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Abstract: Deep neural networks have recently made remarkable achievements in computer vision applications. However,
the high computational requirements needed to achieve accurate inference results can be a significant barrier to deploying
DNNs on resource-constrained computing devices, such as those found in the Internet-of-things. In this work, we propose
a fresh approach called adaptive channel skipping (ACS) that prioritizes the identification of the most suitable channels
for skipping and implements an efficient skipping mechanism during inference. We begin with the development of
a new gating network model, ACS-GN, which employs fine-grained channel-wise skipping to enable input-dependent
inference and achieve a desirable balance between accuracy and resource consumption. To further enhance the efficiency
of channel skipping, we propose a dynamic grouping convolutional computing approach, ACS-DG, which helps to reduce
the computational cost of ACS-GN. The results of our experiment indicate that ACS-GN and ACS-DG exhibit superior
performance compared to existing gating network designs and convolutional computing mechanisms, respectively. When
they are combined, the ACS framework results in a significant reduction of computational expenses and a remarkable
improvement in the accuracy of inferences.
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1. Introduction

Deep neural networks (DNNs) have gained significant traction in recent years and have demonstrated outstand-
ing performance in diverse domains such as computer vision, natural language processing [1], and autonomous
robotics control systems. However, the extraordinary performance of DNNs comes at a cost of high computa-
tional complexity and memory requirement [2, 3]. For instance, ResNet38 utilizes 2.25 million parameters and
performs 667M multiply-accumulate (MAC) operations to process a single input image [4]. The high computa-
tional and memory demands can be supported by powerful hardware such as high-performance CPUs, GPUs,
or TPUs. However, deploying DNNs on edge devices like Internet-of-things (IoT) [5, 6] has become a very
challenging task, since these devices generally have constrained computation and storage resources. Using the
Raspberry Pi 3B single-board computer as a typical example, the time required for one inference can vary from
a few hundred milliseconds to tens of seconds, depending on the complexity of the underlying DNN model
[7]. The complexity of DNN models hinders their deployment in many applications, such as the navigation,
control and sensing of robots. To bridge the gap between the constrained resources of computing devices and
the computational complexity of DNN models, it is imperative to develop new techniques to achieve a desired
trade-off between resource consumption and model accuracy in DNN inference.
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Researchers have explored various model compression approaches to accelerate DNN inference, such
as model pruning [8], knowledge distillation [9], and designing compact architectures [10]. In general, these
techniques attempt to enhance inference efficiency in a ”static” way. This means that during inference,
we cannot dynamically adjust the models since both the computational graph and network parameters are
predetermined before deploying the model [11]. However, it has been pointed out in [12, 13] that altering
the model architectures or removing less significant neurons may lead to a decline in inference capability,
thereby affecting the accuracy of classifying challenging input instances. Moreover, the static compression-
based approaches may not be able to reduce computational redundancy optimally since all input instances are
processed with identical computation, disregarding their classes or levels of difficulty. Dynamic inference, as
an alternative approach to execute inference tasks, allows for adapting model structures or network parameters
during runtime to the input complexity or resource constraints [14]. The fundamental truth is that images with
varying levels of complexity need different amounts of computation, where easily distinguishable ones tend to
require less computation, whereas cluttered or ambiguous ones tend to require more computation [15]. Given
this fact, a simple solution is to perform inference by utilizing dynamic network depths, either by allowing
simple inputs to be processed using shallow exits to produce predictions [16], or by bypassing the unnecessary
computations at intermediate layers in a strategic manner [11]. Generally, skipping layers is a more feasible
and efficient approach than early exiting because it does not require adding additional branching structures and
intermediate classifiers.

However, there are three main challenges facing the current layer-wise skipping technique that inspire
us to design alternative solutions. Firstly, the existing strategies, such as SkipNet [13] and Blockdrop [17],
chose to either skip or execute an entire layer or block during the inference process. However, these coarse-
grained skipping strategies may negatively impact the model’s performance, as different layers and channels
make unique contributions to feature extraction. To address this issue, we propose a finer-grained skipping
scheme called adaptive channel skipping (ACS), which operates at the channel granularity. Secondly, it is worth
noting that many existing dynamic inference solutions utilize gating networks that are based on convolutional
neural networks (CNNs) [13, 15]. These solutions primarily aim to skip within chain-topology models, such as
deep residual network (ResNet). However, recent research has shown that such designs can result in significant
computational costs when applied to more complex backbones, such as densely connected networks (DenseNet)
[18], as demonstrated in [11]. Thus, our latest innovation, the ACS-GN gating network, utilizes a combination
of 1 × 1 and 3 × 3 convolutional operations to maximize efficiency and minimize cost for both ResNet and
DenseNet models. Lastly, it is important to note that incorporating the ACS-GN into the original backbone
network may result in an increase in computational costs and potentially impact the inference performance. To
mitigate these impacts, we develop the ACS-DG approach which replaces the standard convolution operation in
ACS-GN with dynamic grouping convolution [19]. Overall, the contributions of this research can be summarized
as follows:

• For input-dependent dynamic inference, ACS not only surpasses current skip-layer-based solutions but also
proposes a new gate network, ACS-GN, which enables channel skipping to be more precise and adaptive.
ACS-GN is a flexible approach that can be effortlessly applied to both chained backbone networks (e.g.,
ResNet) and densely connected backbone networks (e.g., DenseNet).
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• In order to enhance computational efficiency and accelerate the inference process, ACS introduces a novel
method called ACS-DG, which replaces the standard 3× 3 convolution used in ACS-GN with a grouping
convolution that dynamically adjusts the number of groups.

• We assess the performance of ACS on the CIFAR10 and SVHN datasets by utilizing ResNet and DenseNet
as the foundational backbone models. Our experiments have shown that ACS is capable of generating
effective skipping decisions that can significantly reduce the computational costs involved in model infer-
ence. Furthermore, the accuracy of inference achieved by ACS is higher than that of the original model
and other dynamic skipping schemes, such as those described in references [11] and [13].

The structure of the rest of this paper is as follows. Section 2 provides an overview of related work.
In Section 3, we present the design of ACS, including the technical details of ACS-GN and ACS-DG. Section
4 outlines our evaluation of ACS using ResNet and DenseNet models on CIFAR10 and SVHN datasets, and
presents our analysis of the experimental results. Finally, in Section 5, we conclude the paper and discuss future
work in this area.

2. Related work

Improving the speed of DNN model inference is a critical concern for implementing AI applications in real-world
scenarios. This section provides an overview of previous research on developing efficient deep neural network
models, which can be broadly classified into two categories: static and dynamic. As space is limited, readers
who are interested in delving deeper into related topics can refer to [9, 14, 20] for further information.

2.1. Static compression

Recently, there has been a lot of attention on reducing the size of models and speeding up their inference.
Several techniques have been suggested, such as model pruning [8], knowledge distillation [9], and designing
compact architectures [10]. In the following paragraphs, we will provide a brief overview of these methods.

The objective of model pruning is to decrease the computational cost and memory usage by eliminating
unimportant neurons, filters, or channels from targeted DNN models. Unstructured pruning enables the selective
pruning of weights below a specified threshold [8], which often results in high compression rates with minimal
impact on inference accuracy. However, it leads to irregular sparsity within the weight matrix, which can
be challenging to process efficiently on typical DNN hardware for inference acceleration. On the other hand,
structured pruning removes groups of consecutive parameters, such as entire channels/filters/subblocks of DNN
weights, to generate structured sparse patterns [21–23]. It is more hardware-friendly than unstructured pruning
and can achieve high acceleration performance by leveraging hardware parallelism. However, structured pruning
tends to suffer from noticeable accuracy degradation as the pruning rate increases [24], making it difficult to
determine the optimal pruning rate.

Knowledge distillation utilizes the transfer of knowledge to condense DNN models. A target compact
model (student) can acquire knowledge from a more sophisticated yet unwieldy teacher model by imitating the
prediction distribution founded on the same inputs [25]. The concept was initially put forth by Hinton et al.,
who proposed aligning the outputs of the student and teacher models by minimizing the KL-divergence of the
category distribution [26]. Several studies concentrate on determining what knowledge to condense, with an
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emphasis on response-based knowledge (i.e. derived from output probability distribution [26]), feature-based
knowledge (i.e. originating from intermediate feature representation [27]), and relation-based knowledge (i.e.
arising from relationships between layers or inputs [28]). Another line of research places greater emphasis on
how to distill knowledge. In the traditional approach, knowledge distillation involves a two-stage process where
the teacher model is assumed to be pretrained offline and ready for one-way condensation [26]. Without this
assumption, online distillation enables a group of student models to learn from each other and receive updates
simultaneously during the training process [29].

In addition to model pruning and knowledge distillation, there are other ways to reduce the complexity
and cost of models by using new building blocks with efficient operations. As an example, MobileNets replace
the conventional convolution with a unique combination of 3 × 3 depthwise convolution and 1 × 1 pointwise
convolution [30]. ShuffleNet achieves a balance between accuracy and cost by employing pointwise group
convolution and channel shuffle [31]. In AdderNet [32], the computational cost is reduced by replacing a large
number of multiplications in the DNN with lighter-weight additions. Recently, there has been a proposal for
neural architecture search (NAS) as a method to create the best possible DNN architectures using optimization
algorithms [3].

Although effective, these static compression-based approaches generally have two distinct drawbacks [15].
On the one hand, removing layers, filters, or neurons from a DNN model may compromise its representational
power, as sparsely activated neurons may be indispensable for handling difficult inputs. On the other hand,
treating all input instances indiscriminately is inefficient, i.e. deep network embeddings are only needed for
challenging images that require accurate classification but may be wasted on easy images. These issues have
prompted the emergence of new dynamic inference solutions.

2.2. Dynamic inference

Although static compression-based methods make DNN deployment more feasible by reducing model complexity,
they cannot maximize efficiency and accuracy by exploiting input characteristics. In contrast, dynamic solutions
can adapt model structures or parameters based on input instances [14], resulting in advantages in terms of
efficiency, accuracy, latency, among other factors.

Considering the presence of spatial redundancy, some work attempts to perform adaptive inference by
processing only a portion of the input data in the spatial dimension. For example, octave convolution (OctConv)
[33] saves storage and computation by reducing the resolution of low-frequency feature maps. Spatially adaptive
computation time (SACT) [34] allocates different numbers of execution layers to different regions of the input
image. Glance and focus network (GFNet) [35] gradually performs classification on a series of image blocks
given a high-resolution image until sufficient confidence is obtained.

Our work belongs to a category of dynamic solutions that differentiate between easy and difficult input
instances. BranchyNet [16] enhances the model by incorporating additional branch classifiers, which allow
for early exit of certain inputs based on confidence-based criteria. BlockDrop [17] builds an additional policy
network based on reinforcement learning to determine which blocks to be removed in the pretrained ResNet
model while maintaining inference accuracy. SkipNet [13] proposes modifying residual networks by adding
gate networks so that the decision of skipping blocks is based on a hybrid learning algorithm that combines
supervised learning and reinforcement learning. However, this layer-skipping strategy is coarse-grained and
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may result in significant accuracy reduction. Some recent studies [11, 15] have started to use finer-grained
dynamic skipping of layer channels. In [15], two auxiliary networks with shallow architectures are suggested
to facilitate dynamic skipping of layers and channels. This method of skipping is specially developed for DNN
models which utilize a block-based residual design. To address this issue, input-adaptive dynamic inference
(IADI) [11] proposes a gating design that is applicable to both chain-like backbone networks (e.g., ResNet) and
dense connection backbone networks (e.g., DenseNet), demonstrating significant universality and applicability.
Compared to SkipNet and BlockDrop, IADI has been shown to be more computationally efficient.
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Figure 1. An illustration of channel skipping with gating networks in chain-like backbone.

3. ACS: adaptive channel skipping

In this section, we provide a detailed introduction to our adaptive channel skipping scheme (ACS). Firstly,
we present our new CNN-based gating network called ACS-GN. Then, we explain the design of the group
convolution ACS-DG, and demonstrate how it can be integrated with ACS-GN to enhance its computational
efficiency. Lastly, we discuss the training strategy that implements constraints to ensure the model produces
the desired computational results.

3.1. Basic gating network design of ACS-GN

ACS-GN allows for selective activation or execution of individual channels within each convolutional layer,
depending on the input provided. As shown in Figure 1, the gating networks are placed between layers, and map
the output from the previous layer or group of layers to a sequence of binary decisions, which determine which
channels to skip in the subsequent layer. In the following, we will describe how ACS-GN can be incorporated
into ResNet and DenseNet, which are commonly studied DNN models for dynamic inference [11, 13, 17].

The decision of whether to skip channels for a 3 × 3 convolution layer i with k channels can be formulated
as:

F out
i = Ci(Gi(F

in
i )) ∗ F in

i , (1)

where F in
i and F out

i denote the input and output feature maps, Ci denotes the convolutional operation
for the i -th layer, and the gating network Gi outputs a size-k vector in which each value denotes the

832



ZOU et al./Turk J Elec Eng & Comp Sci

binary skipping decision for a channel, respectively. During inference, a convolution operation will only
be executed for channels with a nonzero gating value, while channels with a gating value of zero will be
skipped and not calculated. Note that F in

i is not necessarily equal to F out
i−1 , due to the existence of the

shortcut connections in ResNet and the dense connections in DenseNet [4, 18]. Take DenseNet as an example,
F in
i = ReLU(BN([F out

0 , F out
1 , . . . , F out

i−1])) , where [] refers to the concatenation of the feature maps of all
preceding layers.

An effective gating network can dynamically identify the subset of computations that need to be executed
to significantly reduce computational costs while minimizing the impact on inference accuracy. For layer
skipping, recurrent neural networks (RNNs) can be a suitable choice to serve as the only gating network for
sequentially determining the optimal routing for all layers [13]. However, to make decisions on which channels
to skip, it is crucial to consider the relevance between channels within the same layer, rather than focusing on
cross-layer correlations alone. The recurrent design is not suitable here, since different layers generally have
different number of channels (i.e. k ) [11]. Due to these two reasons, we turn to gate design based on CNN,
associating a gate with each 3× 3 convolutional layer.

Referring to Figure 2, our ACS-GN design is inspired by FFGate-I proposed in SkipNet [13] and IADI [11]
(Note that FFGate-II is specifically designed for deep networks with more than 100 layers), while considering
performance and cost. Specifically, ACS-GN consists of a 1× 1 bottleneck layer, and two 3× 3 convolutional
layers with stride of 2 and 1 respectively, followed by a global average pooling layer and a fully-connected layer.
On the one hand, the max pooling operation in FFGate-I can only decrease the height and width of the input,
whereas a 1 × 1 convolution can provide filter-level pooling to further reduce the channel dimension. On the
other hand, we follow FFGate-I and use two 3× 3 convolutional layers to extract informative features, instead
of one layer as in IADI but adjust their order for computation reduction. Output of ACS-GN is a vector with
k dimensions, where each value is rescaled using a Sigmoid function to a range of (0,1), and then quantized
to 0 or 1 by comparing it to a threshold α that determines the skipping ratio. Despite the added cost of
incorporating CNN gates, implementing fine-grained channel skipping with ACS-GN ultimately reduces overall
resource consumption.

3.2. Improving gating network efficiency with ACS-DG

Integrating multiple gating networks unavoidably increases the computational cost of the original backbone
network. To mitigate the computational cost incurred by the gating networks, we enhance the efficiency of
ACS-GN by incorporating dynamic group convolution. Group convolution, which groups adjacent channels
together for computation, has been demonstrated to be efficient, compact, and simple to implement in previous
studies [36]. However, conventional methods for group convolution rely heavily on human expertise and trial-
and-error to determine the appropriate number of groups, using the same number of groups across different
depths of convolutional layers often leads to suboptimal results [19]. Our ACS-DG is inspired by dynamic
grouping convolution (DGConv), which was proposed in [19]. A brief overview of DGConv is provided below.

Generally, the output of a convolution operation with kernel size k and stride 1 on an input F in ∈

RH×W×Cin can be defined as
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Figure 2. Comparison of the existing gating network structure.

ohw =

k−1∑
x=0

k−1∑
y=0

f(h+x)(w+y)(M ⊙ ωxy), (2)

where h ∈ {1, . . . , H} , w ∈ {1, . . . ,W} , oij ∈ RCout denotes the output unit, f(h+x)(w+y) ∈ RCin denotes

the input units of F , ωxy ∈ RCin×Cout denotes the convolution weights, and ⊙ denotes element-wise product.

Here, M ∈ {0, 1}Cin×Cout is a binary relationship matrix that can represent a variety of convolution operations
in the literature. For example, Equation (2) represents a regular convolution when M = 1 , a depthwise
convolution [30] when M is an identity matrix, and a conventional group convolution [36] when M is a binary
block-diagonal matrix. DGConv aims to construct an optimal structured matrix M while reducing the total
number of parameters.

According to DGConv [19], because Cin = Cout for the convolutions in ACS-GN, M can be decomposed
into a number of 2× 2 submatrices as

M = M1 ⊗M2 ⊗ . . .MZ , (3)

where ⊗ denotes a Kronecker product, and Z = log2 C
in . The submatrix Mz is calculated as

Mz = gz1+ (1− gz)I (4)

where 1 and I are 2 × 2 matrix of ones and identity matrix respectively, and gz is the z -th component in
the binary gate vector g = {g1, . . . , gZ} ∈ {0, 1}Z . In the training, it is handled by training a continuous gate
vector ĝ as extra parameters, and then converting ĝ to g using the sign function (i.e. sign(x) = 0 when
x < 0 , and sign(x) = 1 otherwise.). In this way, we can obtain a relationship matrix M that has a group

834



ZOU et al./Turk J Elec Eng & Comp Sci

structure. Figure 3 shows some illustrative examples of structures of M and the groups differentiated by colors
in M when Cin = Cout = 8 .

Cin = 8  Z = 3

g = [0, 0, 1] g = [0, 1, 0] g = [1, 1, 0] g = [0, 0, 0]

U = I I 1 U = I 1 I U = 1 1 I U = I I I 

4 groups 4 groups 2 groups 8 groups

Figure 3. Illustration of structures and groups with relationship matrix M .

With this new approach, the regular 3×3 convolution used in ACS-GN can be replaced by DGConv. To
address the potential negative impact of group convolution on inference accuracy [36], we enhance our ACS-DG
design by incorporating the widely-used attention mechanism. Specifically, we insert a Squeeze-and-Excitation
Network (SENet) block [37] between the two DGConv layers. The core of SENet is a Squeeze-and-Excitation
block, which consists of a squeeze module and an excitation module. The squeeze module in SENet gathers
global spatial information through computation of channel-wise statistics via global average pooling, while the
excitation module leverages the aggregated information to capture channel-wise dependencies, thereby enhancing
both the representational power and prediction capabilities of the network. Finally, we achieve our integrated
and formal ACS gating design, which is depicted in Figure 2e. In the experiment, we will compare the five
different types of gating designs as shown in Figure 2, and demonstrate the effectiveness and superiority of ACS.

3.3. Training strategy for skipping policy learning

In ACS, the backbone and the gating networks are jointly optimized through supervised learning. Traditionally,
only cross-entropy loss is used, and there are usually few or no skipping operations as more feature information
tends to result in higher classification accuracy. To achieve a balance between accuracy and computational cost,
we suggest implementing a regularization method that takes into consideration the available resources. This
approach will assist in selecting which channels to skip and limit the amount of computation used.

The loss function for the model in ACS can be expressed as follows:

L = Lce(B,G) + αLreg(B,G), (5)

where Lce and Lreg used to represent the classification loss and resource-aware regularization, respectively.
The parameters of the backbone and gating networks are denoted as B and G , while α represents the weighted
coefficient that determines the skipping threshold. The dynamic loss Lreg is determined by the number of
channels involved in the convolutional computation and is evaluated based on the actual inference floating-
point operations per second (FLOPs). Therefore, a penalty will be imposed if the computational cost is too
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high or if we intend to reduce more computation with a large α . This enforces the DNN inference to be aware
of the instance and considers both accuracy and cost factors. However, one challenge with binary skipping
decisions is that they are nondifferentiable, meaning they cannot be directly back-propagated. Therefore, we
use the softmax approximation technique[11, 13], treating the softmax outputs as the probability of ACS-GN
propagating gradients during back-propagation.

4. Performance evaluation

In this section, we perform comprehensive experiments on image classification tasks to showcase the efficiency
and effectiveness of our adaptive channel skipping scheme 1. Section 4.1 outlines the experimental setup, which
includes the datasets used, DNN models, baselines, training specifics, and hyperparameter settings. In Section
4.2, we begin by comparing ACS-GN against state-of-the-art gating network designs. We then investigate
ACS-GN’s performance when integrated with ACS-DG. Finally, we evaluate ACS against IADI, the current
state-of-the-art work on channel skipping.

4.1. Experimental setup

4.1.1. Datasets

We perform experiments on two widely used image classification benchmarks, i.e. CIFAR10 and SVHN, both
of which consist of 32×32 colored images [13]. The CIFAR10 dataset is comprised of 50,000 training samples
and 10,000 testing samples, which are categorized into 10 different classes. The SVHN dataset contains 604,000
training samples and 26,000 testing samples that have been labeled for 10 distinct classes. Prior to training, the
training samples in both datasets were preprocessed by normalizing them using the channel means and standard
deviation. These two datasets have been extensively adopted in previous studies in the literature [13, 14, 18].

4.1.2. Models

We assess our designs using three commonly used DNN architectures: ResNet38, DenseNet41, and DenseNet53,
which have all been extensively utilized in previous studies related to dynamic computation skipping [11, 38].
As per the design guidelines specified in [4], ResNet38 consists of a single convolutional layer, succeeded by
18 residual blocks (which includes two convolutional layers in each block) and one fully connected layer. As
per the design guidelines outlined in [18], DenseNet41 and DenseNet53 are comprised of a first convolutional
layer, succeeded by three dense blocks (each dense block consists of two convolutional layers), followed by a
transition layer, and a fully connected layer. These two models differ in terms of the number of two-layer
structures present in them. Specifically, DenseNet41 comprises 6 two-layer structures, whereas DenseNet53 has
8 two-layer structures. The growth rate is set as 32 for the DenseNet models [11].

4.1.3. Comparisons

In all experiments, the baseline models are the original DNN models. Specifically, ACS-GN is compared with
existing gating designs such as FFGate-I, FFGate-II [13], and IADI [11]. Then, the performance of ACS-DG

1The source code of ACS is available at: https://github.com/fangvv/ACS.
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is compared with regular convolution to evaluate its improvement over ACS-GN. Finally, the ACS and IADI
channel hopping methods are compared as two representative approaches to showcase their overall performance.

4.1.4. Training details

To enable the gating network of ACS to adapt to the feature statistics, we develop a two-step training procedure
that differs from that of SkipNet or IADI. In the first step, we insert the gating network into the backbone
model and train them together with zero skipping ratio. After obtaining the pretrained model, we then set the
value of α to a desired target and fine-tune the entire model. In general, the training time of the first stage is
similar to that of the original model, while the total training time increases by 40%–60%.

4.1.5. Hyperparameter settings

In the experiments, we utilize a stochastic gradient descent (SGD) optimizer with a momentum of 0.9 and a
weight decay of 1e-4. We train the models using a batch size of 128 and an initial learning rate of 0.1 with a
cosine decay schedule. We train for a total of 120 epochs for CIFAR10 and 50 epochs for SVHN. The default
skipping ratio α is set to 0.5.

ResNet38 DenseNet41 DenseNet53
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Figure 4. (a) Comparison of computational cost for different gating designs [11, 13] and DNN models [4, 18] on
CIFAR10. (b) Comparison of computational cost for different gating designs [11, 13] and DNN models [4, 18] on SVHN.

4.2. Experiment results

4.2.1. Evaluation for ACS-GN

For the initial set of experiments, we apply the ACS-GN method to two datasets and compare its performance
to other gating designs. The comparison results of accuracy and Giga FLOPs (GFLOPs) are presented in Figure
4 and Table 1 respectively, and these comparisons have yielded several observations. Firstly, the layer-skipping
gates, FFGate-I and FFGate-II, have a drawback in that they only permit a coarse-grained choice to execute the
whole layer, which may lead to a significant loss in accuracy. Out of the four designs, FFGate-II has the lowest
accuracy and highest cost compared to the others, including the baseline design. This is because its simplified
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design not only fails to effectively make skipping decisions but also adds additional cost to the backbone.
Second, with the exception of FFGate-II, the other three gates have a similar computational cost when used
with ResNet38. However, for both deeper and densely-connected DenseNet models, the costs of these three are
quite different. Third, ACS-GN always performs better than IADI. Compared with IADI, ACS-GN can achieve
a higher accuracy improvement (CIFAR10: 0.25%∼1.47% vs. 0.39%∼2.353%, SVHN: 0.034%∼0.131% vs.
0.104%∼0.135%) with more computational cost reduction (CIFAR10: 26.0%∼35.5% vs. 26%∼49.1%, SVHN:
–6.0%∼55% vs. 26.1%∼63.4%). These results demonstrate the effectiveness and advantages of our proposed
gate design, which not only improves the accuracy of the model but also minimizes the computational cost of
the model as much as possible.

4.2.2. Evaluation for ACS-DG

For our second round of experiments, we begin by examining how the grouping strategy impacts inference
performance. To do so, we use the example of DenseNet41 on CIFAR10. The experiment outcomes are detailed
in Table 2. The results clearly indicate that static grouping, which uniformly reduces model parameters, suffers
from suboptimal performance. In contrast, ACS-DG is uniquely positioned to learn the optimal group strategy
for each convolutional operation in a layer-by-layer approach. The model is able to achieve higher accuracy than
the baseline with a 25.35% reduction in FLOPs, which is significantly better than static grouping methods.

To further illustrate the effectiveness of ACS-DG, we employ DenseNet41 to demonstrate how it can
enhance the performance of ACS-GN. Table 3 outlines the outcomes of this experiment. Our results indicate
that ACS-DG is able to reduce computational costs by up to 25.35% and 50.91% on CIFAR10 and SVHN,
respectively, while achieving a slightly higher accuracy. These findings validate the design and usefulness of
ACS-DG.

Table 1. Comparison of inference accuracy for different models [4, 18] and datasets.
Dataset Approach ResNet38 DenseNet41 DenseNet53

CIFAR10

Baseline 91.667% 86.699% 86.609%
FFGate-I ↓ 90.274% ↓ 74.109% ↓ 75.130%
FFGate-II ↓ 87.640% ↓ 81.180% ↓ 80.699%
IADI ↑ 91.917% ↑ 87.861% ↑ 88.081%
ACS-GN ↑ 92.057% ↑ 88.301% ↑ 88.962%

SVHN

Baseline 98.072% 97.491% 97.587%
FFGate-I ↓ 93.146% ↓ 91.967% ↓ 93.023%
FFGate-II ↓ 90.213% ↓ 92.358% ↓ 93.177 %
IADI ↑ 98.126% ↑ 97.525% ↑ 97.718%
ACS-GN ↑ 98.176% ↑ 97.618% ↑ 97.722%

4.2.3. Evaluation for ACS

In the third set of experiments, we conduct a comparison between ACS and IADI, which is the latest state-
of-the-art technique on channel skipping, usable for both ResNet and DenseNet architectures. In an effort to
maintain fairness within the comparison, the training setting of IADI is kept in line with the original research
paper [11]. Additionally, we create an IADI variant that integrates our ACS-DG approach. The results of this
experiment are then charted in Table 4. Compared to the baseline, all three skipping schemes can reduce FLOPs

838



ZOU et al./Turk J Elec Eng & Comp Sci

Table 2. Comparison of computational cost and inference accuracy for different number of convolution groups in
DenseNet41.

Dataset Number of groups GFLOPs Acc(%)

CIFAR10

Static (baseline) 0.03542 88.301
Static, 2 groups 0.03050 88.121
Static, 4 groups 0.02725 87.720
Static, 8 groups 0.02885 88.371
Dynamic (ACS-DG) 0.02644 88.642

Table 3. Comparison of computational cost and inference accuracy for different convolutional approaches [18, 19] in
DenseNet41.

Dataset Approach GFLOPs Acc(%)

CIFAR10

Baseline 0.06965 86.699
ACS-GN 0.03542 ↑ 88.301
ACS (GN + DG) 0.02644 ↑ 88.642

SVHN

Baseline 0.06965 97.491
ACS-GN 0.04154 ↑ 97.618
ACS (GN + DG) 0.02039 ↑ 97.668

and improve accuracy, but ACS performs the best in terms of accuracy. For ResNet38, the three schemes have
nearly identical computational costs of roughly 0.5 GFLOPs, which is consistent with the findings reported
in Figure 4. These results imply that the DNN model does not leave much room for more optimization.
Nonetheless, the differences in FLOPs among the three techniques are greater for DenseNet41. Our proposed
ACS-DG helps IADI reduce FLOPs by 6.7% on CIFAR10 and 42.1% on SVNH. The FLOPs reduction of ACS
alone account for only 61.9% and 27.6% of IADI on CIFAR10 and SVNH, respectively. Overall, our ACS
method demonstrates higher or comparable performance in terms of both cost and accuracy compared to the
IADI approach.

Table 4. Comparison of computational cost and inference accuracy between IADI and ACS.
Dataset Approach GFLOPs Acc(%)

CIFAR10

ResNet38-Baseline 0.67313 91.667
ResNet38-IADI 0.49763 ↑ 91.917
ResNet38-IADI + ACS-DG 0.51552 ↑ 92.228
ResNet38-ACS 0.50160 ↑ 93.139
DenseNet41-Baseline 0.06965 86.699
DenseNet41-IADI 0.04271 ↑ 87.861
DenseNet41-IADI + ACS-DG 0.03984 ↑ 88.281
DenseNet41-ACS 0.02644 ↑ 88.642

SVHN

ResNet38-Baseline 0.67313 98.072
ResNet38-IADI 0.50631 ↑ 98.126
ResNet38-IADI + ACS-DG 0.50631 ↑ 98.167
ResNet38-ACS 0.51020 ↑ 98.194
DenseNet41-Baseline 0.06965 97.491
DenseNet41-IADI 0.07376 ↑ 97.525
DenseNet41-IADI + ACS-DG 0.04271 ↑ 97.548
DenseNet41-ACS 0.02039 ↑ 97.668
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4.2.4. Impact of parameter α

In order to balance computational cost and inference accuracy, a hyperparameter called α is introduced, which
determines the skipping ratio. In our experiments on CIFAR10, we only use the default value of α as 0.5.
Table 5 provides a breakdown of the cost and accuracy results for different α values on the CIFAR10 dataset,
ranging from 0.2 to 0.6. When α is large, the models skip more channels, resulting in a significant reduction
in computational cost. For the two DNN models, the variations in their accuracies show distinct trends as
α increases. Therefore, adjusting the value of α based on specific application demands, such as accuracy
sensitivity or cost sensitivity, can help trade-off performance and cost.

Table 5. Comparison of the effect of α on CIFAR10.
α Model GFLOPs Acc(%)

- ResNet38-Baseline 0.67313 91.667
DenseNet41-Baseline 0.06965 86.699

0.2 ResNet38 0.69736 92.819
DenseNet41 0.04372 88.331

0.4 ResNet38 0.66659 93.369
DenseNet41 0.04154 88.812

0.5 ResNet38 0.50160 93.139
DenseNet41 0.02644 88.642

0.6 ResNet38 0.43393 92.889
DenseNet41 0.01128 86.188

5. Conclusion and future work

Efficient inference on resource-constrained devices is a complex issue, as there is typically a tension between
the resource-demanding nature of DNN models and the resource limitations of edge devices. Dynamic neu-
ral networks have emerged as a promising solution to this problem [14]. In this paper, we propose a new
scheme, called ACS, which enables instance-based, fine-grained dynamic inference. Our approach incorporates
an efficient gating network, which can be easily applied to popular DNN architectures to skip unnecessary
calculations during inference. We evaluate ACS on benchmark datasets like CIFAR10 and SVHN, using typical
network backbones ResNet and DenseNet. We demonstrate that ACS performs even better than the existing
state-of-the-art dynamic inference approaches, such as FFGate-I, FFGate-II, and IADI. With ACS, we achieve
significant reductions in computational FLOPs while maintaining a higher level of accuracy.

However, it should be noted that the current experimental tests conducted for our proposed ACS have
only been limited to small-scale datasets and software implementation. Moving forward, we intend to further
evaluate the performance of ACS by testing it on other commonly used datasets such as KITTI [39], as well
as implementing it in more complex network architectures such as VGG or GoogLeNet [3]. Implementing and
evaluating our ACS on a real FPGA-based platform is another important issue [11], as skip operations are
currently not well supported by commonly used hardware such as CPUs or GPUs [40]. Interested readers are
referred to relevant papers [41, 42] and books [43, 44] on this topic, and can choose the Xilinx Zynq boards for
implementation [11, 42].
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