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Abstract: In this paper, lightweight deep learning methods are proposed to recognize multichannel electromyography
(EMG) signals against varying contraction levels. The classical machine learning, and signal processing methods namely,
linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), root mean square (RMS), and waveform
length (WL) are adopted to convolutional neural network (CNN), and long short-term memory neural network (LSTM).
Eight-channel recordings of nine amputees from a publicly available dataset are used for training and testing the
proposed models considering prosthetic control strategies. Six class hand movements with three contraction levels
are applied to WL and RMS-based feature extraction. After that, they are formed into appropriate input dimensions,
and classified using the LDA, QDA, LDA-CNN, QDA-CNN, LSTM, and CNN. Depending on three prosthetic EMG
validation approaches (Scheme 1-3), the accuracy rates of 41.68%, and 47.27% are yielded by LDA, and QDA with 32-
dimensional RMS, and WL features while CNN with 2×16 input has 82.87% (up to 88.10%). The effect of the learnable
filters of the DL approaches, and signal windowing on the success rate and delay time are discussed in the paper. The
simulations show that 2D-CNN (accuracy of 82.87% with 1.7 ms delay) can be successfully adapted to prosthetic control
devices.

Key words: Human-machine interaction, deep learning, prosthetic hand control, convolutional neural network, elec-
tromyography

1. Introduction
Multichannel surface electromyography (sEMG) processing is the first step of myoelectric control for prosthetic
applications. The decision of the pattern recognition(PR) algorithm on sEMG signals can help disabled people
recover their capabilities of residual limbs [1, 5]. It is reported that amputations caused by trauma occur at the
rates of 3.8, 2.8, and 0.02 individuals per 100,000 for upper limb, finger, and hand amputations, respectively
[7]. For this reason, research in the field of prosthetics has continued intensively to reduce the limitations of
the disabled [8]. Sensor technologies, controller and mechanical design, signal processing, and machine learning
algorithms are combined to produce comfortable prosthetics with correctly recognized movement using the
signals from the residual limb [40].

EMG signal processing and control are effective approaches for an assistive tool for disabled people
[1, 13, 18] or human-machine interactions (HMI) [2, 12, 14, 25, 32]. It is based on conveying the subject’s
intention by processing the acquired signal from electrodes [4, 9] to recover lost limb functions [11, 15]. The
objective of the EMG PR task is to extract the related features at a given muscle location and to classify them
∗Correspondence: ahmet.mert@btu.edu.tr
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into limb position, movement, or gesture. These applications are generally called HMI to repeat limb motion
[16]. However, it is a challenging task to generate informative features from the electrodes on the residual limb
[18, 19]. Thus, the classification errors of sEMG signal processing in prosthesis applications are lower when
compared to HMI studies on healthy subjects [17].

Myoelectric control techniques deployed in commercially available prostheses are based on on/off, propor-
tional, and direct activation with limited movement capabilities [20]. The electrode placement scheme, number
of electrodes from healthy or residual limb, and movement types with varying force levels affect the performance
of the EMG PR task [22, 34, 35]. Time-domain (TD) signal processing [14, 23, 26] (root mean square (RMS),
waveform length (WL), mean absolute value (MAV), zero crossing rate (ZCR), sample entropy (SE), slope sign
change (SSC)) are generally preferred due to higher accuracy compared to the frequency, and time-frequency
methods such as Fourier transform (FT) [34], and wavelet transform (WT) [25]. Linear or quadratic discrim-
inant analysis (LDA or QDA) are generally preferred machine learning algorithms with TD features due to
fast response (low delay) depending on prosthetic control schemes [17, 24, 28]. On the other hand, k-nearest
neighbor (k-NN), support vector machine (SVM), artificial neural network (ANN), and convolutional neural
network (CNN) [21] have been studied to reach higher accuracy rates for both EMG classification and prosthetic
control, but they have computational burden [27, 29].

The accuracy rates of PR methods using healthy subjects’ sEMG have reached over 90% depending on
the number of movement classes. MAV, ZCR, SSC, and WL-based features with k-NN classifier were deployed
to Arduino microcontroller for 4-class hand gesture recognition [30]. It has an accuracy level of 94% while
another has rates of 98.64%, and 96.27% applying RMS, SE, and WL-based features to the SVM, and general
regression neural network for 9-hand movements [31]. In 2014, time-dependent power spectrum descriptors
(TD-PSD) were proposed and performed on a publicly available healthy sEMG database [23]. LDA, k-NN,
and SVM results indicated that error rates can be reduced up to 8% for 8-class hand gestures. In another
study [21] using the same signals, and TD-PSD as feature vector to deep neural network (DNN), the accuracy
level of 98.88% was yielded when compared to decision tree (88.36%), k-NN (90.64%), random forest (91.78%),
and SVM (98.66%). EMG signals of seven able-bodied subjects were recorded using the MYO armband for 15
consecutive days for seven hand gesture classifications. The proposed CNN basically consists of a convolution
(32@3 × 3), max-pooling (3@ × 1), and fully connected layer outperformed (error rate = 9.79%) sparse auto-
encoders with raw samples (SSAE-r, error rate=10.98%), and LDA (error rate=14.73%) with aforementioned
TD features [33]. In [37], particle swarm optimization and recurrent neural network (RNN) based 12-class
EMG classification was performed on healthy subjects, yielding up to accuracy of 94.167%. Transfer learning
(TL) approaches were adopted for AlexNet and VGG16 for healthy classification. Short-time Fourier Transform
images of sEMG signals were used as input images, and AlexNet yields 98.65% while deep feature concatenation
( AlexNet FC6 + AlexNet FC7 +  VGG16 FC6 +  VGG16 FC7 ) with SVM classifier had an accuracy rate of
99.04% [39]. sEMG PR approaches using conventional ML and DL techniques were also reviewed in [40].

As stated before, it is a challenging task to recognize the hand movement using the signal acquired from
the residual limb. That is why accuracy levels are dramatically lessened when compared to PR studies on healthy
subjects [6, 18, 19]. In [17], the aforementioned method called TD-PSD on healthy subjects was applied to eight
channel sEMG signals of nine transradial amputees. Three force levels (low, moderate, and high) of six hand
movements were classified using LDA, Naive Bayes (NB), k-NN, and random forest algorithms depending tree
schemes including inter-level (trained and tested with the same level), unseen level (tested without untrained
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force), and all levels (testing a force level on trained classifier with all levels). Scheme 3 is the scenario of
an upper-limb prosthetic recognition called ”against varying contraction level” yielding a 17.42% error rate of
LDA classifier with the help of spectral regression (SR) for dimensionality reduction. The bias effect of the
unsupervised learning, SR was discussed in the study [28]. Phasor represented EMG feature extraction was
introduced against varying contraction levels of prosthetic control, and the results were compared to TD-PSD
with/without SR reduction. TD-PSD without SR-based features yielded 51.27%, 71.63%, and 79.85% for LDA,
QDA, and k-NN, respectively while 60.45%, 71.17%, and 78.34% were obtained using phasor represented feature
of the same dataset and validation. In another study [35], TD feature set with LDA classifier was performed
on the recordings of the intact-limbed subjects, and error rates up to 30%-40% were reported within inter-level
muscle contraction. In addition to these prosthetic PR approaches, wearable device [36] and the effect of the
limb position (e.g, walking, sitting, an ascending a star) [11] during acquisition were analyzed. Accelerometer
data combined with hybrid TD features can reduce the error rate by 5.81%.

Recently, deep learning (DL) algorithms have revolutionized several fields of PR methods [10]. Researchers
spend their effort to improve the success rate of prosthetic applications adopting EMG to them. In [1], signals
from 67 intact subjects and 11 hand amputees from 3 databases were analyzed using CNN, and the results
were reported as 66.59%, 60.27%, and 38.09% for more than 50 hand movements. Zhai et al. [38] proposed a
self-recalibrating algorithm using CNN to avoid user-dependent retraining. Thus, a stable EMG PR approach
was introduced with reduced error rates of 10.18%, and 2.99% for intact, and amputee subjects.

The purpose of this paper is to improve EMG recognition performance against varying contraction levels
by adopting RMS and WL features to a lightweight DL-based classifier. The RMS and WL based 2 × 16

dimensional features are extracted using 8-channel signals from transradial amputees with their differentiated
versions for six class movements of three force levels (low, moderate, and high). The proposed DL-based models
are performed on publicly available data set [17] considering the validation and prosthetic control approaches
for benchmarking. With the help of low-dimensional feature space, and lightweight CNN, higher recognition
rates can be achieved. The remainder is organized as follows: Section 2 the description of the amputee EMG
database is given. The proposed feature extraction and the DL models are presented in Section 3. Consequently,
simulation results of the DL-based recognition are examined in Section 4, and the conclusions are drawn in
Section 5.

2. EMG dataset description

Al-Timemy et al. [17] recorded 8-channel EMG signals from 7 male traumatic, and 2 female congenital
transradial amputees in 2016. The age of the participants is in the range of 19-57 summarized in Table 1.

This dataset consists of 9 folders (A1-A9) with 8 channels sampled at 2kHz. Eight to twelve s EMG
signals for six hand movements were recorded from the residual limb shown in Figure 1

Five to eight trials were recorded for each movement (six classes as thumb flexion (TF), index flexion (IF),
fine pinch (FP), tripod grip (TG), hook grip (HG), spherical grip (SG)), and each force level as low, moderate
and high. Thus, there are 18 folders in each amputee’s folder containing the EMG trials for the following
6 gestures with 3 force levels. To enhance reliability, 5-8 trials were recorded. Three of them were used for
training, and the rest were testing of the machine learning algorithms (two to five trials). In the original study
[17], the multichannel signals were divided into 150 ms length segments with 50 ms overlapping considering
myoelectric control, and modified spectral moments based TF-PSD method was adopted as feature vector to
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increase recognition accuracy against varying force levels in three classification schemes; 1) Training and testing
with the same single level 2) Testing with unseen level 3) Training with all levels, and testing with single level
at a time. The proposed CNN method will be performed on this data using these 3 schemes for benchmarking.

Table 1. Information about the amputees.

Amputee Age Gender Type
1 25 Male Traumatic
2 33 Male Traumatic
3 30 Male Traumatic
4 27 Male Traumatic
5 35 Male Traumatic
6 29 Male Traumatic
7 57 Male Traumatic
8 19 Female Congenital
9 31 Female Congenital

Figure 1. a) The electrode placement on a residual limb. b) Six hand gestures.

3. Proposed deep learning based recognition

The proposed EMG recognition is based on the adaptation of the DL methods on multichannel EMG signals
from residual limbs. Nine amputees’ six hand movements (TF, IF, FP, TG, HG, and SG) with three contraction
levels (low, moderate, and high) are classified. Considering the prosthetic control requirements, the proposed
method should have robust recognition capability against varying contraction levels at low delay times.

The proposed method can be divided into two parts namely feature extraction, and classification using
LDA and DL algorithms. The successfully applied methods in EMG recognition tasks, RMS and WL are
extracted for eight-channel signals (xi [n]) and their derivatives (xi

′ [n]) where i = 1, 2, 3 . . . , 8 , and N =

50, 100, . . . , 300 denote channel number, and sample length of the windowing, respectively. Thus, RMS(Ri )
and WL(Wi ) features are
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Ri =

√√√√ 1

N

N∑
n=1

x2
i [n] (1)

Wi =

N∑
n=1

|xi [n]− xi−1 [n]| (2)

After computation of WL and RMS for each channel and their derivatives, the feature set F for the CNN, and
CNN-LDA based classification is generated as 2× 16 dimensional form by

F = [R1 . . .R8,R
′
1 . . .R

′
8,W1 . . .W8,W

′
1 . . .W

′
8] (3)

It is also reshaped as 4 × 8 sequences, 1 × 32 for LSTM, and LDA-based recognitions depending on the
validation schemes (schemes 1-3) in Figure 2 for performance evaluation against force variation. Finally, the
aforementioned machine learning methods in Figure 3 are performed.

Figure 2. The feature extraction and validation scheme for performance evaluation against force variation.

The proposed classification of amputees’ EMG signal to 6 hand movements with 3 force levels consists
of four different combinations of techniques based on classic and DL algorithms. These are recognition using a
(i) lightweight CNN, (ii) LSTM, (iii) LDA/QDA QDA, and (iv) CNN-LDA/QDA with F input (2× 16 , 4× 8 ,
1 × 32 , and 2 × 16 , respectively). For (i), a convolutional (Conv) block having 64 filters with 2 × 3 kernels,
ReLU activation, batch normalization (BN), and max pooling (1× 2) are integrated to a fully connected (FC)
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layer with 256 neurons, and an output layer with a dropout layer (0.5). Without stride and padding, the feature
vector to the FC is dropped to 13, and assigned to a class. In (ii), each feature is converted to a sequence (R ,
Ṙ , W , and Ẇ ), and classified using the LSTM with 64 hidden layers and the FC layers. Their properties are
summarized in Table 2.

Figure 3. The proposed EMG recognition approaches classify 6 hand movements with 3 force levels.

Table 2. The CNN and LSTM Properties.

CNN
Input 2× 16, no normalization
Conv 64@2× 3, no stride & padding
ReLU ——–
BN ——–
FC 256 neurons
Dropout 50%
Output 6 classes
Learning Adam with 0.001 LR
LSTM
Input 4× 8, no normalization
Hidden units 64
FC 256 neurons
Dropout 50%
Output 6 classes
Learning Adam with 0.001 LR

The LDA-based EMG recognition is the well-known approach due to low delay and was added to this
study to compare with the proposed DL-based methods. In (iii), LDA is directly performed on the feature
vector (1× 32) while CNN features (1× 13) generated from the last max-pooling layer are applied to LDA in
the combination of the CNN-LDA/QDA (iv) in order to investigate the effects on recognition against varying
contraction levels.
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The prosthetic recognition strategies and the EMG signal database were described in [17]. Classification
of six hand movements against tree force levels is the main objective of the proposed method. Three schemes
were performed on the 8-channel amputee recordings.

• Scheme 1 is to evaluate the classifier using the same force level. In each step, it is trained, and tested with
one force level.

• Scheme 2 is based on testing with untrained class (i.e. train using low-level recordings, and then testing
using others)

• Scheme 3 is to test one force level using the classifier trained with all levels.

There are 5-8 trials belonging to each movement in a force level, and three of them are used for training.
The aforementioned feature extraction is processed on the 150 ms windowed 8-channel EMG signals with 50
ms overlapping, and then the CNN, LSTM, LDA/QDA, and CNN-LDA/QDA are evaluated on the feature set
depending on the schemes. The recognition results are given, and compared with the previous studies in the
next section.

4. Results and discussion
The proposed DL-based recognition is performed on publicly available 8-channel EMG signals 1 of nine amputees
according to the validation schemes 1-3. The main objective is to evaluate the classification of the six-hand
gesture using the aforementioned machine learning methods against three force levels. In short, TF, IF, FP,
TG, HG, and SG gestures with three force levels (low, moderate, and high) from nine transradial amputees
are classified. For benchmarking, DL and feature extraction in this paper are adopted from the original study
(6-classes, 3 forces, 9 amputees 8-channels, 8-12 s duration, 150 ms windowing with 50 ms overlapping, 5-8
trials, 2 trials for training, and the rest for testing, and evaluating using scheme 1-3).

Scheme 1 is the first simulation in this study. The machine learning algorithms are trained, and tested
with the same force. A 32-dimensional feature vector is extracted for 18,350, 17,414, and 16,910 training samples
(total of 52683) for low, moderate, and high, respectively. 23,800, 24,417, and 18,732 testing samples are used
for low, moderate, and high-class evaluations (noting that deploying depending schemes). After reshaping input
features compatible with the ML methods (2× 16 , 1× 32 , 4× 8), the yielded performance graphs are given in
Figure 4.

The accuracy rates of scheme 1 are the performance indicators disregarding the force effect. The worst
case is the LDA with 49.22%, 39.94%, and 41.52% rates while the best CNN results are 79.89%, 79.34%, 78.83%
within low, moderate, and high, respectively. QDA (61.50%, , 52.85%, and 48.22%) outperforms LDA, but
CNN-LDA (71.63%, 73.17%, and 77.22%) is more successful than CNN-QDA (71.24%, 59.43%, and 66.14%).
On the other hand, LSTM (63.33%, 65.84%, and 62.90%) cannot reach CNN, CNN-LDA, and CNN-QDA-based
recognitions. The next experiments are conducted according to scheme 2 testing with unseen force levels. The
recognition results of scheme 2 are shown in Figure 5.

Unseen force classification in scheme 2 has lower rates than in scheme 1, as expected. The CNN
yields 74.39%, 70.07, and 44.68% while LDA are 36.74%, 41.12%, 31.74%, respectively. Generally, DL-based
approaches have higher accuracy levels than 50% for scheme 2. Scheme 3 can be considered as a real prosthetic
recognition. In this validation, the classifiers are trained using all force levels and then tested using a single

1https://www.rami-khushaba.com/electromyogram-emg-repository.html
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force to analyze the performance of the algorithm against varying contraction levels. The accuracy levels are
given in the graph in Figure 6

Figure 4. The accuracy rates of the LDA, QDA, CNN-LDA, CNN-QDA, LSTM, and CNN for scheme 1 (L: low. M:
moderate. H: high).

Figure 5. The performance results for scheme 2 (L: low. M: moderate. H: high).

Figure 6. The accuracy results of the LDA, QDA, CNN-LDA, CNN-QDA, LSTM, and CNN for scheme 3 (L: low M:
moderate H: high).

LDA (41.65%, 42.83%, and 40.58% ) and QDA (45.76%, 52.64%, and 43.43%) for scheme 3 has average
drop rate of 1.9%, and 6.92% compared to scheme 1. The CNN-LDA outperforms CNN-QDA and LSTM, but
the highest accuracy results up to 88.10% are yielded by the CNN. The rates of the CNN-LDA are 76.59%,
71.43%, and 68.92% while LSTM have 74.72%, 73.92%, and 62.55%, respectively. The CNN yields 88.10%,
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83.50%, and 77.00% for low, moderate, and high contraction level classifications, respectively. To make general
comments on the classifier performances, the average accuracy rates of scheme 1 are 43.56%, 54.19%, 74.00%,
69.32%, 64.02%, and 79.36% for the LDA, QDA, CNN-LDA, CNN-QDA, LSTM, and CNN, respectively. These
are changed to 36.53%, 39.82%, 53.66%, 52.47%, 49.89%, and 63.04% for scheme 2. Finally, the success rates
for scheme 3 yield as 41.68%, 47.27%, 72.31%, 65.46%, 70.39%, and 82.87% for six-class hand movements with
three force levels. All results are given in Table 3.

Table 3. The accuracy (%) and time (ms) of the proposed EMG recognition methods (Av: average accuracy).

Sch Method Low Mod. High Av. Time

1

LDA 49.22 39.95 41.53 43.67 1.0
QDA 51.50 52.85 48.22 54.19 2.0
CNN-LDA 71.63 73.17 77.22 74.01 6.2
CNN-QDA 71.24 70.60 66.14 69.33 4.6
LSTM 63.33 65.84 62.90 64.02 2.6
CNN 79.89 79.34 78.83 79.35 4.4

2

LDA 36.74 41.11 31.75 36.53 1.1
QDA 40.67 48.20 30.61 39.82 2.0
CNN-LDA 57.46 62.98 40.55 53.66 4.2
CNN-QDA 55.21 61.55 40.64 52.47 5.7
LSTM 55.71 55.75 38.22 49.89 4.3
CNN 74.38 70.08 44.67 63.04 2.6

3

LDA 41.65 42.83 40.58 41.68 1.0
QDA 45.75 52.64 43.43 47.27 1.8
CNN-LDA 76.58 71.42 68.92 72.31 4.0
CNN-QDA 66.68 66.79 62.92 65.46 5.5
LSTM 74.71 73.92 62.55 70.39 3.7
CNN 88.10 83.50 77.00 82.87 2.7

Referring to scheme 3 results in Table 3, LDA has the lowest performance of 42.83%, but it has the fastest
response of 1ms. Others ( QDA, LSTM, CNN, CNN-LDA, and CNN-QDA) have 1.8, 2.7, 3.7, 4.0, and 5.5 ms
delay for a single sample using a laptop computer with Intel core i5 9300H processor, 16 GB DDR4 RAM, and
NVDIA GeForce GTX 1660 Ti Max-Q with 6GB memory. Moreover, the execution environment is selected as
GPU for all simulations. The CNN with a 2.7 ms delay and an accuracy rate up to 88.10% has a promising
result considering EMG recognition and prosthetic control. The CNN-based features with QDA and LDA yield
up to 76.58%, but not practical solutions due to computational cost. Next, the effects of the window length
and overlapping on the recognition schemes are also investigated in this paper. 300 ms and 75 ms windowing
with 50 ms overlapping, and 150 ms windowing with 100 ms overlapping are applied to the mentioned WL
and RMS-based feature extraction. These features are given to the input of the machine learning algorithms
depending on the validation scheme 1-3 for comparison. Firstly, scheme 1 using 300 ms with 50 ms overlapping
is performed on the dataset, and the results are given in Figure 7.

In scheme 1 for 300 ms with 50 ms overlapping, again the CNN is the highest accuracy level of 79.00%,
80.54%, and 79.90% with -0.90%, +1.20%, and +1.07% changes. For scheme 2, the accuracy graph is shown in
Figure 8.
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Figure 7. The classification accuracy rates for scheme 1(300 ms windowing with 50 ms overlapping).

Figure 8. The accuracy rates for scheme 2 (300 ms windowing with 50 ms overlapping).

Changes of -3.36%, +2.72%, and +1.24% for CNN classification of the EMG signal depending on scheme
2 validation are yielded. Scheme 3 validation is also applied to 300 ms windowing with 50 ms overlapping, and
the results are given in Figure 9.

Figure 9. The accuracy rates for scheme 3 (300 ms windowing with 50 ms overlapping).

The performance increases of the CNN for scheme 3 with 300 ms with 50 ms overlapping are +1.32%,
+1.18%, and +1.89% for low, moderate, and high force levels, respectively. CNN has the highest accuracy level
of 89.04%, while LDA has 45.11% with an increase rate of 2.28%. In addition, increased windowing length has
an increasing effect on the classifiers, LDA, QDA, CNN-LDA, CNN-QDA, and CNN. These ratios are 0.1% for
CNN-QDA and 9.2% for LSTM. To be sure about the effect of windowing on the prosthetic recognition of the
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EMG signals, 75 ms windowing with 50 ms overlapping is also simulated, and negative accuracy changes are
obtained for all classifiers. Reduction rates of -1.78%, -2.21%, and -2.35% for scheme 1, -2.93%, -3.28%, and
-4.76% for scheme 3 have existed for 75 ms length signal. The performance of the machine learning algorithms
on 300 ms, and 75 ms windowing with 50ms overlapping are summarized in Table 4 and Table 5.

Table 4. The accuracy (%) of the proposed deep learning-based EMG recognition methods on 300 ms windowing.

Sch Method Low Mod. High Av.

1

LDA 51.96 43.97 43.97 46.63
QDA 65.78 59.51 56.46 60.58
CNN-LDA 75.90 75.49 80.34 77.24
CNN-QDA 72.68 71.90 71.31 71.96
LSTM 63.11 56.61 60.78 60.17
CNN 79.00 80.53 79.90 79.81

2

LDA 37.26 43.16 32.57 37.66
QDA 45.90 52.90 33.44 44.08
CNN-LDA 65.41 64.84 44.29 58.18
CNN-QDA 69.25 66.84 40.53 58.87
LSTM 47.81 52.40 38.70 46.30
CNN 71.03 72.80 45.92 63.25

3

LDA 43.72 45.11 43.19 44.01
QDA 51.34 58.39 50.14 53.29
CNN-LDA 79.22 77.65 70.71 75.86
CNN-QDA 77.28 68.73 68.63 71.55
LSTM 75.73 72.58 60.47 69.60
CNN 89.04 84.85 78.83 84.24

Table 5. The accuracy (%) of the proposed deep learning-based EMG recognition methods on 75 ms windowing.

Sch Method Low Mod. High Av.

1

LDA 45.95 36.22 38.55 40.24
QDA 56.29 46.23 41.62 48.05
CNN-LDA 70.32 69.62 71.33 70.42
CNN-QDA 66.30 63.59 62.23 64.04
LSTM 62.31 63.54 61.19 62.35
CNN 78.11 77.13 76.48 77.24

2

LDA 36.07 39.15 30.80 35.34
QDA 35.91 42.90 27.87 35.56
CNN-LDA 53.83 57.63 38.31 49.93
CNN-QDA 53.57 52.40 34.04 46.67
LSTM 57.89 55.70 37.29 50.29
CNN 73.48 66.93 43.59 61.33

3

LDA 39.70 40.05 38.24 39.33
QDA 40.29 45.89 37.43 41.20
CNN-LDA 68.18 65.95 59.98 64.70
CNN-QDA 53.40 57.00 50.50 53.63
LSTM 72.85 71.50 60.52 68.29
CNN 84.79 80.39 72.18 79.12
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The last analysis is based on investigating the overlapping length. The levels are increased by +0.08%,
+0.93%, and +0.02% for the CNN, +4.91%, +4.03%, and +4.46% for the LSTM, but negative changes are
yielded by -1.48%, -9.45% for CNN-LDA and CNN-QDA. The detailed accuracy graphs of the classifiers for
scheme 3 with 100 ms overlapping are given in Figure 10 (similar results are valid for scheme 1 & 2 with 100
ms overlapping based feature extraction given in Table 6.

Figure 10. The accuracy rates of the LDA, QDA, CNN-LDA, CNN-QDA, LSTM, and CNN for scheme 3 (150 ms
windowing with 100 ms overlapping).

Table 6. The accuracy (%) of the proposed deep learning-based EMG recognition methods on 100 ms overlapping.

Sch Method Low Mod. High Av.

1

LDA 49.25 40.07 41.45 43.59
QDA 61.55 52.86 48.40 54.27
CNN-LDA 72.91 74.23 74.47 73.87
CNN-QDA 71.94 72.34 67.77 70.68
LSTM 66.13 70.71 66.90 67.91
CNN 81.07 79.91 78.70 79.89

2

LDA 36.90 41.36 31.99 36.75
QDA 40.69 48.22 30.70 39.87
CNN-LDA 56.68 60.14 43.59 53.47
CNN-QDA 58.78 46.01 40.13 48.31
LSTM 63.23 58.05 39.37 53.55
CNN 76.14 69.76 46.39 64.10

3

LDA 41.78 42.89 40.73 41.80
QDA 45.60 52.75 43.59 47.31
CNN-LDA 69.74 69.94 64.55 68.08
CNN-QDA 59.69 57.34 58.12 58.38
LSTM 79.62 77.95 67.00 74.86
CNN 87.79 84.60 76.96 83.12

Referring to Table 6, overlapping is not a serious effect on the CNN classification. As a result, the given
figures and tables indicate that WL and RMS features of 8- channel EMG signals can be successfully combined
with the CNN to categorize into 6-class hand movements with three force levels. The learnable filters in the
convolutional layer are capable of increasing the class separability against contraction levels. Signal windowing
also affects the accuracy of the classifiers. The wider signal length (300 ms) yields a higher rate of nearly 1.5%,
and the shorter (75 ms) causes a nearly drop rate of 4%. In addition to these experiments, a similar CNN
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topology with 1 × 32 -dimensional input feature is adopted for EMG classification. Instead of 64@2 × 3 filter
blocks, 64@1 × 3 filters is used with a 1-dimensional vector. This 1D-CNN yields accuracy rates of 86.60%,
82.70%, and 75.61% for low, moderate, and high contraction levels under scheme 3 validation. It has an average
accuracy rate of 81.64% with a drop rate of 1.15% compared to the aforementioned 2D-CNN. For detailed
recognition analysis class by class, the confusion matrices of low, moderate, and high using the CNN are shown
in Figure 11

Figure 11. The confusion matrices of the CNN (Scheme 3: (a) low, (b) moderate, and (c) high).

The CNN has great performance in the classes Th, and Ind, yielding up to 94.80%. However, the worst
case has occurred at Thindmid with a rate of 73.30%. Instead of using feature extraction, 8-channel sEMG time
series have been directly applied to the LSTM. It yields a correct rate of 36.76% for six class movements with
three contraction levels. Finally, the results of the proposed CNN-based EMG recognition for prosthetic control
are compared to previous studies performed on the same amputee database validated depending on scheme 3
in Table 7.

Table 7. The accuracy (%) comparison with the previous studies.

Study Accuracy Methods
He et al. [34] 74.14 DFT-Norm-2
Al-Timemy et al. [17] 82.58 TD-PSD, SR, LDA
Onay and Mert [28] 78.34 PRE, k-NN
This study 82.87 RMS, WL, CNN

In the original study of the database [17], SR was applied to extracted TD-PSD features. The SR was
a time-consuming semisupervised subspace learner to reduce dimensionality to 5. It was reported that it has a
biasing effect on accuracy rate [28], and the TD-PSD & LDA, and TD-PSD & k-NN have 51.27% and 79.85%
[28]. In PRE method [28], 78.34% was obtained with lower processing time. As a result, the proposed DL-
based EMG recognition method is capable of achieving high accuracy rates (up to 88.10%, an average of 82.87%)
consisting of only two signal processing techniques, and the lightweight CNN. Considering the prosthetic control
for amputees, six hand movements with three force levels can be distinguished using the 2D-CNN. After offline
training of the proposed model, it can be also deployed to GPU or microcontroller with CNN accelerator
module-based embedded systems for real-time prosthetic control due to having lightweight architecture.
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5. Conclusion
Deep learning (DL) based electromyography (EMG) recognition using root mean square (RMS) and waveform
length (WL) features is performed on 8-channel amputee recordings. 6 Hand movements with 3 contraction
levels (low, moderate, and high) are classified using a linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), lightweight convolutional neural network (CNN), long short-term memory neural network
(LSTM), LDA-CNN, QDA-CNN, and 1-D version of the CNN (1D-CNN) considering the prosthetic control
requirements. 1× 32 (LDA, QDA, and 1D-CNN), 2× 16 (CNN), or 4× 8 (LSTM)-dimensional RMS and WL
features are evaluated according to the validation schemes. The classical and the most preferred LDA and QDA
classifiers are compared to DL methods against varying contraction levels. Depending on scheme 3 validation
(training using all forces, and testing with a single force level at a time), LDA and QDA yield 41.68%, and
47.27% while DL-based results are 72.32%, 65.46% 70.39%, and 82.87% (up to 88.10%) for LDA-CNN, QDA-
CNN, LSTM, and CNN, respectively. Learnable filters in CNN classifiers and CNN-based features in LDA-CNN
and QDA-CNN have a high impact on amputee EMG recognition against force levels. The lightweight structure
consists of a single convolutional block, ReLU, max pooling, drop-out, and fully connected layer for a low delay
of 2.7 ms while LDA and QDA have 1.0, and 1.84 ms delays for a single sample with 8-channel EMG signals.
The lightweight architecture of the proposed 2D-CNN can also be deployed to embedded hardware for real-time
applications.
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