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Abstract: This paper aims to put forward an analytical solution for tuning parameters of a fractional order PI (FOPI)
controller for stable, unstable, and integrating processes with time delay. Following this purpose, the analytical weighted
geometrical center (AWGC) method has been extended to the design of fractional order PI controllers. To apply AWGC,
the stability equations of the closed-loop system are written in terms of process and fractional order PI controller
parameters. With the proposed method, the centroid can be calculated analytically, and the controller parameters can
be easily calculated without the need of repetitive drawings of the stability boundary regions. Additionally, analytical
equations are derived to calculate fractional integral order, λ , using the integral of squared error (ISE) objective function.
The proposed analytical equations are simple and time-saving which might attract controller engineers for applying them
on the industrial level. To show the efficiency of the suggested method compared to the given methods in the literature,
several simulation examples are considered. Comparisons between the reported methods are figured out in terms of unit
step responses for nominal and perturbed cases. Also, rise time, settling time, maximum sensitivity (Ms), integral of
squared error (ISE), and total variation (TV) values are considered to compare the performance and robustness issues.
Also, a real-time application of an inverted pendulum setup is deemed to prove the feasibility of the suggested method.

Key words: Fractional order PI controller, stability equations, weighted geometrical center, integrating process, unstable
process, time delay

1. Introduction
The prevalence of PID controllers in industrial applications is an undoubted fact [1, 2]. Structural simplicity,
availability to be designed with effective and simple methods, and performance robustness are the main
advantages that enable PID controllers to be widely used in industrial applications [3, 4]. It was stated that
90% of the control loops used in industrial applications consist of PI/PID controllers [5, 6].

Fractional order PID controllers, defined as a general form of classical PID controllers, were proposed by
Podlubny [7] after nearly 300 years of fractional calculus. Two new parameters, fractional integral and derivative
provide flexibility in the tuning strategy of PID controllers [7] and better-shaped closed-loop responses to achieve
more satisfactory results [5, 8]. Apart from that, the robustness can be increased with fractional orders [9, 10].
The mentioned advantages have attracted the attention of many scientists on fractional order PID controllers,
and many studies have been introduced in the literature [5]. Furthermore, setting five parameters may also
cause computational complexity [11]. To reduce that complexity, it is of great importance to improve the
∗Correspondence: ikaya@dicle.edu.tr
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performance of fractional order PI (FOPI) controllers. Hence, various methods have been proposed in the
literature for this purpose. Monje et al. [12] suggested finding FOPI controller tuning parameters with the
minimization of a nonlinear function for first and second-order stable plus time delay processes. The proposed
method requires some user-defined parameters to calculate controller parameters. Chen et al. [13] proposed
an F-MIGO-based FOPI controller design method, which needs recalculation of design steps when the process
changes, for stable processes. Monje et al. [14] suggested the relay test based autotuning and nonlinear
optimization via the MATLAB optimization toolbox for the design of fractional order controllers. In order to
tune the controllers, frequency response parameters such as gain crossover frequency, phase margin, and the
constraints on sensitivity function should be predefined. Gude and Kahoraho [15] designed a FOPI controller
for stable processes with two new cost functions, one for low-frequency disturbance rejection and the other for
control signal improvement. The proposed controller design method does not cover unstable first-order plus
time delay (UFOPTD) and integrating first-order plus time delay (IFOPTD) processes. For stable first-order
plus time delay processes, stability region based different design methods, for instance, implementable stability
region [16] and gain-phase margin tester[17, 18] based design methods were porposed. In a study by Castillo-
Garcia et al. [19], the robustness regions of the classical and fractional order PI controllers were compared for
stable first-order plus time delay processes. The method, however, was suggested only for stable processes and
does not provide an analytical answer for determining the value of the fractional integral order. Boudjehem and
Boudjehem [20] used the integral of time absolute error (ITAE) value to minimize the error signal of the control
system. Nonetheless, because the method lacks an analytical answer, changes in system parameters necessitate
the repetition of optimization steps. Vu and Lee [21] introduced a FOPI controller design method based on
Bode’s ideal transfer function for stable first-order plus time delay processes. Despite their efforts to acquire an
analytical answer, some design parameters in their design approach are still user-defined. They wanted to find
controller settings that would allow for well-balanced set-point tracking and disturbance avoidance. Castillo-
Garcia et al. [22] introduced a frequency domain stability analysis method which is called the region of feasible
frequency specifications for stable first-order plus time delay processes. Although some analytical equations are
derived, the provided equations must be used with user-defined parameters. The generalized Hermite-Biehler
theorem was used by Hafsi et al. [11] to derive stability regions for stable first-order plus time delay systems.
Stability regions were determined in terms of controller parameters, and adjusting parameters were chosen
from those regions. However, no method or analytical equation for determining the suitable value of fractional
integral order has been suggested. Using the approximated forms of FOPI controllers for stable first-order plus
time delay processes, Rahimian and Tavazoei [23] suggested algebraic rules for the FOPI controllers. Although
an analytical solution has been given, it is only applicable to open loop stable processes. Cases of UFOPT and
IFOPTD are not addressed. In a study conducted by Yuce et al. [24], the ultimate frequency of the control
system was obtained with the relay auto-tuning method, and the controller tuning parameters were calculated
using the Ziegler-Nichols method for stable first-order plus time delay processes. Even so, the solution is not
analytical and necessitates repeated drawings. Alagoz and Kaygusuz [25] proposed using a FOPI controller to
manage the control of dynamic energy prices, and an implementation of automated energy balancing has been
carried out in smart grid energy markets. However, no analytic solution has been suggested in their technique
for tuning fractional integral order. Cokmez et al. [26] obtained stability regions of integrating first-order plus
time delay processes under the control of the FOPI controller for specified gain and phase margins using the
gain-phase margin tester. The method determines stability regions but does not include analytical methods for
determining FOPI controller settings. Zhao et al. [8] suggested obtaining FOPI controller tuning parameters
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with the extremum seeking algorithm, where the optimization was conducted for crossover frequency and phase
margin, not directly for the FOPI controller tuning parameters. De Keyser et al. [27] proposed the fractional
order KC autotuner-based FOPI controller design method for open-loop stable processes which needs a sine test
and user-defined parameters. Later, Senol and Demiroglu [28] proposed a frequency domain based analytical
design of FOPI controllers. In their method, to calculate controller tuning parameters, gain and phase-crossover
frequencies should be selected. Therefore, the method needs user-defined parameters, too. Muresan et al. [29]
proposed a disturbance attenuation based FOPI controller design method for various processes which needs
repetitive drawings of RDR value and user-defined parameters. Ramadan et al. [30] proposed FOPI controller
design based on metaheuristic optimization techniques such as harmony search (HS), modified flower pollination
algorithm (MFPA), and electromagnetic field optimization (EFO). However, when process parameters change,
the proposed method must rerun the optimization procedure.

The abovementioned literature review shows that analytical adjustment of FOPI controllers is extremely
restricted. In general, the suggested methods allow users to manually select the fractional integral order. Fur-
thermore, those that suggest analytical tuning necessitate the use of user-defined parameters or the recalculation
of design stages when process parameters change. As a result, a solely analytical approach that does not re-
quire user-defined parameters or recalculation stages appears to be a gap in the design of the FOPI controller.
Furthermore, FOPI controllers are typically intended for open-loop stable processes, with only a few uses for
open-loop unstable/integrating processes. Based on the abovementioned literature analyses, the followings are
the major contributions of this study:

• The AWGC method, which was used for integer order PI controllers and was shown to lead to somewhat
robust performances [31], has been extended to the FOPI controllers.

• The AWGC approach was used to acquire fully analytical solutions for the design of the FOPI controllers
that did not require any user-defined parameters or repeated sketches, as is typical in the literature.
Because it is time-saving and straightforward, the proposed approach may be appealing for tuning
controllers in industrial applications.

• Analytical tuning rules have been developed for identifying parameters of the FOPI controllers for con-
trolling three different processes, namely SFOPTD, UFOPTD, and IFOPTD. To the best of the authors’
knowledge, there are no studies in the literature that have taken into account all three process transfer
functions mentioned above.

The effectiveness of derived tuning rules is investigated by conducting robustness analyses and perfor-
mance results are compared in terms of rise time (tr), settling time (ts), integral of square error (ISE), total
variation (TV), and maximum sensitivity (Ms). The paper continues as follows: In Section 2, a brief information
is given about analytical weighted geometrical center (AWGC) method and the considered stable, unstable, and
integrating processes. In Section 3, using the AWGC method, analytical equations are derived for FOPI con-
troller tuning parameters. Next, robustness analyses have been carried out for stable, unstable, and integrating
processes with different time delays in Section 4. In Section 5, simulation results, performance comparisons,
and stability-robustness comparisons are given, and finally, conclusions are given in Section 6.
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2. Preliminaries
2.1. Analytical weighted geometrical center (AWGC) method

The weighted geometrical center (WGC) method can be utilized to find the weighted geometrical center points
(xWGC, yWGC) from the stability region. Due to using all points of the stability locus and the necessity of
repeating the design stages as process transfer function changes, this method can be very time consuming
[31]. With n defining the number of the sample points, and f(xk) and g(xk) are a set of real functions, the
mathematical expressions for xWGC and yWGC points are, respectively, given by Onat et al. [32]:

xWGC =
1

n

n∑
k=1

f(xk); f(x1), f(x2), ...f(xk) ∈ R. (1)

yWGC =
1

2n

n∑
k=1

g(xk); g(x1), g(x2), ...g(xk) ∈ R. (2)

The analytical weighted geometrical center (AWGC) method [31] is the improved form of the WGC
method. The AWGC method yields analytical equations in terms of the process and the controller parameters,
hence the time-consuming disadvantages of the WGC method are eliminated [31]. Defining z as a continuous
function in the [a,b] interval, the average value of z can be found as follows [31]:

zaverage =
1

b− a

∫ b

a

z(x) dx. (3)

It is suggested to use following equations to analytically determine the centroid points of the stability region
[31].

xAWGC =
1

b− a

∫ b

a

f(x) dx. (4)

yAWGC =
1

2(b− a)

∫ b

a

g(x) dx. (5)

2.2. Stable, unstable, and integrating processes

In this paper, FOPI controllers will be designed for stable first-order plus time delay (SFOPTD), unstable
first-order plus time delay (UFOPTD), and integrating first-order plus time delay (IFOPTD) processes:

G(s) =
Ke−θs

Ts+ g
∀ K > 0 & θ > 0 & T > 0 & g =

{
1 stable FOPTD

−1 unstable FOPTD
(6)

G(s) =
Ke−θs

s(Ts+ 1)
. (7)

3. Fractional order PI controller design
The general form of the FOPI controller is given by

C(s) = Kp +
Ki

sλ
. (8)
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where Kp, Ki, and λ represent proportional gain, integral gain, and fractional integral order, respectively. The
control system is illustrated in Figure 1, where C(s) is the FOPI controller transfer function, and the Gp(s) is
the transfer function of the process.

Figure 1. Closed-loop control system with unit feedback.

3.1. FOPI controller design for SFOPTD and UFOPTD processes

Assuming g = 1 in Equation (6) makes the system to be open-loop stable, while g = −1 turns the transfer
function into an unstable one. In Equations (6) and (8), permorming s̃ = Ts the one obtains:

Gp(s̃) =
Ke−τ s̃

s̃+ g
. (9)

C(s̃) = Kp +
KiT

λ

s̃λ
. (10)

where τ = θ/T . Thus, the characteristic equation of the control system given in Figure 1 is 1 +

Gp(s̃)C(s̃) = 0 . Substituting for Gp(s̃) and C(s̃) from Equations (9) and (10), respectively, one can obtain:

1 +
Ke−τs̃

s̃+ g

Kps̃
λ +KiT

λ

s̃λ
= 0. (11)

Rearranging Equation (11) yields:

∆ = s̃λ+1 + gs̃λ +KKps̃
λe−τs +KKiT

λe−τs = 0. (12)

To find the stability region, three boundaries should be searched [8] using Equation (12):

• The real root boundary (RRB) is obtained by substituting s̃ = 0 in (12), which results in KKiT
λ = 0 .

• The infinite root boundary (IRB) is obtained by replacing s̃ = ∞ and equating the coefficient of the s̃

with the highest order to zero in (12). Since the coefficient of s̃λ+1 can not be zero, IRB does not exist.

• The complex root boundary (CRB) is obtained by inserting s̃ = jw̃ in Equation (12).

In order to find the CRB, e−jτw̃ = cos(τw̃)− j sin(τw̃) , j2 = −1 and jλ = cos(λπ/2) + j sin(λπ/2) definitions
are used in Equation (12). Then, the real and imaginary parts of the equation are solved by equating to zero:

KKpw̃
λ cos(λπ/2− τw̃) +KKiT

λ cos(τw̃) = w̃λ+1 sin(λπ/2)− gw̃λ cos(λπ/2). (13)
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KKpw̃
λ sin(λπ/2− τw̃)−KKiT

λ sin(τw̃) = −w̃λ+1 cos(λπ/2)− gw̃λ sin(λπ/2). (14)

Solving Equations (13) and (14) for and yields the following expressions:

t(w̃) = KKp = (−w̃ cos(λπ/2 + τw̃)− g sin(λπ/2 + τw̃))/(sin(λπ/2)). (15)

f(w̃) = KKiT
λ = (−w̃λ+1 cos(τw̃)− gw̃λ sin(τw̃))/(sin(λπ/2)). (16)

To find an analytical solution of the centroid point of the stability region, Equations (15) and (16) are
inserted into Equations (4) and (5), respectively. Defining cos(λπ/2 + τwc) = α, cos(λπ/2) = β, sin(λπ/2 +

τwc) = σ and sin(λπ/2) = ϵ the analytical expressions obtained for xAWGC and yAWGC are found to be given
by

xAWGC = KKp =
1

wc

∫ wc

0

t(w̃) dw̃ =
1

wc

[
g(α− β)

τϵ
− α+ τwcσ − β

τ2ϵ

]
. (17)

yAWGC = KKiT
λ =

1

2wc

∫ wc

0

f(w̃) dw̃ =
1

2wc sin(λπ/2)

∫ wc

0

(−w̃λ+1 cos(τw̃)− gw̃λ sin(τw̃)) dw̃. (18)

Using the third order Taylor series approximations for cos(τw̃) and sin(τw̃) , respectively, given by

cos(τw̃) = 1 − τ2w̃2

2! + τ4w̃4

4! and sin(τw̃) = τw̃ − τ3w̃3

3! + τ5w̃5

5! , the analytical solution of yAWGC obtained as
follows:

yAWGC = KKiT
λ =

1

2wc sin(λπ/2)

[(
gτ5 + 5τ4

)
wλ+6

c

120(λ+ 6)
−

(
gτ3 + 3τ2

)
wλ+4

c

6(λ+ 4)
+

(gτ + 1)wλ+2
c

λ+ 2

]
. (19)

It is seen that Equations (17) and (19), which give analytical solutions of xAWGC and yAWGC, depend on the
value of wc . Here, wc is the critical frequency where the Nyquist plot of the process transfer function intersects
the negative real axis. Since, the main purpose of this article is to obtain the FOPI controller parameters
analytically, the critical frequency (wc ) must also be determined analytically. For this purpose, assuming g = 1

for the SFOPTD process, and g = −1 for the UFOPTD process, the equation f(w̃) = 0 has been solved for
τ varying in the range of [0.01, 10] for the SFOPTD process, and of [0.01, 0.99] for the UFOPTD process. It
should be noted that the value of λ does not affect the value of the wc . The obtained wc values are shown
in Figure 2 for different τ ranges and process transfer functions. Then, using a curve fitting tool, analytical
expressions given in Equations (20) and (21) can easily be obtained. The obtained analytical expressions are also
illustrated in Figure 2, which exhibit very good fittings. Consequently, for SFOPTD and UFOPTD processes
the following expressions can be used to calculate the critical frequency value:

wc = (−0.004415τ2 + 3.25τ + 4.17)/(τ2 + 2.654τ + 2.429e− 06) 0.01 ≤ τ ≤ 10 & g = 1. (20)

wc =
−4.423τ5 + 7.94τ4 − 5.249τ3 + 1.076τ2 − 0.7673τ + 1.575

τ + 1.749e− 05
0.01 ≤ τ ≤ 0.99 & g = −1. (21)

It should be noted that for the UFOPTD process, the stability regions can be obtained only for 0.01 ≤
τ ≤ 0.99 .
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Figure 2. Curve fitting results to obtain critical frequency a) SFOPTD process, 0.01 ≤ τ ≤ 2 ; b) SFOPTD process,
2 ≤ τ ≤ 10 ; c) UFOPTD process, 0.01 ≤ τ ≤ 0.99 .

Another important subject is the decision of fractional integral order, λ . In this study, ISE objective
function is used to provide analytical formulae for the selection of an exact value of λ .

It is suitable to describe why ISE objective function was chosen to determine the value of λ at this point:

• It is common knowledge that using a PI/FOPI controller can result in significant initial errors due to
an absence of a derivative component. On the other hand, it has been demonstrated that by using the
ISE objective function, large errors can be punished more than smaller ones, and control systems that
minimize ISE are available to rapidly eradicate large errors [33].

• When system dynamics deviations are taken into account, the ISE objective function has been shown to
outperform other minimization functions [34].

• Furthermore, the efficacy of ISE-based fractional order controller design approaches has been demonstrated
in a number of works [13, 35–38].

The mathematical formulation of ISE is given by ISE =
∫∞
0

e2(t) dt where e(t) represents the error
signal [39]. To obtain analytical formulae, the λ values were varied in the range of [0.1, 2] while normalized
time delay,  τ , varied in the range of [0.01, 10] for the SFOPTD and IFOPTD processes and [0.01, 0.99] for
the UFOPTD process. The values that yield the lowest ISE value for each τ  value were then found. The
mathematical formulae for the choosing of λ in terms of τ  values were then supplied using a curve fitting
toolbox. The expression given in (22) has been provided for the selection of λ for the SFOPTD process. For
2 < τ ≤ 10 , there is a very small change in λ values, which provide the minimum ISE value. Therefore, an
average value is provided for the λ value in this range.

λ =

{
(−0.03885τ3 + 1.385τ2 + 0.170τ + 0.01997)/(τ2 + 0.2342τ + 0.02449) & 0.01 ≤ τ ≤ 2
1.240 & 2 < τ ≤ 10

(22)
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For the UFOPTD process case, τ has been varied in the range of [0.01, 0.99] and the λ value with the
minimum ISE value has been calculated for each τ value. Then, using a curve fitting toolbox, the following
expression has been obtained for the selection of λ for the UFOPTD process:

λ = 1.0651 exp(−6.8344τ0.206)− 1.545τ1.495 + 2.312τ + 0.01 tan(1.56τ) + 0.721 & 0.01 ≤ τ ≤ 0.99. (23)

Stability regions with centroid points are also provided for the SFOPTD and UFOPTD processes as seen in
Figure 3. It has been observed that for both processes, increasing the value of τ causes smaller stability regions
to be formed. It should be noted that stability regions have been obtained for λ = 0.9 .

Figure 3. Stability regions a) SFOPTD process, 0.1 ≤ τ ≤ 1 ; b) SFOPTD process, 1 ≤ τ ≤ 10 ; c) UFOPTD process,
0.1 ≤ τ ≤ 0.5 ; d) UFOPTD process, 0.5 ≤ τ ≤ 0.9 .

3.2. Fractional order PI controller design for IFOPTD process
The design steps for SFOPTD and UFOPTD processes in the previous section are followed in the same way for
the IFOPTD process, given by Equation (7). Analytical equations for xAWGC and yAWGC have been obtained
as given in Equations (24) and (25). The abbreviations used in the previous section apply here, as well.

xAWGC = KKpT =
1

wc

[
(2α− 2β)− τ2(w2

cα+ wcσ) + τ(2wcσ + β − α)

τ3ϵ

]
. (24)

yAWGC = KKiT
λ+1 =

1

2wc sin(λπ/2)

[
− τ5wλ+8

c

120(λ+ 8)
+

(4τ3 + τ4)wλ+6
c

24(λ+ 6)
− (τ2 + 2τ)wλ+4

c

2(λ+ 4)
+

wλ+2
c

λ+ 2

]
. (25)

Similar to the previous section, the following expressions can be derived to analytically evaluate the critical
frequency value for the IFOPTD process:

wc =


0.0544τ4−0.2846τ3+0.6561τ2+0.5401τ+0.0165

τ2+0.1396τ+0.0007045 & 0.01 ≤ τ ≤ 2

0.0001378τ3−0.003833τ2+0.04087τ+1.359
τ+0.6495 & 2 < τ ≤ 10.

(26)
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For the IFOPTD process, following the concept given in subsection 3.1, the expression to calculate the
value of λ for the minimum ISE value has been obtained as

λ =

(0.8169τ2 + 0.01674τ + 0.0007827)/(τ2 + 0.0703τ + 0.01828) & 0.01 ≤ τ ≤ 2
0.79 & 2 < τ ≤ 5.5
(0.02831τ3 + 0.124τ2 − 6.793τ + 35.13)/(τ2 − 14.6τ + 57.95) & 5.5 < τ ≤ 10

(27)

Stability regions with centroid points are also provided for the IFOPTD process. Again, increasing values
of τ , cause smaller stability regions as seen in Figure 4. Here the given stability regions are obtained for λ =
0.9.

Figure 4. Stability regions of the IFOPTD process while 0.1 ≤ τ ≤ 10 .

Finally, for the AWGC-based design of the FOPI controller, the procedure can be summarized as follows:

1. Obtain the normalized dead time ratio, τ = θ/T .
2. Use Equation (20) for the SFOPTD process, (26) for the UFOPTD process, and (28) for the IFOPTD

process to find wcvalue.
3. Evaluate the λ value using Equations (22),(23), and (27) for SFOPTD, UFOPTD, and IFOPTD processes,

respectively.
4. Calculate xAWGC and yAWGC using Equations (17) and (19) for SFOPTD and UFOPTD processes

(assume g = 1 for the SFOPTD, and g = −1 for the UFOPTD process), and (24)-(25) for the IFOPTD
process.

5. Calculate the FOPI controller gain as Kp = xAWGC/K and Ki = yAWGC/KTλ for the SFOPTD and
UFOPTD processes, and Kp = xAWGC/KT and Ki = yAWGC/KTλ+1 for the IFOPTD process.

4. Robustness analysis
In this section, the robustness of the proposed FOPI controller is evaluated by considering the gain margin,
phase margin, and maximum sensitivity (Ms) value. Ms is defined as the inverse of the shortest distance between
the Nyquist plot of the process and the critical point (−1 + j0) . Typical values of the Ms [39] are desired to
be in the range of [1.4, 2] for stable processes and greater than 2 for unstable processes. Smaller values of Ms
result in sluggish responses but more robust performances. On the other hand, higher values of Ms yield faster
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but less robust responses. Noting that the open loop transfer function of the system shown in Figure 1 is given
by L(jw) = C(jw)Gp(jw) , then Ms can mathematically be calculated by

Ms = max
0≤w<∞

∣∣∣∣ 1

1 + L(jw)

∣∣∣∣ . (28)

The other two well-known robustness measures are gain and phase margins which can be determined mathemat-
ically as: GM = 1/(L(jwp)) and PM = π+arg(L(jwg)) . Here, wp and wg represent phase and gain crossover
frequencies. Suggested values of gain and phase margins range in [2, 5] and [30◦, 60◦ ] [31], respectively. The
relation between Ms and gain-phase margins is GM ≥ Ms/(Ms− 1) and PM ≥ 2 arcsin(1/(2Ms) [31].

For varying τ and λ values, robustness measures are obtained and listed in Tables 1–3 for SFOPTD,
UFOPTD, and IFOPTD processes, respectively. Besides, unit step responses are shown in Figures 5, 7, and 9
for each considered process. For the SFOPTD process, as seen in Table 1, for τ = 0.5 and τ = 1 , increasing
the λ causes a slight increase in Ms value, while a noticeable decrease in gain and phase margins. On the
other hand, for τ = 1.5 , increasing the λ provides a small decrease in Ms values and hence a more robust
performance. Moreover smaller λ values may cause steady-state errors as seen in Figure 5.

Table 1. Robustness analysis for stable first-order plus time delay (SFOPTD) process.

τ λ Kp Ki GM PM Ms

0.5

0.8 0.6471 1.1072 3.2 59.56 1.66
0.9 0.854 1.1103 3.09 57.38 1.66
1 1.0507 1.2208 2.85 53.41 1.71
1.1 1.2475 1.3342 2.65 50.99 1.76
1.2 1.4544 1.4979 2.44 48.69 1.83

1

0.8 0.1506 0.5019 3.38 69.85 1.57
0.9 0.3 0.49 3.42 64.83 1.57
1 0.4421 0.4916 3.32 60.04 1.57
1.1 0.5841 0.5064 3.11 55.36 1.58
1.2 0.7335 0.5359 2.83 50.61 1.62

1.5

0.8 –0.0041 0.3407 3.16 72.23 1.59
0.9 0.1273 0.3217 3.33 66.05 1.57
1 0.2523 0.3122 3.44 60.44 1.56
1.1 0.3773 0.311 3.36 54.77 1.55
1.2 0.5087 0.3183 3.1 49.03 1.55

Apart from that, Ms values have been provided for varying τ and λ values as seen in Figure 6. As
illustrated in the figure, the minimum Ms values can be obtained when τ varies in the range of [1, 2]. On the
other hand, it is observed that λ values less than 0.5 and higher than 1.2 make the control system closer to
instability. Consequently, λ values should be selected approximately in a range of [0.5, 1.2] for the SFOPTD
process.

From Table 2, for the UFOPTD process, increasing the value of τ causes a deterioration in the robustness
parameters. Higher τ values cause smaller gain-phase margins and higher Ms values. Also, it is observed that
for τ = 0.25 and τ = 0.5 , with smaller λ values, it is possible to increase the robustness, even if very small.
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Table 2. Robustness analysis for unstable first-order plus time delay (UFOPTD) process.

τ λ Kp Ki GM PM Ms

0.25

0.8 2.5067 1.2094 1.94 20.6 3.04
0.9 2.6703 1.3064 1.89 20.43 3.08
1 2.8259 1.4499 1.83 20.25 3.13
1.1 2.9814 1.6521 1.78 20.06 3.19
1.2 3.145 1.9338 1.72 19.86 3.27

0.5

0.8 1.4863 0.1708 1.57 10.62 5.47
0.9 1.5328 0.1692 1.54 10.61 5.49
1 1.5769 0.1721 1.52 10.59 5.52
1.1 1.6211 0.1798 1.5 10.55 5.56
1.2 1.6675 0.1929 1.47 10.51 5.61

0.75

0.8 1.158 0.0236 1.25 3.54 16.22
0.9 1.1694 0.0217 1.25 3.54 16.16
1 1.1803 0.0206 1.24 3.55 16.14
1.1 1.1912 0.02 1.24 3.56 16.11
1.2 1.2027 0.0199 1.23 3.57 16.07

Table 3. Robustness analysis for integrating first-order plus time delay (IFOPTD) process.

τ λ Kp Ki GM PM Ms

0.5

0.8 0.6667 0.1232 2.44 26.63 2.65
0.9 0.7199 0.1151 2.38 26.03 2.69
1 0.7705 0.1106 2.32 25.48 2.75
1.1 0.8211 0.109 2.27 24.93 2.81
1.2 0.8743 0.1105 2.19 24.37 2.88

1

0.8 0.3556 0.057 2.44 30.53 2.37
0.9 0.3901 0.0511 2.36 29.89 2.42
1 0.4232 0.047 2.28 29.29 2.47
1.1 0.4558 0.0445 2.2 28.71 2.53
1.2 0.4904 0.0432 2.11 28.12 2.6

1.5

0.8 0.2501 0.0348 2.43 31.86 2.28
0.9 0.2763 0.0304 2.34 31.23 2.33
1 0.3012 0.0273 2.25 30.64 2.38
1.1 0.3261 0.0251 2.16 30.07 2.44
1.2 0.3523 0.0237 2.07 29.49 2.52

However, steady-state error that may occur in the system response, which is illustrated in Figure 7, should not
be ignored. On the other hand, when τ = 0.75 , higher λ values provide very little improvement in system
robustness. Additionally, as for the SFOPTD process, Ms values have been illustrated for varying τ values
while λ = 0.8, 0.9, 1, 1.1, 1.2 , and for varying λ values while τ = 0.25, 0.5, 0.75 for the UFOPTD process as seen
in Figure 8. From the figure, it is observed that higher τ values cause higher Ms values, thus less robustness.
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Figure 5. Unit step responses for the SFOPTD process for different τ values.
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Figure 6. Ms values versus λ and τ for the SFOPTD process.

Moreover, λ values, which is less than 0.4 and higher than 1.5, are dangerous for the stability of the system.
The robustness measures of the IFOPTD process are given in Table 3, and the unit step responses are

demonstrated in Figure 9. As can be seen from the table, for the IFOPTD process, an increase in λ value
causes a higher Ms value, which refers to a less robust control system. Additionally, as seen in Figure 9, the
smaller the value of λ , the improved system performance, albeit very small, in terms of the smaller overshoot.

As in the previous two cases, Ms values are provided for the IFOPTD process for varying λ and τ values,
and the results are illustrated in Figure 10. Unlike the UFOPTD process, τ values less than 1 cause higher Ms
values and consequently less robustness. But, for τ values higher than 1, smaller Ms values and more robust
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Figure 7. Unit step responses for the UFOPTD process for different τ values.
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Figure 8. Ms values versus λ and τ values for the UFOPTD process.

systems can be obtained. Moreover, as seen in Figure 10, the λ value should be determined approximately in
the range of [0.5, 1.2] to avoid instability.

5. Simulation results
In this section, several examples are considered to demonstrate the performance enhancement provided by the
proposed AWGC based FOPI controller. The comparisons are given in terms of unit step responses, control
signals, unit step responses with negative and positive perturbations in process parameters. While performing
simulations, the FOMCON toolbox [40] has been utilized with an approximation order of N = 5 and a frequency
range of [0.001, 1000]. Moreover, rise time, settling time, maximum sensitivity (Ms), ISE, and total variation
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Figure 9. Unit step responses a for the IFOPTD process for different τ values.
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Figure 10. Ms values versus λ and τ values for the IFOPTD process.

(TV) values have been tabulated for the proposed method and the others used for comparison. TV value is an
indication of the smoothness of the control signal and is defined as TV =

∑∞
i=0 |ui+1−ui| . Here, ui represents

the input at the ith instant [39]. Smoother input results in a lesser TV value, while sharper input responses
cause an increase in TV value.

Example 1: Stable first-order plus time delay (SFOPTD) process

Here, a process with transfer function of G(s) = 0.55e−10s/(62s+ 1) , which is previously considered by Monje
et al. [12], is considered. They designed a FOPI controller having parameters of Kp = 2.2326 , Ki = 0.0285

and λ = 1.1274 . For the considered process, the methods proposed by Chen et al. [13] and Gude and Kahoraho
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[15] give tuning parameters of Kp = 3.89 , Ki = 0.1428 , λ = 0.9 and Kp = 3.845 , Ki = 0.0603 , λ = 1.1647 ,
respectively. The proposed FOPI controller has tuning parameters of Kp = 6.2811 , Ki = 0.2546 and λ = 0.943 .

The step responses are illustrated in Figure 11 for a unit step input and a disturbance input given in
500 s with a magnitude of 1. Additionally, performance indices are listed in Table 4. As seen in Figure 11 and
Table 4, the proposed AWGC based FOPI controller gives better results in terms of settling time, rise time, and
ISE values for both set point tracking and disturbance rejection. On the other hand, the other design methods
have lesser TV values but longer settling times. Furthermore, the method proposed by Chen et al. [13] cannot
reach the steady state position based on the 2% criterion. Additionally, the control signals for the considered
design methods are illustrated in Figure 11, too. The proposed AWGC based FOPI controller has more initial
control effort than the others, but faster settling times.

Table 4. Performance parameters for the SFOPTD process.

Method tr(s) ts(s) Ms ISEs ISEld TVs TVld

Proposed FOPI 26.79 102.86 1.98 17.77 0.47 11.81 1.72
Monje et al. [12] 100.01 312.42 1.19 30.46 3.14 1.16 1.2
Chen et al. [13] 46.38 - 1.46 20.01 1.32 4.75 1.18
Gude and Kahoraho [15] 47.55 171.53 1.37 22.45 1.18 4 1.45
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Figure 11. Performance results for the SFOPTD process. a) Unit step responses, b) control signals, c) negative
perturbation of 20%, d) positive perturbation of 20% in the SFOPTD process parameters.

In case of parameter changes that may occur in the process, the designed controller should continue
to control the process efficiently. The comparisons of the considered design methods under 20% negative and
positive perturbation that may occur in process parameters, and are shown in Figure 11. In case of negative
perturbation, the proposed FOPI controller continues to yield better unit step responses with shorter rise and
settling times. Additionally, as seen from the figure, the disturbance rejection of the proposed method is better
than the other design methods. On the other hand, the method proposed by Chen et al. [13] still cannot
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deal with set point tracking. In the case of positive perturbation, the proposed FOPI controller has a slightly
oscillatory response for set point tracking, but it is still better than the others for a faster settling time and
disturbance rejection.

Example 2: Unstable first-order plus time delay (UFOPTD) process

A UFOPTD process, which was previously considered by Matausek and Sekara [41] is used to demonstrate the
achieved performance enhancement with the proposed AWGC based FOPI controller. The transfer function of
the considered UFOPTD process is G(s) = 4e−2s/(4s − 1) . For performance comparisons, the Matausek and
Sekara [41] and the FOPI controller proposed by Muresan et al. [29] are used. The controller tuning parameters
for the method proposed by Matausek and Sekara [41] are Kp = 0.3381 , Ki = 0.0028 , and the FOPI controller
parameters for the method proposed by Muresan et al. [29] are Kp = 0.3677 , Ki = 0.0107 , and λ = 1 . The
proposed AWGC based FOPI controller has setting parameters of Kp = 0.44 , Ki = 0.0087 , and λ = 1.34 .

The unit step responses of the UFOPTD process for the three design methods are illustrated in Figure 12
and the performance parameters are tabulated in Table 5. As seen from Figure 12 and Table 5, the proposed
AWGC-based FOPI controller provides better performance for the UFOPTD process in terms of settling time,
rise time, and integral of square error (ISE) for both set-point tracking and disturbance rejection. The method
proposed by Muresan et al. [29] has smaller TV values but much longer settling times. Also, as seen from the
figure, it is seen that the proposed FOPI controller has better control effort than the other compared methods.
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Figure 12. Performance results for the UFOPTD process. a) Unit step responses, b) control signals, c) negative
perturbation of 20%, d) positive perturbation of 20% in the SFOPTD process parameters.

In the case of 20% perturbations occurring in process parameters, simulation results are shown in
Figure 12. As seen from the figure, for both cases, the proposed FOPI controller has still better settling
times compared to the method proposed by Matausek and Sekara [41] and the FOPI controller proposed by
Muresan et al. [29].

641



ÇÖKMEZ and KAYA/Turk J Elec Eng & Comp Sci

Table 5. Performance parameters for the UFOPTD process.

Method tr(s) ts(s) Ms ISEs ISEld TVs TVld

Proposed FOPI 3.78 56.6 5.73 63.85 3.459 3.008 3.1602
Matausek and Sekara [41] 4.20 138.31 4.07 186.2 23.01 2.215 3.1278
Muresan et al. [29] 4.06 128.94 4.17 117.9 12.51 2.149 3.0725

Example 3: Integrating first-order plus time delay (IFOPTD) process: inverted pendulum

In this section, the real time application on inverted pendulum has been carried out. The setup of the pendulum
is shown in Figure 13. As seen in the figure, the cart is fixed with two pendulum arms and moves a 1-m track.
The dc motor placed at the end of the rail is connected to the cart with the help of a belt. With the help of
a dc motor and belt, the cart can be moved in two directions. The cart position and the pendulum angles are
controlled with optical encoders. Due to the availability of modeling as an IFOPTD process, cart position control
is only considered in this case. The transfer function of the cart position is [42]: G(s) = 0.64394/s(0.13605s+1).
The time delay was considered 0.1 s in the process. In this case, the normalized time delay, τ , is 0.735. Using
Equations (24), (25), and (27), the tuning parameters of the FOPI controller are: Kp = 5.075 , Ki = 4.3465 ,
and λ = 0.745 . For comparison, the methods proposed by Shamsuzzoha and Skogestad [43], and Kos et al.
[44] whose tuning parameters are: Kp = 4.129 , Ki = 2.271 and Kp = 3.289 , Ki = 0.662 , respectively, are
considered. Additionally, to deal with the overshoot, using the method proposed by Vijayan and Panda [45], set-
point filters having transfer functions of F (s) = 1/(0.758s+1) , F (s) = 1/(0.967s+1) , and F (s) = 1/(1.41s+1)

have been designed for the proposed FOPI, the methods proposed by Shamsuzzoha and Skogestad [43], and
Kos et al. [44], respectively. A step input having a magnitude of 0.25 m and a disturbance input having a
magnitude of 0.1 at t = 8s have been applied to the inverted pendulum system, and the step responses are
displayed in Figure 13. It has been observed from the figure that, the proposed FOPI controller performed a
satisfactory performance with less settling time and better disturbance rejection for the cart position control of
the inverted pendulum.
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Figure 13. Experimental setup of the inverted pendulum and step responses.
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6. Conclusion
The paper provided an analytical design of FOPI controllers for stable, unstable, and integrating processes
with time delay. The previously proposed AWGC method for integer order PI controllers is extended to FOPI
controllers, and the effectiveness of the introduced AWGC-based FOPI controller design method is demonstrated
by simulation examples studied by others in the literature, as well as a real-time application of the inverted
pendulum. Simulations were carried out in terms of unit step responses, disturbance rejection, process parameter
changes, and the actuating signal that controls the process. Furthermore, the performance outcomes for set-
point tracking and disturbance rejection were evaluated in terms of rise time, settling time, Ms value, ISE, and
TV values. In addition to performance studies, robustness studies have been performed. The findings showed
that by using the proposed design technique, it is feasible to improve the performance of a PI controller and
obtain better closed-loop performances.

Nevertheless, the lack of the derivative part may cause significant initial errors and overshoots. To solve
these issues, set-point filters are needed. As a result, set-point filters were used to deal with large overshoots in
set-point tracking for the IFOPTD processes, as well as the real-time implementation of the inverted pendulum,
which is also an integrating system.

In future work, we suggest using various controller structures, such as I-PD or PI-PD controllers, to
improve the control system’s efficiency and robustness. Besides that, improved performance outcomes can be
achieved by employing modified Oustaloup approximation techniques.
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