =

 0.1, if ∆t
i = 1

0.5, if 1 < ∆t
i ≤ Ti

0.9, if ∆t
i > Ti

(13)

where Ti is the energy arrival parameter. The participant user obtains the locally trained model parameters as
follows:

w(t+L) = w(t) +mi(t+ 1) (14)

After the local learning is finished, the server sends locally trained model parameters, denoted as w
(t+L)
i . The

parameter server updates the global model as follows:

w(t+1) =
∑
i∈St

w
(t+L)
i (15)

In this equation, St represents the set of users who have successfully participated in the learning process. The
algorithm is presented in Algorithm 1.

4.2. Federated learning with stochastic energy arrivals

The system architecture of the stochastic energy arrivals is the same as the deterministic energy arrivals.
However, there is no need to determine J in scheduling, since the nature of the energy arrival is random, and
it provides the desired unbiasedness. Within the scope of stochastic energy arrival, the case of binary energy
arrival has been examined. Different from the scheduling method for deterministic energy arrival, the battery
status will be necessary for scheduling. The scheduling method is explained as follows: If there is an energy
arrival, the user is directly scheduled. If there is no energy arrival but energy available at the user’s battery,
the channel status is checked. If the channel is available, the user is scheduled. The user is scheduled for the
next round if the channel is unavailable. This approach is aimed to avoid the waste of energy. The algorithm
is presented in Algorithm 2.

4.3. Convergence analysis

Convergence analysis for the proposed scheduling method for deterministic energy arrivals and IID data, without
AoI and momentum factors, is performed. To show that such a method does not violate the convergence
guarantees, a few assumptions must be revisited:
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Algorithm 1: Age-involved federated learning with momentum for deterministic energy arrivals.
Require: Total number of global rounds T , number of users K , channel status for user i Qi , channel error probability of user i
qi , initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 for t ∈ [T]

for Global round t = 0, ..., T − 1 do
for User i in K do

if Et
i =1 then

Determine J using (9) and (10)
Schedule Kt+J

i =1
Determine the momentum attenuation factor using (13)

end if
if Kt

i =1 then
if Qt

i =1 then
for Local iteration m in L do

Calculate and scale the local gradients gi(w
(t), ξ

(t)
i )

end for
Send the locally trained model parameters to the parameter server
∆t+1

i = 1

else if Qt
i = 0 then

Schedule Kt+J
i = 0 and Kt+J+1

i = 1

∆t+1
i = ∆t

i + 1
end if

end if
end for
Parameter Server:
Update the global model
Send model parameters w(t+1) to the users

end for

Assumption (Variance Bound) The variance of the stochastic gradients from (3) are bounded:

E
ξ
(t)
i
[||gi(w(t), ξ

(t)
i )−∇Fi(w

(t))||2] ≤ σ2, i ∈ [K] (16)

Assumption (Second Moment Bound) The expected square norm of the stochastic gradients from (3)
are bounded:

E
ξ
(t)
i
[||gi(w(t), ξ

(t)
i )||2] ≤ G2, i ∈ [K], (17)

where G > 0 is a finite real constant.
Assumption (µ-Strong Convexivity) The local loss functions of the participating users and the global

loss function are µ -strongly convex: For all v and w ,

Fi(v) ≥ Fi(w) + (v −w)T∇Fi(w) +
µ

2
||v −w||22 (18)

Assumption (L-Smoothness) The local loss functions of the participating users and the global loss
function are L-smooth: For all v and w ,

Fi(v) ≤ Fi(w) + (v −w)T∇Fi(w) +
L

2
||v −w||22 (19)

Let the scaling coefficient of the local gradients for J = 0 be χi =
1

P (J=0) and for 0 < J ≤ Ti − 1 be

φi =
1

P (0<J≤Ti−1) . Using these parameters, the following lemma can be defined:
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Algorithm 2: Age-involved federated learning with momentum for stochastic energy arrivals
Require: Total number of global rounds T , number of users K , channel status for user i Qi , channel error probability of user i
qi , initialized model parameters w(0)

Ensure: Trained model parameters w(T )

Initialize Kt
i = 0 and Bt

i = 0 for t ∈ [T]
for Global round t = 0, ..., T − 1 do

for User i in K do
if Et

i =1 then
Schedule Kt

i =1
Determine the momentum attenuation factor using (13)
Battery level Bt

i = 1
else

if Bt
i =1 then

if Qt
i =1 then

Schedule Kt
i =1

Determine the momentum attenuation factor using (13)
else

Schedule Kt+1
i =1 and Kt

i =0
end if

end if
end if
if Kt

i =1 then
if Qt

i =1 then
for Local iteration m in L do

Calculate and scale the local gradients gi(w
(t), ξ

(t)
i )

end for
Send the locally trained model parameters to the parameter server
∆t+1

i = 1

else if Qt
i = 0 then

Schedule Kt
i = 0 and Kt+1

i = 1

∆t+1
i = ∆t

i + 1

Battery level Bt+1
i = 1

end if
end if

end for
Parameter Server:
Update the global model
Send model parameters w(t+1) to the users

end for

Lemma 1 (Unbiasedness) For distributed SGD with deterministic energy arrivals,

ESt

[∑
i∈St

piχigi(w
(t), ξ

(t)
i )

]
=

N∑
i=1

pigi(w
(t), ξ

(t)
i ) (20)

ESt

[∑
i∈St

piφigi(w
(t), ξ

(t)
i )

]
=

N∑
i=1

pigi(w
(t), ξ

(t)
i ) (21)

for J = 0 and 0 < J ≤ Ti − 1 , respectively.

For heterogeneous user set, Lemma 1 analytically shows unbiasedness in a way that even for different
participation frequencies of the users, for which the participation depends on the channel and energy conditions,
the expected sum of scaled local gradients is equivalent to unbiased local gradient summation, where each user
participates equally.
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Theorem 1 For training a machine learning model (1) with deterministic energy arrivals and a learning rate

η ≤ min{ 1

2µ
,
1

L
} , the global loss function can be upper bounded as follows:

ESt,ξt [||w(t+1) − w∗||2 ≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2 + η2(

K∑
i=1

p2i (αi,max − 1) +

K∑
i=1

K∑
j=1

pipj)G
2 (22)

in T iterations, where w∗ denotes the optimal parameters that minimize the global loss function.

The proof of this theorem is provided in Appendix S2.

5. Performance evaluation
Experiments were performed as an image classification task with 10 classes of 40 users, for 1000 global rounds
and 5 local training rounds, using both the CIFAR-10 [22] and MNIST [23] datasets. The CIFAR-10 dataset was
distributed as 50,000 training and 10,000 test samples, with a batch size of 64. For the CIFAR-10 dataset, images
were preprocessed before the training to train the model more accurately, including horizontal and vertical flips,
color jittering, resizing, and normalization. As the optimizer, SGD is used. The learning rate is set to 0.01.
As the architecture, the convolutional neural network (CNN) is used, which includes three 3x3 convolutional
layers (with 32, 64, and 64 channels, respectively, the first two with 2x2 pooling layers), a 0.25 dropout layer, a
64-unit fully connected layer, and an output layer. MNIST is an introductory yet useful dataset, which includes
handwritten digits from 0 to 9 and has 60,000 samples for training and 10,000 samples for testing, with a batch
size of 64. The digits are in normal size and centered in a fixed-size image, and the images are relatively clean
and easy to recognize and learn. To show the effect of momentum more clearly, both IID and non-IID training
datasets are used in the simulations. IID is applied by shuffling the dataset and splitting it between the clients.
Non-IID is applied by sorting the dataset by the digit label, dividing the data into shards, and assigning two
shards to each client.

In addition to Algorithm 1 and Algorithm 2 proposed in this paper, the performances of two benchmark
policies are demonstrated in the experiments. For the Conservative Algorithm, the learning process takes place
only when all users have enough energy and the gradients are not multiplied by a coefficient. As a baseline and
reference for many FL algorithms in the literature, FederatedAveraging [5] algorithm is simulated. Note that this
algorithm represents the performance in perfect conditions, i.e. no energy or channel constraint. To show the
effect of nonhomogeneous energy arrivals and channel reliabilities, we divide users into four equal groups and
assign different energy arrival parameters and channel error probabilities to each group. In addition, the channel
models were generated in a way that the channel error probabilities were randomly assigned, independent of the
energy harvesting. The performance evaluation is conducted by calculating the test accuracy for each image
class and taking the average.

Figure 2 shows the convergence of Algorithm 1 for deterministic energy arrivals for IID MNIST and CIFAR
datasets. Algorithm 1 reaches 100% of accuracy. Similarly, for CIFAR-10, accuracy reaches approximately 70%.
It can be observed that the performance of the algorithms with the MNIST dataset significantly outperforms
the performance of the algorithms with the CIFAR-10 dataset. This is because images in the MNIST dataset
are relatively clean and easy to recognize and learn. Additionally, it can be seen that Algorithm 1, in which the
channel state is known, provides high test accuracy. It is important to point out that the reference algorithm,
FederatedAveraging, does not have any channel, processing power, or time constraints, and still, it provided 75%
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Figure 2. Test accuracy of Algorithm 1 (the method for
deterministic energy arrival) for IID MNIST and CIFAR-
10 datasets.

Figure 3. Test accuracy of Algorithm 1 (the method
for deterministic energy arrival) for non-IID MNIST and
CIFAR-10 datasets.

test accuracy, which is close to the accuracy of the Algorithm 1. Note that the model used in these simulations is
basic, and the proposed scheduling methods can be applied to more complicated and high-efficient models. The
main goal of these experiments is to show that the proposed algorithms do not violate convergence guarantees
and do not achieve higher test accuracy. Figure 3 shows the convergence of Algorithm 1 for deterministic
energy arrivals, comparing with FedAvg, for non-IID MNIST and CIFAR-10 datasets. For the MNIST dataset,
Algorithm 1 reaches approximately 88% of accuracy and for CIFAR-10, accuracy reaches approximately 50%.
An observation can be stated as the oscillation of the test accuracy for the non-IID datasets is related to the
number and variation of participating users. As an example, the test accuracy of the Conservative Algorithm
is much more consistent than the others because all users participate every 20 rounds, so the scheduling is
very certain and predictable, resulting in consistent, settled test accuracy. Algorithm 1, Algorithm 2, and
FederatedAveraging algorithms have oscillation because the scheduling in these algorithms is random. Note that
in FederatedAveraging algorithm, in every global round, users are randomly selected; and in Algorithm 1 and
Algorithm 2, users are scheduled according to the energy arrivals and the value of integer J , which is determined
by a probability value that is dependent to a randomly available channel. Compared to the numerical results
of the experiments with non-IID data, it can be observed that the numerical results with synthetic datasets are
more settled because of the difference in the dataset characteristics. Note that CIFAR-10 is a dataset produced
by real-life events, and even the FederatedAveraging algorithm without any communicative constraints does not
have a settled test accuracy. Similar oscillation can be observed in the numerical results in [24] and [25]. To
reduce the oscillation, a possible approach can be eliminating several image classes in the training process.

Figure 4 shows the convergence of Algorithm 2 for stochastic energy arrivals for IID MNIST and CIFAR
datasets. Algorithm 2 reaches 100% of accuracy. For CIFAR-10, accuracy reaches approximately 73%, which is
very close to the accuracy of FedAvg. Figure 5 shows the convergence of Algorithm 2 for stochastic energy
arrivals, comparing with FedAvg, for non-IID MNIST and CIFAR-10 datasets. For the MNIST dataset,
Algorithm 2 reaches approximately 88% accuracy. Additionally, for CIFAR-10, accuracy reaches approximately
53%. It can be seen from the figures that the performance of both proposed algorithms increased compared
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to the deterministic arrival case. For Algorithm 1 and Algorithm 2, aiming not to waste substantial energy,
the scheduling process includes checking both the channel and battery status when there is no energy arrival.
Additionally, there is no J included in the stochastic energy arrival case, because both the scheduling process
and scaling parameter provide unbiasedness among users. These factors lead to a better convergence result
because the participation of the user is much more guaranteed. Last, but not least, it can be observed from the
experimental results that adding AoI as a gradient scaling factor and a metric for momentum attenuation factor
has a positive effect on both the test accuracy and convergence rate for non-IID datasets. Additionally, for
IID datasets, the model converged significantly faster. As a result, these experimental results verify the claim
that AoI-aware momentum improves the model’s accuracy for non-IID data and decreases the convergence time
for IID data. Note that in the worst case scenario where all of the users participate in the training, the time
complexity of both Algorithm 1 and Algorithm 2 is O(T ∗ (KL+K)) = O(TKL) , where T is the total number
of global rounds, K is the total number of users and L is the total number of local training rounds.

Figure 4. Test accuracy of Algorithm 2 (the method for
stochastic energy arrival) for IID MNIST and CIFAR-10
datasets.

Figure 5. Test accuracy of Algorithm 2 (the method for
stochastic energy arrival) for non-IID MNIST and CIFAR-
10 datasets.

6. Conclusions and future work
This paper focused on developing FL algorithms that are extended by constraints such as channel availability,
energy harvesting, and data freshness, and provide the same guarantee of convergence with the algorithms that
have no constraints. A study focused on the effect of AoI with momentum for the scheduling algorithm sensitive
to channel and energy state for an FL system prone to energy harvesting and channel errors is presented. As
a result, it is shown that with AoI-aware momentum, the accuracy of the model for non-IID data increases,
and the convergence time for IID data decreases. In future work, network pruning, defined as the elimination
of a specified proportion (referred to as the pruning rate) of weights with the least absolute values until the
required model size is achieved, can be studied. Model pruning can be adapted to the constraints such as energy
harvesting, data freshness, etc., to achieve more accurate model parameters.
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Appendix

S1. Derivation of the probability of the scheduling parameter

Let αt = PJ(j) and the channel error probability of user i is qi . To ensure fairness among all participant users,
it is assumed that α0 = α1 = α2 = ... = αTi−1 . The probabilities of different J values can be defined as follows:

αt(0) = (1− qi)PJ(0)

αt(1) = (1− qi)PJ(1) + qi(1− qi)PJ(0)

...

αt(Ti − 1) = (1− qi)PJ(Ti − 2) + qi(1− qi)PJ(Ti − 3) + ...+ q
(Ti−2)
i (1− qi)PJ(0)

Because of the assumption:

(1− qi)PJ(0) = (1− qi)PJ(1) + qi(1− qi)PJ(0), implies that (1− qi)PJ(0) = PJ(1),

(1− qi)PJ(1) + qi(1− qi)PJ(0) = (1− qi)PJ(2) + qi(1− qi)PJ(1) + q2i (1− qi)PJ(0), implies that PJ(2) = PJ(1),

PJ(3) = (1− qi)PJ(2) + qi(1− qi)PJ(1) + q2i (1− qi)PJ(0) = PJ(2) = PJ(1), implies that PJ(Ti − 1) = ... = PJ(2) = PJ(1).

It is known that
∑Ti−1

0 PJ(j) = 1 . This leads to:

PJ(0) =
1

Ti − Tiqi + qi
, and P (0 < J ≤ Ti − 1) =

1− qi
Ti − Tiqi + qi

This completes the derivation.

S2. Proof of the Theorem 1

By letting gti ≜ gi(w
(t), ξt) , w∗ ≜ argminwF (w) , ξt = (ξ

(t)
1 , ξ

(t)
2 , ..., ξ

(t)
K ) , from (15), and αt

i = χi for J = 0
and αt

i = φi otherwise, we find that:

ESt,ξt [||w(t+1) − w∗||2] = ESt,ξt [||w(t) − η
∑
i∈St

pi(α
t
igi(w

(t), ξ
(t)
i ))− w∗||2]

= ESt,ξt [||w(t) − w∗||2 − 2ηESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)⟩] + η2ESt,ξt [||

∑
i∈St

pi(α
t
ig

t
i)||2]]

(23)

The second term in (23) can be expanded as in the following:

ESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)⟩] = ESt,ξt [⟨w(t) − w∗,

∑
i∈St

pi(α
t
ig

t
i)−

K∑
i=1

pi∇Fi(w
(t)) +

K∑
i=1

pi∇Fi(w
(t))⟩]

= ESt,ξt [⟨w(t) − w∗,
∑
i∈St

pi(α
t
ig

t
i)−

K∑
i=1

pi∇Fi(w
(t))⟩] + ESt,ξt [⟨w(t) − w∗,

K∑
i=1

pi∇Fi(w
(t))⟩]

(24)

Because of Lemma 1, the first term in (24) vanishes, and by using Assumption 4.3 and (5), we obtain:

ESt,ξt [⟨w(t) − w∗,

K∑
i=1

pi∇Fi(w
(t))⟩] = ⟨w(t) − w∗,∇F (w(t))⟩ ≥ F (w(t))− F (w∗) +

µ

2
||w∗ − w(t)||2 (25)
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The third term in (23) can be expanded as in the following:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i ||2]] = ESt,ξt [||

∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i +

K∑
i=1

pig
t
i ||2]]

= ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]]− 2ESt,ξt [⟨

∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ,

K∑
i=1

pig
t
i⟩] +

K∑
i=1

||pigti ||2
(26)

The second term in (26) vanishes, and the equation becomes:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i ||2]] = ESt,ξt [||

∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + ESt,ξt [

K∑
i=1

||pigti ||2] (27)

By combining (23) and (27), and using Assumption 4.3, we get that:

ESt,ξt [||w(t+1) − w∗||2] = ESt,ξt [||w(t) − w∗||2 − 2η⟨w(t) − w∗,∇F (w(t))⟩

+ η2(ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + ESt,ξt [

K∑
i=1

||pigti ||2])
(28)

≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2]− 2η(F (w(t))− F (w∗)) + η2ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2]] + η2ESt,ξt [

K∑
i=1

||pigti ||2]

(29)

Let U t
i =

{
1, if the user participates at time t
0, otherwise and P (U t

i = 1) = αi . Under this definition:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2] = EUt,ξt [||

K∑
i=1

pi(α
t
ig

t
i − gti)||2] (30)

=
K∑
i=1

p2iEUt,ξt [||αt
ig

t
i − gti ||2] +

K∑
i=1

K∑
j=1,j ̸=i

EUt,ξt [⟨pi(αt
ig

t
i − gti), pj(α

t
jg

t
j − gtj)⟩] (31)

Because of independence, the second term in (31) vanishes:
K∑
i=1

p2iEUt,ξt [||αt
ig

t
i − gti ||2] =

K∑
i=1

p2i (U
2
i )Eξt [EUt|ξt [(U

t
i −

1

αt
i

)2 − ||gti ||2|ξt] (32)

By using Assumption 4.3, it can be stated that:

ESt,ξt [||
∑
i∈St

piα
t
ig

t
i −

K∑
i=1

pig
t
i ||2] ≤

K∑
i=1

p2i (αi,max − 1)G2 (33)

From Cauchy-Schwarz inequality, the last term in (29) can be expressed as in the following:

η2ESt,ξt [

K∑
i=1

||pigti ||2] ≤
K∑
i=1

p2iEξt [||gti ||2] +
K∑
i=1

K∑
j=1,j ̸=i

pipjEξt [||gti ||||gtj ||] (34)
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≤
K∑
i=1

p2iEξt [||gti ||2] +
K∑
i=1

K∑
j=1,j ̸=i

pipj
2

Eξt [||gti ||2 + ||gtj ||2] (35)

≤
K∑
i=1

K∑
j=1

pipjG
2 (36)

Equation (35) holds by using AM-GM Inequality, and Equation (36) is stated by using Assumption 4.3, where
G > 0 is a finite real constant. Finally, by combining (33) and (36) and noting that −2η(F (w(t))−F (w∗)) ≤ 0 ,
it can be stated that:

ESt,ξt [||w(t+1) − w∗||2 ≤ (1− ηµ)ESt,ξt [||w(t) − w∗||2 + η2(

K∑
i=1

p2i (αi,max − 1) +

K∑
i=1

K∑
j=1

pipj)G
2 (37)

This completes the proof.
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