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Abstract: Although the standard k-nearest neighbor (KNN) algorithm has been used widely for classification in
many different fields, it suffers from various limitations that abate its classification ability, such as being influenced
by the distribution of instances, ignoring distances between the test instance and its neighbors during classification,
and building a single/weak learner. This paper proposes a novel algorithm, called stepwise dynamic nearest neighbor
(SDNN), which can effectively handle these problems. Instead of using a fixed parameter k like KNN, it uses a dynamic
neighborhood strategy according to the data distribution and implements a new voting mechanism, called stepwise
voting. Experimental results were conducted on 50 benchmark datasets. The results showed that the proposed SDNN
method outperformed the KNN method, KNN variants, and the state-of-the-art methods in terms of accuracy.

Key words: Machine learning, classification, k-nearest neighbor, majority voting, ensemble learning

1. Introduction

The k-nearest neighbor (KNN) method is one of the popular machine learning techniques due to its intriguing
characteristics, including easy implementation and high generalization ability [1]. It is a nonparametric lazy
learner who predicts a sample’s class label based on the majority vote of its k nearest neighbors who also
have that class label. The KNN algorithm uses particular distance metrics, such as Euclidean, Manhattan,
and Minkowski measures, to identify the k closest neighbors of a sample data point. Even though it is
simple, the KNN approach typically matches or surpasses more complex and sophisticated methods in terms of
generalization ability. It was generally utilized for classification [2–4], regression [5], and clustering [6] tasks in
a variety of research areas.

Although KNN is effective in many situations, it has some shortcomings that abate its classification
ability. Using a fixed k parameter is a considerable limitation since it ignores the distribution of nearest
neighbors of a query instance, and the data distribution affects the neighborhood concept, so all of these affect
the accuracy. Another shortcoming of the classical KNN algorithm is that it builds a single/weak learner,
and it does not take advantage of the strengths of ensemble learning (EL) in classifying data instances. Even
though EL is performed, a problem related to majority voting is that it ignores the fact that some learners that
lie in the minority sometimes produce more accurate results since it does not explicitly address diversity [7].
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The proposed method in this paper decreases these limitations by taking into account dynamic parameter k

according to the data distribution and implementing a novel voting mechanism.
The novelty and main contributions of this study are highlighted as follows. (i) It proposes a novel

algorithm, called stepwise dynamic nearest neighbor (SDNN), that applies a dynamic adjustment for the
neighborhood number k for each instance in each iteration by considering the distribution. (ii) It proposes
a novel voting mechanism, called stepwise voting, that divides the classifiers’ outputs into some sequential
groups and aggregates the votes in a step-by-step process to obtain the final output. (iii) It improves the KNN
method and its variants in terms of recall, precision, F-measure, and accuracy measures. (iv) The proposed
method outperformed the state-of-the-art methods with 5.4% improvement on average.

The remainder of the paper is organized as follows. Section 2 briefly explains the related literature. After
that, Section 3 introduces the proposed SDNN method and the stepwise voting approach. Section 4 presents
the experimental studies and the results obtained by the proposed method. The paper is concluded by Section
5. The last section also gives possible future plans.

2. Related work

Since the KNN method is straightforward, efficient, and easy to use, it has been widely studied by many
researchers in health [8–10], education [11], finance [12], biomedicine [13], and text mining [14]. For example,
Okediran et al. [8] applied the KNN algorithm for detecting and reporting COVID-19 symptoms in patients.
The researchers tested this approach, and experimental results showed that the KNN algorithm provided good
accuracy rate results on training and test data, respectively. In another study [9], KNN was used to build a
machine learning model for classifying the sleep apnea types. Here, it is reported that KNN achieved higher
classification accuracy, specificity, and sensitivity than its counterparts, including support vector machines,
multilayer perceptron, and C4.5 decision tree. While Dilmaç et al. [10] applied KNN for electrocardiogram
(ECG) heartbeat classification, Tang et al. [11] used it to predict the green consumption behaviors of college
students. In another study [12], the authors implemented the KNN algorithm to predict a customer’s loan
repayment capability behavior.

The KNN algorithm has been adapted to numerous modifications to decrease its limitations/challenges
and increase its accuracy/applicability, so there are different KNN variants or forms. For example, several
different approaches have been proposed in the literature for adding weight to instances, such as uniform
KNN [15], weighted KNN [16], and KNN learning with graph neural networks (KNNGNN) [17]. Wolff et
al. [15] implemented uniform KNN regression for photovoltaic power predictions based on numerical weather
measurements. Researchers in [16] focused on improving the classification accuracy of 1-nearest neighbor (1NN),
relying on the majority-voting KNN and distance-weighted KNN with four common elastic distance measures.
In a study [17], the KNNGNN approach, which generates the k-nearest neighbor rules in the architecture of
a graph neural network including the weighting and distance functions embedded, was proposed for allowing
more robust KNN learning.
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In the literature, the dynamic determination of k has been adopted to the classical KNN algorithm in
different ways. Wu et al. [18] proposed the dynamic k-nearest-neighbor with distance and attribute weighted
(DKNDAW) method that contains two main parts. In the first part, the best k value was learned. After that,
the target class label was calculated using the k nearest neighbors for each given test instance. Zhong et al.
[19] proposed an improved KNN algorithm, called dynamic k-nearest neighbor (Dk-NN). In replace of fixed k

value, they designed k as dynamic value as follows. First, a preprocessing step was designed and added to the
classical KNN algorithm for determining a dynamic k interval. Afterward, each class’s percentage of a given
test instance was calculated within the dynamic k interval. Finally, three criteria were analyzed to predict the
class label according to the variation tendency of the percentage curves.

Our method differs from the previous work in several points. First, it proposes a novel approach, SDNN,
that considers the distribution of neighbors for each instance using a distance function. Second, it applies
a dynamic adjustment for the neighborhood number k for each instance. Third, this study proposes a novel
voting mechanism, called stepwise voting, that divides the outputs of the classifiers into a number of consecutive
groups and combines the votes in a step-by-step process to produce the final output.

3. Proposed method

This paper proposes a novel algorithm, stepwise dynamic nearest neighbor (SDNN), that dynamically adjusts
the neighborhood number k for each instance in each iteration by taking into account the distribution. In
this method, multiple dynamic nearest neighbor (DNN) models that are trained with multiple training datasets
created with the bootstrapping method are constructed. Considering accuracy, stability, and robustness, this
approach outperforms traditional individual algorithms because they fully utilize the information provided by
the learning members. The predictions by each DNN model are aggregated using a novel voting mechanism,
stepwise voting, that divides each prediction into some sequential groups and combines them in a step-by-step
process to obtain the final prediction.

Figure 1 shows the general overview of the proposed SDNN method. First, the original dataset is sampled
using the bootstrap procedure, and multiple training sets are constructed. While the number of instances of
the multiple training sets was kept equal to the number of instances of the original dataset through resampling
with replacement, the number of attributes was reduced by randomly choosing some of them. For example,
selecting 3/4 of the attributes can be large enough to consider different features and reasonably small to provide
diversity. After that, the algorithm finds the nearest neighbors of a given query data on these multiple training
sets, determines an appropriate k value for each one according to the data distribution, and so, multiple DNN
models were generated. Finally, each model votes for a certain class label, the obtained outputs from each
individual DNN model are aggregated, and the stepwise vote of these outputs is chosen as the final output
value.

The traditional KNN algorithm simply performs a neighborhood search according to a fixed parameter k

and ignores the distribution of data points. The k nearest data objects to the query instance are simply selected
based on the Euclidean distance. These data objects are selected as neighbors without considering the data
distribution and their distances from the query instance. However, the k-neighborhood of each data instance is
generally related to the data distribution. Thus, the density of regions should have a straightforward meaning.
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Figure 1. An overview of the proposed SDNN method.

Under nonuniform data distribution, its effect is often poor. The proposed SDNN overcomes this limitation by
distinguishing the nearest and farthest neighbors using a dynamic parameter for each instance individually.

Figure 2 illustrates an example. When k is set to 5 for Query B , it searches for the five nearest neighbors
and finds that two are of class 0, and three are of class 1. Then it uses the majority voting strategy to classify
its class as 1. Here, three objects are selected as neighbors while their distances are very further than the
other neighbors. It is because of the fixed parameter k and nonuniform data distribution. The outputs of
2-neighborhood and 5-neighborhood of Query B are different from each other. This difference is due to the
effect of irregular data distribution. Thus, taking into consideration the variable number of neighbors and a
neighborhood concept based on the data distribution can be useful to improve classification accuracy.

Query A
Query B

Class 1
Class 0

Figure 2. An example illustrating the SDNN algorithm.

The proposed SDNN method adopts a dynamic adjustment for the neighborhood number k in each
iteration. It takes into consideration the distribution of neighbors for each instance using a distance function.
It analyzes the distribution of local data points, tends to eliminate relatively far neighbors under a probability
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constraint, and thereby improves the model’s accuracy. While a larger k value will have a higher potential
value for the data-intensive areas, a smaller k value will probably be selected for the data-sparse areas.

In the proposed SDNN method, the number of neighbors is not constant, and the selection of the actual
neighbors depends on the data distribution. Here, a neighbor with a very further distance than the other
neighbors may not be selected as a neighbor. Since the rejected neighbor is probably from a different category
from the query instance, the classifier’s performance is improved.

Majority voting (MV) is a simple and straightforward method for classification problems as it selects the
class with the most votes. However, it has some drawbacks. A class label supported by many learners does not
necessarily mean that it should be the true answer because learners’ ability highly determines the quality of
final output. This paper proposes a novel voting mechanism called stepwise voting.

In the proposed stepwise voting method, the truth discovery problem is formulated as an iterative
procedure, which starts by grouping the answers, then combines the outputs of each group individually, and
iterates by repeating the same process until a single output is reached. Therefore, an iterative procedure is
performed by combining sequential group-based votes, which can result in assigning the correct answers and
getting more correct over iterations. In other words, it can eliminate wrong answers in local decisions.

An example of stepwise voting is illustrated in Figure 3. In this example, the group size was set to 3,
meaning that each DNN model’s outputs will be grouped into three iteratively. For example, while the first
group contains the outputs of the first three models, the second group includes the outputs of the second, third,
and fourth models. The common answer in each group is selected as the winner. In other words, the winner of
the group is the label that achieves the highest number of votes. The winner of each group gradually goes up to
the next step. This local group-based voting process continues until one final output is reached. According to
this example, the groups (illustrated with blue, orange, and green colors) are sequentially generated in the first
iteration. After that, the outputs of classifiers compete in each group and the common answer is determined
and lined up step by step. In the next step, the same grouping process is applied to these new outputs and
then the new winner in each group is determined again. For example, the winner of the first group [A B A ] in
the first step is selected as class label A and passed to the next step to be competed again with the outputs of
other groups. Similarly, the second group [B A B ] in the first step produces the output B since the dominant
class in this group is B . These procedures continue until only one output value remains. In this example, the
class label B remains as the last value, so the final output of the ensembles of the DNNs is obtained as B. On
the other hand, when we perform majority voting for the same example, the output is uncertain. Because the
class label “A” has 5 votes and the class label “B” has 5 votes. The algorithm cannot decide in such a tie case.

3.1. Formal definition

Suppose a dataset D with n instances such that D = {(xi, yi)}ni=1 where xi ∈ X denotes input vector and
yi ∈ Y = {c1, c2, ..cr} is the class label associated with instance xi and r is the number of class labels. Let
F = {f1, f2, ..., fm} be the set of features, each instance is a point in the m-dimensional feature space. The
term Xj ∈ Rd×nj expresses the training instances from the j -th class, where nj is the number of instances
in the j -th category, and

∑r
j=1 nj = n The aim of SDNN is to learn a mapping function f : Rm → Rr such

that distances between instance pairs belonging to the same class in the neighborhood are smaller than those
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Figure 3. An example illustrating the difference between stepwise voting and majority voting.

between instance pairs belonging to the different classes. The function d (xi, xj) is defined as the distance
between points on training instance xi and testing instance xj . Euclidean distance is typically used for d . The
algorithm finds a mapping that satisfies the following relation:

d (xi, xj) ≪ d (xi, xl) (1)

for all 1 ≤ i, j, l ≤ k such that yi = yj and yi ̸= yl .

Definition 1 (Local-distance) For a given positive number k, the local-distance of instance x, which is

denoted as Lk (x) , is described as the distance d
(
x, o

′
)

between an object o
′ ∈ D and x such that:

Lk (x) = d
(
x, o

′
)

(2)

where o′ ∈ D and it holds d (x, o) ⩽ d
(
x, o

′
)

for at least k objects o ∈ D

Definition 2 (Local-neighborhood) For a given instance x of dataset D and a positive number k , the
local-neighborhood of x , which is denoted as Nk (x) , contains every object o whose distance from x is not
greater than the Lk (x) .

Nk (x) = {o|o ∈ D and d (x, o) ≤ Lk (x)} (3)

These objects o are called the k-nearest neighbors of instance x . It should be noted here that the Lk (x)

is well defined for any positive number k ; however, the object o may not be unique. In this case, the size of
Nk (x) is greater than k . For example, assume that the distance of 1 object is 1 unit from x ; the distances
of 2 objects are 2 units from x ; and the distances of 3 objects are 3 units from x . Even though the value of
k is given like k=4, the size of N4 (x) is greater than 4, in this case size of the N4 (x) will be 6. The main
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aim of the SDNN method is to optimize two criteria: (i) maximize the classification accuracy of the model, and
(ii) minimize the number of neighbors involved in voting. The objective is to maximize the function ϕ given in
Equation (4).

ϕ = B ∗A (k) + (1−B) ∗
∑

o∈Nk(x)

1

d (x, o)
, (4)

where k is the candidate number of neighbors, A (k) is an accuracy obtained by the model with the parameter
k , and B is a user-specified parameter between 0 and 1. The output of the function increases as the model
performance increases, and decreases as the sum of the distances between instance x and its neighbors increases.
Increasing in the value of B means that the model performance is more important than the total distance. It
is possible to establish a trade-off between the distance and accuracy by adjusting B .

In the proposed SDNN approach, the number of neighbors (k) can be variable (1 ≤ k ≤ Kmax ), which
may help in the better interpretation of the neighborhood in the nonuniform data distribution. Searching k

nearest objects to the given query instance provides an estimation about the data distribution. The probability
of each object being selected as the nearest neighbor for a given query instance x is calculated by the algorithm.
In other words, SDNN calculates the probabilistic chances of neighbors involved in the final classification deci-
sion process. It works by using a Kmax value to find the k-nearest neighbors of a query instance. It sorts a list
of nearest neighbors according to their distances and calculates the cumulative sum of inverse distances.

Definition 3 (Local-probability) For a given query instance x , the local-probability of determining k as
the number of neighborhood parameter is defined as the ratio of the sum of the distances in Nk (x) to the
cumulative sum of distances in NKmax (x) .

p (k) =

∑
o∈Nk(x)

1
d(x,o)∑

o∈NKmax(x)
1

d(x,o)

. (5)

This probability assignment aims to give more chance to nearer objects while giving less chance to
faraway objects. As the distance between the object o and query instance x increases, the function decreases
the probability of being selected as the nearest neighbor. The frequency of selected nearest neighbors is then
used to estimate the class label for a given query sample. The class with the most votes is then deemed the
predicted class label for the testing data instance.

Every classifier in the ensemble makes a prediction for each query instance, and the final output prediction
is the class label that receives more votes. This paper proposes a novel voting mechanism called stepwise voting.
Stepwise voting is based on consensus decision-making among a group of learners iteratively.

Definition 4 (Stepwise voting) Stepwise voting is a metaalgorithm that performs the decision process by
dividing the classifiers’ outputs into sequential groups and combining the votes in a step-by-step process.
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Formally, the stepwise voting result is calculated as follows:

argmaxy∈Y

e−v−1∑
a=1

e−v−a∑
b=1

argmaxy∈Y

j+v−1∑
j=b

w (j, y)

 , (6)

where y is a class of Y label set, e is the ensemble size (number of models), v is the size of each group, and
w (j, c) is defined as in the following:

w (j, y) =

{
1, if c = argmaxy∈Y Pju
0, otherwise

, (7)

where Pju is the output value of the j -th model to the u -th label in Y .

Algorithm 1 presents the pseudocode of the SDNN approach. In the first step, multiple training sets
are created by resampling the original dataset D = {(xi, yi)}ni=1 using the bootstrap method. After that, the
user-defined Kmax value is used for finding the k-nearest neighbors of a query instance of the Di dataset. The
nearest neighbors are found according to their distances, and the cumulative sum of inverse distances of them
are calculated. In the following step, the k value is randomly determined based on the probability according
to the ratio of the sum of the distances to the cumulative sum of distances. Finally, each DNN model in the
ensemble classifies a sample instance considering the dynamic k value, and the outputs from each model are
aggregated using the stepwise voting method to get the final output value.
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Algorithm 1: Stepwise dynamic nearest neighbor (SDNN)
Inputs :

D : training set D = {(xi, yi)}ni=1

X : input feature space, an input vector xi ∈ X
Y : class attribute, a class label yi ∈ Y = {c1, c2, ..., cr}
m : the number of features
s : ratio of features that will be selected
Kmax : the maximum number of nearest neighbors
e : ensemble size
v : size value of stepwise voting procedure
T : test set that will be predicted

Output:
C : the estimated class labels

for i = 1 to e do
Di = bootstrap samples from D with s of m

end
foreach x in T do

for i = 1 to e do
NKmax (x) = NearestNeighbors(Di, x,Kmax)
foreach object in NKmax(x) do

distances .Add(EuclidianDistance(object, x))
end
distanceSum = 0.0
for j = 1 to distances.Length do

distanceSum += distances[j]
end
cumulativeProbability = 0.0
probability = random [0, distanceSum ]
for k = 1 to distances .Length do

cumulativeProbability += (distances[k] / distanceSum)
if cumulativeProbability > probability then

break
end

end
Nk (x) = NearestNeighbors(Di, x, k)
y = Prediction(Nk(x), x)

end
//Stepwise Voting
c = argmaxy∈Y

(∑e−v−1
a=1

∑e−v−a
b=1 argmaxy∈Y

(∑j+v−1
j=b w (j, y)

))
w (j, y) =

{
1, if c = argmaxy∈Y Pju

0, otherwise

C = C ∪ c
end

The time complexity of the SDNN method is O(T +L(n) ∗ e) , where e is the number of classifiers in the
ensemble, T refers to the time needed for bootstapping, and L(n) is the time required for running the nearest
neighbor algorithm on n instances. Thanks to the recent developments in high-performance computing, it is
possible to reduce the computational cost by the parallel execution of the method.
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4. Experimental studies

In the experiments of this research, the proposed SDNN approach was applied to 50 different benchmark and
commonly preferred datasets to demonstrate its classification ability. The application was implemented in C#
language using the Weka open source data mining library [20]. Our method was compared with the traditional
KNN algorithm, its variants, and the state-of-the-art methods in terms of recall, precision, F-measure, and
accuracy rate metrics.

4.1. Dataset description

This study uses 50 different real-world datasets, which are available in the UCI Machine Learning Repository
for public use to present the capabilities of the proposed SDNN method. These datasets include a number of
instances ranging from 36 to 13611, classes ranging from 2 to 10, and attributes ranging from 4 to 61. The
datasets come from different domains, including health, banking, marketing, environment, animal science, and
automobile. They have different types of values, including numerical, categorical, or mix-type. It is obvious
that many studies [21–23] in the literature use these datasets extensively.

4.2. Experimental results

In each experiment, the proposed SDNN approach was compared with the (i) traditional KNN algorithm, (ii)
its variants, and the (iii) state-of-the-art methods by using the n -fold cross-validation technique selecting n

as 10. The maximum number of nearest neighbors (Kmax ) was set to 5 in these experiments. The majority
dynamic nearest neighbor (MDNN) method, which aggregates the obtained outputs from each individual DNN
model using the classical majority voting mechanism, was also compared with the SDNN method. When testing
the performances of the methods on the 50 different real-world datasets; the precision, recall, F-measure, and
accuracy rate values were evaluated.

Table 1 presents the accuracy rate results obtained by the KNN and SDNN algorithms on the experimental
datasets. As can be seen from this table, SDNN demonstrated higher classification ability over KNN, which are
marked by bullets. For example, SDNN achieved significantly better classification performance (94.58%) than
KNN (84.84%) on the monks dataset. According to the results given in Table 1, it is obviously seen that the
proposed SDNN approach surpassed the traditional KNN algorithm in 43 of 50 datasets. Also, when the average
accuracy rates obtained from the application of the KNN and SDNN approaches are considered in general, it is
observed that SDNN (83.17%) provided better classification performance than KNN (79.39%) on average. This
is because, thanks to the dynamic adjustment of the neighborhood number and stepwise voting mechanism,
classification accuracy greatly improved compared to the classical KNN method.

Precision, recall, and F-measure values of the KNN and SDNN approaches were also calculated in addition
to accuracy rate findings to provide additional insight into the classification performances by assessing all facets
of the classifiers. Figure 4 plots these methods’ average recall, precision, and F-measure scores on the 50 different
real-world datasets. These metrics use a scale of 0 to 1 to indicate the success of the proposed method. The
model with a higher rate is one that it has better classification ability than the rest. In this graph, it is clearly
seen that the SDNN produces robust classification results with greater precision (0.834), recall (0.832), and
F-measure (0.833) values.
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Table 1. The accuracy rate (%) results of the traditional KNN and SDNN algorithms.

Datasets KNN SDNN Datasets KNN SDNN
appendicitis 82.08 86.55 • parkinsons 96.41 • 94.34
bank-marketing 86.51 88.92 • pasture 69.44 78.33 •
blood-transfusion-service 70.45 75.93 • pendigits 99.36 99.46 •
climate-simulation-craches 86.11 91.29 • planning-relax 65.93 68.54 •
colon 82.26 86.90 • postoperative-patient 66.67 71.11 •
credit-approval 81.16 85.51 • saheart 63.20 67.97 •
dermatology 94.54 98.09 • seeds 94.29 • 93.81
dresses-sales 54.00 60.20 • sonar 86.54 • 84.55
dry-bean 90.30 92.41 • spect-heart 68.91 • 67.37
ecoli 80.36 85.45 • statlog-australian-credit 80.14 86.09 •
fertility-diagnosis 83.00 88.00 • statlog-german-credit 72.00 75.20 •
habermans-survival 67.65 74.85 • thoracic-surgery 77.23 83.40 •
heart-disease-cleveland 57.10 59.03 • vehicle 69.86 72.93 •
heart-disease-hungarian 56.12 65.71 • volcanoes-e1 87.74 91.55 •
heart-statlog 75.19 82.96 • volcanoes-e2 86.76 91.11 •
hepatitis 80.65 83.83 • volcanoes-e3 87.47 91.86 •
horse-colic-surgical 77.33 84.00 • volcanoes-e4 86.10 91.37 •
indian-liver-patient 64.49 70.64 • volcanoes-e5 86.69 90.83 •
ionosphere 86.32 88.32 • wdbc 95.96 96.84 •
iris 95.33 • 94.67 white-clover 63.49 66.91 •
led7digit 70.80 72.40 • wholesale-channel 87.95 90.45 •
liver-disorders 62.90 69.87 • wholesale-region 53.41 68.18 •
lymph 82.43 82.48 • wilt 95.10 • 94.94
molecular-promotor-gene 85.85 86.82 • wine 94.94 96.63 •
monks 84.84 94.58 • zoo 96.04 • 95.09

0.790

0.794

0.792

0.834

0.832

0.833

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

Precision

Recall

F-measure

SDNN KNN

Figure 4. The average precision, recall, and F-measure results of the KNN and SDNN algorithms.

Furthermore, the DNN models proposed in this research were also compared with each other according to
the majority voting (MDNN) and stepwise voting (SDNN) mechanisms they used. Table 2 shows the comparison
of the accuracy rates obtained from the application of MDNN and SDNN algorithms on the experimental
datasets. The results from Table 2 reveal that the SDNN approach achieved equal or higher accuracy rates than
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MDNN in 43 of 50 datasets, which are marked by bullets. This result proved that stepwise voting provided
more accurate results by eliminating the wrong outputs in local decisions.

Table 2. The accuracy rate (%) results of the traditional MDNN and SDNN algorithms.

Datasets MDNN SDNN Datasets MDNN SDNN
appendicitis 87.55 • 86.55 parkinsons 93.82 94.34 •
bank-marketing 88.87 88.92 • pasture 75.00 78.33 •
blood-transfusion-service 76.46 • 75.93 pendigits 99.42 99.46 •
climate-simulation-craches 91.29 91.29 • planning-relax 67.43 68.54 •
colon 86.90 86.90 • postoperative-patient 71.11 71.11 •
credit-approval 86.38 • 85.51 saheart 67.09 67.97 •
dermatology 97.82 98.09 • seeds 92.86 93.81 •
dresses-sales 59.60 60.20 • sonar 84.10 84.55 •
dry-bean 92.40 92.41 • spect-heart 66.62 67.37 •
ecoli 85.44 85.45 • statlog-australian-credit 85.65 86.09 •
fertility-diagnosis 88.00 88.00 • statlog-german-credit 75.20 75.20 •
habermans-survival 74.53 74.85 • thoracic-surgery 83.83 • 83.40
heart-disease-cleveland 58.38 59.03 • vehicle 71.99 72.93 •
heart-disease-hungarian 65.71 65.71 • volcanoes-e1 91.55 91.55 •
heart-statlog 82.60 82.96 • volcanoes-e2 90.92 91.11 •
hepatitis 84.46 • 83.83 volcanoes-e3 91.86 91.86 •
horse-colic-surgical 83.67 84.00 • volcanoes-e4 91.29 91.37 •
indian-liver-patient 70.13 70.64 • volcanoes-e5 90.83 90.83 •
ionosphere 88.03 88.32 • wdbc 96.84 96.84 •
iris 95.33 • 94.67 white-clover 66.91 66.91 •
led7digit 72.40 72.40 • wholesale-channel 90.23 90.45 •
liver-disorders 69.03 69.87 • wholesale-region 67.96 68.18 •
lymph 82.43 82.48 • wilt 94.92 94.94 •
molecular-promotor-gene 86.82 86.82 • wine 96.67 • 96.63
monks 93.86 94.58 • zoo 94.09 95.09 •

4.3. Parameter analysis

The performances of the algorithms change under different parameter configurations. The accuracy rates
obtained with the different distance metrics, several k parameter settings, a number of group sizes for stepwise
voting, and various ensemble sizes are given in Tables 3–6, respectively.

The aim of the first parameter analysis is to compare the effect of different distance metrics (Euclidean,
Manhattan, and Minkowski distance) on the classification performance of the SDNN method. As can be seen
in Table 3, SDNN with Euclidean distance outperformed or at least performed as well as other SDNNs with the
Manhattan and Minkowski distance measures. For example, the SDNN using Euclidean distance (84.55%) has
better classification performance than the SDNNs using Manhattan (83.64%) and Minkowski distances (83.60%)
on the sonar dataset. Similarly, Euclidean distance is a more suitable distance metric for the SDNN approach
than others for the horse-colic-surgical dataset. When the results are considered in general, it is possible to say
that the accuracy values are close to each other in all distance methods except for a few datasets such as the
ionosphere and saheart datasets.

762



KARABAŞ et al./Turk J Elec Eng & Comp Sci

Table 3. The accuracy of SDNN measured according to different distance metrics.

Datasets Euclid. Manh. Minkow. Datasets Euclid. Manh. Minkow.
appendicitis 86.55 87.55 86.55 parkinsons 94.34 94.32 94.34
bank-marketing 88.92 88.92 88.90 pasture 78.33 78.33 78.33
blood-transfusion-
service 75.93 76.46 75.93 pendigits 99.46 99.47 99.44

climate-
simulation-craches 91.29 91.29 91.30 planning-relax 68.54 67.98 68.51

colon32 86.90 86.90 85.24 postopera-
tive.patient.data 71.11 71.11 71.11

credit-approval 85.51 86.09 85.80 saheart 67.97 69.47 67.96
dermatology 98.09 97.54 98.09 seeds 93.81 93.81 94.29
dresses-sales 60.20 60.40 60.60 sonar 84.55 83.64 83.60
dry-bean 92.41 91.92 92.34 spect-heart 67.37 68.10 67.37

ecoli 85.45 85.74 86.63 statlog-australian-
credit 86.09 86.23 85.65

fertility-diagnosis 88.00 88.00 88.00 statlog-german-
credit 75.20 75.30 74.80

habermans-
survival 74.85 74.86 75.17 thoracic-surgery 83.40 83.62 83.62

heart-disease-
processed-
cleveland

59.03 59.71 58.38 vehicle 72.93 72.83 72.10

heart-disease-
reprocessed-
hungarian

65.71 67.07 66.39 volcanoes-e1 91.55 91.55 91.55

heart-statlog 82.96 82.97 82.59 volcanoes-e2 91.11 91.02 91.11
hepatitis 83.83 84.42 83.83 volcanoes-e3 91.86 91.86 91.94
horse-colic-
surgical 84.00 82.33 83.00 volcanoes-e4 91.37 91.45 91.45

indian-liver-
patient 70.64 70.47 71.32 volcanoes-e5 90.83 90.74 90.83

ionosphere 88.32 90.88 86.05 wdbc 96.84 96.84 96.49
iris 94.67 94.67 94.67 white-clover 66.91 65.24 66.91
led7digit 72.40 72.40 72.40 wholesale-channel 90.45 91.36 90.23
liver-disorders 69.87 68.42 68.71 wholesale-region 68.18 67.27 69.09
lymph 82.48 82.48 83.14 wilt 94.94 94.87 94.96
molecular-
promotor-gene 86.82 86.82 86.82 wine 96.63 96.63 96.63

monks 94.58 94.58 94.58 zoo 95.09 95.09 95.09

In the second parameter analysis, we aimed to analyze the results of different Kmax values to finally
choose a proper value that gives a good classification performance. Table 4 presents the accuracy rates of the
SDNN approaches selecting k values as 5, 10, and 15, respectively. According to the average accuracy results, it
can be concluded that the best classification performance was achieved by selecting the parameter k as 5. The
higher number of k values usually produced a lower classification performance since the dataset sizes are a little
bit small. The maximum k = 5 is a reasonable choice since if k is set to larger than this, the neighborhood
may cover many instances from other classes. There are significant accuracy differences between the parameter
settings in a few datasets, including monks and pasture.
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Table 4. The accuracy of SDNN measured according to different Kmax values.

Datasets K=5 K=10 K=15 Datasets K=5 K=10 K=15
appendicitis 86.55 87.55 86.64 parkinsons 94.34 92.79 91.76
bank marketing 88.92 88.76 88.76 pasture 78.33 72.50 70.00
blood-transfusion-
service 75.93 76.86 76.86 pendigits 99.46 99.36 99.27

climate-
simulation-craches 91.29 91.66 91.48 planning-relax 68.54 69.65 70.18

colon 86.90 86.90 85.24 postoperative-
patient 71.11 71.11 71.11

credit-approval 85.51 86.52 86.52 saheart 67.97 68.18 69.05
dermatology 98.09 97.55 97.28 seeds 93.81 92.86 92.86
dresses-sales 60.20 59.40 59.60 sonar 84.55 83.09 82.14
dry-bean 92.41 92.32 92.52 spect-heart 67.37 67.75 66.99

ecoli 85.45 85.73 85.44 statlog-australian-
credit 86.09 85.80 86.23

fertility-diagnosis 88.00 88.00 88.00 statlog-german-
credit 75.20 74.70 74.50

habermans-
survival 74.85 74.19 74.86 thoracic-surgery 83.40 84.25 84.89

heart-disease-
cleveland 59.03 57.71 56.73 vehicle 72.93 71.98 71.04

heart-disease-
hungarian 65.71 66.39 65.01 volcanoes-e1 91.55 91.63 91.55

heart-statlog 82.96 84.45 83.34 volcanoes-e2 91.11 91.11 91.11
hepatitis 83.83 83.79 82.54 volcanoes-e3 91.86 91.70 91.62
horse-colic-
surgical 84.00 84.00 84.33 volcanoes-e4 91.37 91.37 91.45

indian-liver-
patient 70.64 70.99 69.62 volcanoes-e5 90.83 90.83 90.83

ionosphere 88.32 86.32 84.89 wdbc 96.84 97.19 97.02
iris 94.67 94.67 94.00 white-clover 66.91 70.00 71.67
led7digit 72.40 74.40 74.60 wholesale-channel 90.45 90.45 90.91
liver-disorders 69.87 68.70 67.61 wholesale-region 68.18 70.68 71.36
lymph 82.48 82.43 81.71 wilt 94.94 94.77 94.73
molecular-
promotor-gene 86.82 83.91 83.00 wine 96.63 97.22 96.66

monks 94.58 87.90 90.24 zoo 95.09 94.09 94.09

The experimental results with the group sizes ∈ {50, 60, 70} in the stepwise voting can be found in Table

5. From this table, it is possible to interpret that the best performance was obtained when the group size is

50. The SDNN approach with GS=50 achieved equal or higher accuracy rates on more than half of all datasets

compared to other SDNN models with group sizes 60 and 70. Therefore, the increase in group size could not

guarantee an increase in classification ability.

The parameter sensitivity of the learning rate of ensemble sizes was analyzed under the set of {75, 100,

125}. Related accuracy rate performances of the SDNN models were reported in Table 6. According to the

table, the best suitable ensemble size was determined as 100. Increasing the ensemble size above 100 did not
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Table 5. The accuracy of SDNN measured according to different group sizes (GS) in stepwise voting.

Datasets GS=50 GS=60 GS=70 Datasets GS=50 GS=60 GS=70
appendicitis 86.55 86.55 86.55 parkinsons 94.34 94.34 93.82
bank marketing 88.92 88.90 88.92 pasture 78.33 78.33 75.83
blood-transfusion-
service 75.93 75.93 76.19 pendigits 99.46 99.45 99.45

climate-
simulation-craches 91.29 91.29 91.29 planning-relax 68.54 68.54 69.65

colon 86.90 86.90 86.90 postoperative-
patient 71.11 71.11 71.11

credit-approval 85.51 85.51 85.65 saheart 67.97 68.40 68.18
dermatology 98.09 98.09 97.82 seeds 93.81 93.81 93.33
dresses-sales 60.20 59.20 59.40 sonar 84.55 84.55 83.6
dry-bean 92.41 92.45 92.45 spect-heart 67.37 67.37 67.75

ecoli 85.45 86.04 85.74 statlog-australian-
credit 86.09 85.94 85.65

fertility-diagnosis 88.00 88.00 88.00 statlog-german-
credit 75.20 75.30 75.10

habermans-
survival 74.85 75.18 74.53 thoracic-surgery 83.40 83.83 84.04

heart-disease-
cleveland 59.03 58.70 58.05 vehicle 72.93 72.93 72.70

heart-disease-
hungarian 65.71 65.38 65.72 volcanoes-e1 91.55 91.55 91.55

heart-statlog 82.96 82.59 82.22 volcanoes-e2 91.11 91.11 91.11
hepatitis 83.83 84.46 84.46 volcanoes-e3 91.86 91.86 91.86
horse-colic-
surgical 84.00 84.00 84.00 volcanoes-e4 91.37 91.37 91.29

indian-liver-
patient 70.64 70.12 69.78 volcanoes-e5 90.83 90.83 90.83

ionosphere 88.32 87.74 87.46 wdbc 96.84 96.66 96.66
iris 94.67 94.67 94.67 white-clover 66.91 66.91 65.24
led7digit 72.40 72.60 72.60 wholesale-channel 90.45 90.45 90.23
liver-disorders 69.87 69.56 69.27 wholesale-region 68.18 68.41 67.95
lymph 82.48 83.81 83.81 wilt 94.94 94.94 94.92
molecular-
promotor-gene 86.82 86.82 86.82 wine 96.63 96.63 97.22

monks 94.58 94.4 94.77 zoo 95.09 95.09 95.09

significantly increase performance, and it even brought higher computational costs. Therefore, a large number

of classifiers cannot guarantee a remarkably more satisfying result. We consider that a possible reason behind

this is that although increasing the ensemble size often leads to better performance in terms of accuracy, there

is still a risk of overfitting.

4.4. Comparison with the KNN variants

The proposed SDNN approach was also compared with the KNN variants in the literature, named uniform

KNN [15], weighted KNN [16], KNN learning with graph neural networks (KNNGNN) [17], dynamic k-nearest-
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Table 6. The accuracy of SDNN measured according to different ensemble sizes (ES).

Datasets ES=75 ES=100 ES=125 Datasets ES=75 ES=100 ES=125
appendicitis 86.64 86.55 85.73 parkinsons 94.84 94.34 94.84
bank marketing 88.83 88.92 88.79 pasture 78.33 78.33 79.17
blood-transfusion-
service 76.87 75.93 76.20 pendigits 99.44 99.46 99.47

climate-
simulation-craches 91.48 91.29 91.48 planning-relax 67.98 68.54 69.12

colon 85.24 86.90 88.57 postoperative-
patient 71.11 71.11 71.11

credit-approval 86.38 85.51 87.25 saheart 67.09 67.97 66.65
dermatology 97.54 98.09 97.82 seeds 93.33 93.81 92.86
dresses-sales 59.40 60.20 56.80 sonar 84.07 84.55 82.66
dry-bean 92.41 92.41 92.31 spect-heart 67.01 67.37 67.39

ecoli 86.03 85.45 85.15 statlog-australian-
credit 85.36 86.09 84.78

fertility-diagnosis 88.00 88.00 88.00 statlog-german-
credit 75.60 75.20 74.00

habermans-
survival 74.53 74.85 75.82 thoracic-surgery 83.40 83.40 84.25

heart-disease-
cleveland 58.38 59.03 59.04 vehicle 72.58 72.93 72.22

heart-disease-
hungarian 66.38 65.71 66.39 volcanoes-e1 91.55 91.55 91.55

heart-statlog 82.22 82.96 82.22 volcanoes-e2 91.11 91.11 91.20
hepatitis 83.21 83.83 82.62 volcanoes-e3 91.86 91.86 91.86
horse-colic-
surgical 82.67 84.00 84.33 volcanoes-e4 91.29 91.37 91.29

indian-liver-
patient 70.13 70.64 69.79 volcanoes-e5 90.65 90.83 90.74

ionosphere 87.74 88.32 88.02 wdbc 97.02 96.84 96.84
iris 94.67 94.67 96.00 white-clover 66.90 66.91 68.57
led7digit 73.20 72.40 72.80 wholesale-channel 90.00 90.45 90.68
liver-disorders 66.98 69.87 71.08 wholesale-region 67.73 68.18 67.50
lymph 84.52 82.48 84.48 wilt 95.02 94.94 94.94
molecular-
promotor-gene 86.64 86.82 88.55 wine 96.67 96.63 96.67

monks 94.77 94.58 95.48 zoo 94.09 95.09 94.09

neighbor with distance and attribute weighted (DKNDAW) [18], weight-adjusted k-nearest-neighbor (WAKNN)

[18], k-nearest-neighbor with distance weighted (KNNDW) [18], k-nearest-neighbor with distance and attribute

weighted (KNNDAW) [18], and dynamic k-nearest-neighbor (DKNN) [18] in terms of accuracy rates they

produced. The results for the datasets, which were given in the papers, were directly taken from the referenced

studies. According to Table 7, it is possible to say that the SDNN algorithm outperformed all the 8 KNN

variants in 11 of 15 datasets. For example, SDNN (94.34%) showed its superiority over KNNGNN (84.64%) on

the parkinsons dataset. SDNN achieved the highest classification ability on the wine dataset with an accuracy of

96.63%. The SDNN method (95.09%) obtained the highest improvement (17.78%) compared with the uniform
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KNN method (77.31%) on the zoo dataset. On average, SDNN (86.69%) outperformed uniform KNN, weighted

KNN, and KNNGNN with accuracy rates of 81.75%, 83.93%, and 85.54%, respectively. Similarly, on average,

our method (86.69%) performed better than DKNDAW (83.21%), WAKNN (80.07%), KNNDW (82.77%),

KNNDAW (81.79%), and DKNN (81.35%). The findings from the experiments revealed that the classification

task was improved since our method relied on implicit and explicit distances.

Table 7. Comparison of the proposed SDNN method against the KNN variants on the same datasets in terms of
classification accuracy (%).

Datasets
Uniform
KNN

Weighted
KNN

KNN
GNN

DKN
DAW

WA
KNN

KNN
DW

KNN
DAW DKNN

SDNN
(proposed)

[15] [16] [17] [18] [18] [18] [18] [18]
ecoli 81.47 82.97 81.51 - - - - - 85.45
heart-
statlog 79.19 79.07 78.74 81.15 80.56 82.70 80.74 78.44 82.96

hepatitis - - - 81.35 81.12 84.22 80.49 78.34 83.83
horse-colic-
surgical - - - 76.52 74.37 72.57 74.72 74.10 84.00

ionosphere 81.92 82.10 91.62 92.51 90.54 90.17 90.83 91.79 88.32
iris 91.14 92.34 94.27 94.93 93.87 93.47 96.40 92.73 94.67
lymph - - - 81.97 80.77 81.29 80.36 81.16 82.48
parkinsons 83.66 86.27 84.64 - - - - - 94.34
seeds 91.91 92.21 91.60 - - - - - 93.81
sonar 70.71 73.16 76.13 79.71 72.42 82.01 73.63 80.54 84.55
statlog-
australian-
credit

- - - 85.80 84.65 85.51 84.94 81.93 86.09

statlog-
german-
credit

- - - 74.82 74.43 72.90 74.36 70.74 75.20

vehicle 70.49 71.20 72.25 69.89 65.29 69.83 66.87 68.94 72.93
wine 89.65 91.39 94.78 - - - - - 96.63
zoo 77.31 88.55 89.88 96.65 82.71 95.84 96.33 96.15 95.09

4.5. Comparison with the state-of-the-art methods

Table 8 shows the comparison of our proposed method’s results with the results of different algorithms (Bsnsing

[21], sparse projection oblique randomer forests (SPORF) [22], random forest (RF) [22], extreme gradient

boosting (XGBoost) [22], random rotation random forest (RR-RF) [22], canonical correlation forest (CCF) [22],

and Adaptative Credal C4.5 (AdaptativeCC4.5) [23]) presented in previous work [21–23] on the same datasets.

As shown in this table, the SDNN method usually reached higher accuracy rate values than the previous methods

applied to the same dataset. For example, the SDNN performed better on the hepatitis dataset in comparison

to the state-of-the-art methods. It can be concluded that the SDNN approach outperformed the other methods

with 5.4% improvement on average.
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Table 8. Comparison of the proposed SDNN method against the state-of-the-art methods on the same datasets in terms
of classification accuracy (%).

Datasets BSNS-
ING [21]

SPORF
[22]

RF
[22]

XGBoost
[22]

RR-RF
[22]

CCF
[22]

Adaptative
CC4.5 [23] SDNN

bank-marketing 90.1 91.7 91.9 91.9 91.3 91.6 - 88.92
blood-transfusion-
service - 71.00 72.00 72.00 71.00 70.00 - 75.93

climate-
simulation-craches 92.50 - - - - - - 91.29

credit-approval 85.10 77.00 78.00 77.00 74.00 75.00 - 85.51
dermatology 91.50 98.00 98.00 97.00 96.00 96.00 93.96 98.09
ecoli - 83.00 81.00 81.00 83.00 81.00 81.72 85.45
fertility- diagnosis 86.00 - - - - - - 88.00
habermans-
survival 72.90 63.00 61.00 63.00 57.00 54.00 71.31 74.85

heart-disease-
cleveland 76.80 47.00 48.00 47.00 51.00 45.00 - 59.03

heart-disease-
hungarian - 89.00 87.00 87.00 81.00 85.00 - 65.71

heart-statlog - - - - - - 80.59 82.96
hepatitis 79.80 44.00 42.00 37.00 38.00 54.00 80.62 83.83
horse-colic-
surgical - 76.00 74.00 80.00 77.00 77.00 85.24 84.00

indian-liver-
patient 68.20 60.00 59.00 60.00 62.00 63.00 - 70.64

ionosphere 88.10 85.00 82.00 81.00 88.00 86.00 88.27 88.32
iris 94.50 91.00 94.00 92.00 94.00 96.00 94.13 94.67
led7digit - 68.20 68.60 69.50 67.90 67.60 - 72.40
liver-disorders - - - - - - 67.32 69.87
lymph 81.00 - - - - - 78.58 82.48
monks 87.10 86.00 86.00 81.00 87.00 81.00 - 94.58
parkinsons 85.80 69.00 75.00 67.00 67.00 75.00 - 94.34
pendigits 99.4 99.50 99.10 99.10 99.30 99.60 96.54 99.46
planning-relax 61.70 60.00 60.00 48.00 62.00 59.00 - 68.54
seeds 92.20 91.00 90.00 89.00 88.00 90.00 - 93.81
sonar 72.10 - - - - - 71.67 84.55
spect-heart - 60.00 50.00 40.00 60.00 50.00 - 67.37
statlog-australian-
credit 85.10 77.00 78.00 76.00 72.00 74.00 - 86.09

statlog-german-
credit 67.60 66.40 65.00 63.60 61.60 64.30 71.70 75.2

vehicle 95.20 74.00 68.00 69.00 69.00 77.00 73.07 72.93
wdbc 94.40 - - - - - - 96.84
wine 91.10 95.00 94.00 97.00 96.00 97.00 92.47 96.63
zoo 99.50 93.00 94.00 93.00 94.00 94.00 93.22 95.09

5. Conclusion and future work

One of the most popular machine learning algorithms is the KNN algorithm, which has intriguing qualities,

including simple implementation and excellent generalizability. Although several approaches have been proposed
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to the literature to increase its precision, the KNN still has some limitations on its classification ability. For

this purpose, this study proposes a novel algorithm, SDNN, that utilizes a dynamic neighborhood procedure

according to the data distribution and applies a new voting mechanism named stepwise voting. This voting

mechanism focuses on splitting the outputs of the classifiers into consecutive groups and sequentially aggregates

the votes to get the final output. In the experiments, the proposed SDNN approach was applied to 50 different

benchmark datasets and compared with the traditional KNN algorithm, its variants, and the state-of-the-art

methods in terms of recall, precision, F-measure, and accuracy measures. The obtained results present that

the proposed SDNN method outperformed the KNN and MDNN in terms of the average accuracy rates. Also,

it is seen from the experimental results that the SDNN achieved the highest performance (83.17% on average)

by using Euclidean distance and setting k , ensemble size, and group size for stepwise voting parameters as 5,

100, and 50, respectively. In addition to these results, the SDNN also surpassed the KNN variants and the

state-of-the-art methods.

For future studies, the SDNN can be modified by using different distance measures instead of Euclidean

distance. In addition, the proposed stepwise voting mechanism can be adapted to different ensemble structures

to enhance the classification ability of the models.
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