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Abstract: The training of supervised machine learning approaches is critically dependent on annotating large-scale
datasets. Semisupervised learning approaches aim to achieve compatible performance with supervised methods using
relatively less annotation without sacrificing good generalization capacity. In line with this objective, ways of leveraging
unlabeled data have been the subject of intense research. However, semisupervised video action recognition has received
relatively less attention compared to image domain implementations. Existing semisupervised video action recognition
methods trained from scratch rely heavily on augmentation techniques, complex architectures, and/or the use of other
modalities while distillation-based methods use models that have only been trained for 2D computer vision tasks. In
another line of work, pretrained vision-language models have shown very promising results for generating general-purpose
visual features with reports of high zero-shot performance for many downstream tasks. In this work, we exploit a
language-supervised visual encoder for learning video representations for video action classification tasks. We propose
a teacher-student learning paradigm through feature distillation and pseudo-labeling. Our experimental results are a
proof-of-concept revealing that multimodal feature extractors can be utilized for spatiotemporal feature extraction in a

semisupervised learning context and show compatible performance with SOTA methods, especially in a low-label regime.
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1. Introduction
Supervised deep learning approaches for video action classification have yielded great success [1-6]. Unfortu-
nately, the training of supervised approaches is critically dependent on annotating large-scale datasets. For
tasks of video understanding, there is a high cost of data annotation. Despite the availability of video data
on the internet, curating videos and creating annotations is still expensive. Moreover, training with large-scale
datasets is time- and resource-consuming. Semisupervised learning (SSL) approaches aim to achieve compatible
performance with supervised methods using relatively less annotation without sacrificing good generalization
capacity [7-10]. In this direction, making use of data without labeling is an intense topic of recent research.
However, the use of SSL approaches in video action recognition has received relatively less attention.

Natural language supervision has been utilized for visual representation learning and proven to be very
effective for generating joint semantic embedding space [11, 12]. In terms of data acquisition convenience, using
raw text data as a training signal is advantageous compared to classical machine learning annotation formats.

For instance, the CLIP [12] backbone is trained on a dataset of (image, text) pairs collected from a variety of
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publicly available sources on the internet. Generated embedding space has also been proven to be very effective
for zero-shot inference in different downstream vision tasks [13-15].

Inspired by promising work on zero-shot transfer, natural language supervision, and the SSL literature,
we propose to transfer/distill knowledge from semantic multimodal joint embedding space for better SSL
implementations. In this work, we propose to exploit a frozen text-pretrained visual encoder backbone for video
representation learning. Given the reported zero-shot performances, our goal is to leverage strong action-related
information content in multimodal representations, which will lead to training better models for predicting action
classes given a video. Architecture details and the dataset used in the training of the mentioned transformer-
based space-time encoder can be found in [16]. We perform feature distillation pretraining using mean square
error (MSE) loss by leveraging video data without using any labels. The feature distillation pretraining stage
is followed by a fine-tuning stage of both the teacher and student network by introducing cross-entropy loss
calculated for the labeled portion of the training data and pseudo-cross-entropy loss calculated for training data
pseudo-labeled by the teacher network.

The main contributions of this paper can be summarized as follows:

o We used large-scale multimodal training as an auxiliary for feature distillation in contrast to previous

methods that use pretrained fixed weight still-image networks.

¢ Vision-language models are proven to be strong fine-tuners. In this work, learned knowledge is transferred

to a customized network leveraging a simple teacher-student training scheme.

The organization of this manuscript is as follows. Section 2 introduces related studies on semisupervised
action recognition, vision-language models, and knowledge distillation. Section 3 presents the method proposed
in this work. Section 4 provides experimental results. The evaluation of the findings, limitations of the study,

and future research directions are discussed in Section 5. Finally, we summarize our findings in Section 6.

2. Related work

It is possible to examine related studies within the scope of this work within the three categories of semisuper-
vised action recognition, vision-language models, and knowledge distillation. The subsection on semisupervised
action recognition first describes deep learning-based architectures and algorithms in the literature that are
primarily used for action recognition tasks. The SSL frameworks and existing semisupervised action recognition
methods in the literature are then explained. In the subsection on vision-language models, natural language su-
pervision, multimodal joint embedding space, and zero-shot action classification are explained. The subsection

on knowledge distillation explains the concept of knowledge distillation in the context of deep learning.

2.1. Semisupervised action recognition

Video action understanding has been extensively studied in terms of action recognition [1, 4, 6, 44-46]. Action
recognition is the task of identifying and classifying human actions or activities from video data, with potential
applications in various fields. Action recognition involves feature extraction and video-level prediction. In
computer vision, deep convolutional neural network (CNN)-based architectures were predominantly used for
visual recognition tasks. Conventional methods utilize two-stream CNNs to process temporal and spatial
information separately with RGB frames and optical flow [17, 35]. After the introduction of 3D CNNs with

3D convolutions, they can learn spatial and temporal information together in videos for better representation
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learning since spatiotemporal video volumes can be processed in CNN-based architectures such as C3D [6], I3D
[1], SlowFast [4], X3D [3], and ResNet3D [19]. In order to avoid computational costs, 2D CNNs have also been
utilized with additional temporal modules [47, 48, 50, 51]. Due to inspiration from the success of transformer-
based architectures in natural language processing, there is also a shift from CNN-based architectures to
transformer-based ones in the computer vision community with the introduction of vision transformers [18].
Parallel to this work, action recognition models based on vision transformers have also been proposed recently
[38—40, 52]. However, annotation labor is the main disadvantage of these methods, which depend only on
supervised training. Pretraining on large datasets followed by fine-tuning of the target dataset also became a

common practice after the introduction of large-scale datasets like Kinetics or Sports-1M [36].

The main objective of SSL is constructing models that utilize unlabeled data in conjunction with labeled
data to improve performance, especially in cases where large volumes of unlabeled data are available but
labeling is challenging, expensive, and/or not feasible. Pseudo-Label [31] and Mean-Teacher [9] are baseline
SSL frameworks proposed for the image domain originally. Pseudo-Label assigns maximum predicted labels
as if they were true labels for unlabeled samples and trains the network in a supervised manner. Mean-
Teacher trains two identical networks called ‘teacher’ and ‘student’ simultaneously using cross-entropy loss and
consistency regularization loss. Cross-entropy loss is calculated for student network predictions for labeled
samples, whereas consistency regularization loss is calculated between student and teacher predictions for noise-
applied samples for minimizing the difference in predictions. The weights of the teacher network are updated as
an exponential moving average of the weights of the students. S4L [33] unifies SSL with self-supervised learning.
Self-supervised training initially trains a network for a pretext task and learned representations improve the
performance in downstream tasks as well [53]. Specifically, in [33], a network was trained for the pretext task

of predicting applied rotation to an image.

Although SSL in the 2D image domain has been proven to be very effective, there is relatively less work
on semisupervised action recognition. Recent studies proposed the usage of regulatory signals from fixed/frozen
pretrained networks for knowledge distillation through feature consistency. For example, VideoSSL [20] allowed
the exploitation of predictions of a 2D image classifier CNN to distill the information related to the objects of
interest in the video based on the assumption that the appearance of objects can be an indication of the actions
that take place in the video clip. To do this, soft cross-entropy loss is used, which treats the predictions of a 2D
ResNet trained for an image classification task as soft labels. Similarly, DANet [21] leverages multiple auxiliary
networks pretrained for static-image computer vision tasks. In this work, positive and negative video pairs are
created (positive meaning from the same video, versus negative meaning from different videos) and a weighted
contrastive loss is used for feature consistency. In another line of work, [22] suggested a two-pathway temporal
contrastive model and processed unlabeled videos at two different speeds leveraging the consistency assumption
that changing the speed of the video does not change the action. ActorCutMix [34] was used for a video data
augmentation strategy for scene invariance since action recognition datasets show scene biases causing models
to focus more on the scene rather than the action itself [54]. Proposed augmentations are then plugged into
SSL frameworks such as UDA [55] and FixMatch [7] for data-efficient action recognition. Learning2Augment
[56] was used to propose a video augmentation method for composite videos. Based on the predictions of the
selector network, video pairs to be used for augmentation are picked and novel videos are created through video
compositing. Specifically, one of the pairs is used as the foreground and the other as the background. After

background-foreground segmentation, novel videos are created through image inpainting. TACL [49] was also
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used to propose temporal action augmentation for extracting coarse and fine-grained action representations
from videos and a semisupervised action consistency learning framework for dynamic threshold evaluation in
pseudo-labeling. In [23], cross-model pseudo-labeling (CMPL) was suggested, where an auxiliary backbone
with different depths is used to get a complementary representation for better pseudo-labeling. In [24], it was
proposed to utilize a temporal gradient for additional modality for better temporal information encoding, and
[32] also used a temporal gradient in addition to optical flow information. Recently, SVFormer [41] was proposed

for the use of transformer models and introduction of augmentations for spatial and temporal domains.

2.2. Vision-language models

Natural language can be both a supervision and a prediction space. Raw text data can be utilized as an
alternative training signal to classical machine learning annotations. Images can be mapped into the semantic
space of words and this flexible prediction space enables zero-shot learning, which is the ability to classify
instances of a class that is not seen. The method presented in [25] is a proof-of-concept for the mentioned cross-
modal transfer. For learning visual representations, CLIP [12] trains an image and text encoder in order to
learn correct pairings for training data using contrastive learning. Since the introduction of the CLIP backbone,
vision-language models have been candidates for vision foundation models. ‘Foundation model’ here refers
to a task-agnostic model that generates general-purpose visual features for any downstream task. There is a
growing body of literature on multimodal learning combining vision and language modalities for generating
joint embedding spaces for the image domain ALIGN [57] and Florence [58], as well as the video domain Violet
[59], ClipBert [37], and Frozen in Time [16]. Parallel to this work, large-scale video datasets have also been
introduced [16, 42, 43].

Zero-shot classification inference in generated embedding space reduces to searching and finding the test
class whose embedding is the nearest-neighbor of the model’s feature extractor output. Figure 1 illustrates
a representation of the vision-language joint embedding space. During training of a joint embedding space,
images/videos and associated textual descriptions or captions are presented to the model. The visual and
textual features are extracted with a visual and text encoder, respectively. Minimizing the distance between
pairs of visual and textual representations while maximizing the distance to other nonmatching pairs is the
training objective. In this way, the model learns to recognize/capture the relationships and similarities between
visual and textual elements. When text or an image/video is mapped to this shared space, they are expected
to have similar representations when they convey similar semantics. Once the joint embedding space is learned,
tasks such as image captioning, retrieval, or classification can be performed without additional task-specific
training. Figure 2 presents the zero-shot action classification inference within this space. For each query
video that we want to classify, one can simply look at the closest class label representation to the query video
representation. In both Figure 1 and Figure 2, V;.T; represents the dot product but is generally a distance or
similarity metric between visual and textual embeddings. T3 here represents the embedding of the ground-truth
class label “billiard.” V;.T; is calculated for all class labels. V3.T3 gives the minimum distance with the query

video and is therefore colored differently.

2.3. Knowledge distillation

Deep learning models have the capacity to transfer knowledge. For example, after training with the ImageNet
dataset, which contains millions of images, a weight file is generated as a result for image classification tasks.

Using ImageNet pretrained weights has been proven to be very effective not only for image classification but
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Figure 2. Zero-shot action classification in joint embedding space of vision-language model: nearest-neighbor
search among text embeddings of class labels.

also in various computer vision tasks. However, knowledge transfer in 3D CNNs and specifically for action

recognition is trickier due to the lack of large-scale datasets for effective pretraining. With the introduction

of the Kinetics dataset, the pretraining of networks has yielded significant gains in accuracy [1]. Furthermore,

the work in [26] proposed an inflation technique from image models that is also suboptimal due to the risk of

adding bias from static image models and constraints with the flexibility of architecture choice. The concept

of knowledge distillation was introduced by Hinton [27]. The term typically refers to training a relatively
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smaller student network with the same data teacher model trained to achieve the same performance. In this
work, we use knowledge distillation for pretraining purposes, similar to DistInit [30]. DistInit uses image-based
teachers to generate soft labels for a video model to leverage pretrained 2D networks for learning better video
representations. However, DistInit was only studied in the supervised learning context and it used a large set
of unlabeled source videos. Specifically, before supervised training with the target dataset, the network is first
trained to output the same soft labels as the teacher network, resulting in better weight initialization prior to

supervised target task training.

3. Method

Our proposed method is based on feature distillation from a visual-language model. We also take advantage of
the strong fine-tuning capability of the visual-language model by using it in the pseudo-labeling of unlabeled
samples. Background information on knowledge distillation and visual language models was provided in Sections
2.3 and 2.4, respectively. In this work, we propose a teacher-student training scheme. Our proposed algorithm
trains a 3D ResNet-18 from scratch for video action classification in a semisupervised fashion using both labeled
and unlabeled videos. The training scheme consists of a feature distillation stage and a fine-tuning stage, which

are explained in Sections 3.1 and 3.2.

3.1. Feature distillation stage

During knowledge distillation training, our 3D-CNN is designed to produce feature output matching size with
teacher backbone output. We used the space-time encoder proposed in [16] as a multimodal backbone, which
utilizes transformer encoders for image, video, and caption encoding. The mentioned network has been trained
on the WebVid-2M dataset [16] consisting of videos with captions collected from the internet. We leverage only
the visual branch of the mentioned backbone with pretrained weights. We then perform knowledge distillation
by enforcing feature consistency. LetZ = {z1,z9,...,2x} denote the unlabeled video clips with no class
label annotation available. For unlabeled data, given that gsiudent(z) is the visual embedding produced by
3D classifier CNN and gmultimodal—teacher () is the output visual embedding produced by the frozen teacher
network, Lgistitiation given in Eq. (1) is the mean square error (MSE) loss between the multimodal teacher

network and classifier to be trained:

Ldistillation = Z H ‘gstudent (IE) - gmultimodal—taachar(x”‘2 (1)
zZ

The concept of knowledge distillation typically entails training a relatively smaller student network with
the same data that the teacher model was trained on to achieve the same performance. Our source of unlabeled
data is relatively small and different from the one that is used to train the multimodal encoder. We used training
data from the UCF101, HMDB51, and Kinetics400 datasets. See Section 4.1 for details about the datasets used.
We did not use any labels at this stage. An overview of the feature distillation is depicted in Figure 3. As
shown in the figure, in this stage only training videos without labels are presented to the student and teacher
networks. The training objective is to minimize the distance between representations produced by the teacher
and student. The weights of the teacher network are kept fixed in this stage, preventing any gradient flow for

the teacher branch.
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Figure 3. Feature distillation training stage.

3.2. Action recognition fine-tuning stage

In the fine-tuning stage, both the teacher and student networks are fine-tuned for the downstream task of
action classification. To do this, we make a small change to the model architectures and add linear classifiers
on top of the networks. Let X; = {z;,,2i,,...,2, } denote the annotated video clips with corresponding label
annotations y; = {y1,%2,-.,yx}. Given C video classes, i.e., y; € {0,1}“, and given a video and class label
pair P = {xz,,y;} the teacher and student networks are optimized by minimizing cross-entropy losses as given
in Eq. (2):

Lr.cg = Ls.ce = — Z ny log p®(1;) 2)

1, exX c¢

After the introduction of labeled data to the teacher network, we assign pseudo-labels to unlabeled data
and treat them as “ground-truth” for student training if they are above a certain confidence threshold. The
Softmax output of the linear classifier is used as a confidence metric. Let X = Xui,, Tuiy, - - -, Tui, denote
the unlabeled video clips with corresponding pseudo-label annotations y; = y1,92,...,yx. Given C video
classes, ie., y; € 0,19, and a video-label pair P = Tl Yul, » the network is optimized by minimizing the

pseudo-cross-entropy loss given in Eq. (3):

LPseudo—CE = - Z ZyAchngc(xll) (3)

Ty, eX c
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Figure 4. Example pairs of videos and captions from the WebVid2M dataset.

During the fine-tuning stage, the student network is trained using both the calculated cross-entropy loss
and the pseudo-cross-entropy loss. For labeled samples in a batch, the cross-entropy loss is calculated, while for
unlabeled samples, the pseudo-cross-entropy loss is computed. An overview of the action recognition fine-tuning
process is presented in Figure 3. As shown in Figure 3, both labeled and unlabeled videos are presented to the
student and teacher networks. In this stage, the weights of the teacher network are no longer fixed. By allowing
the gradient flow through the teacher network, we fine-tune it for the target task and get more confident and
reliable scores, which are used as pseudo-labels for student training. Pseudo-cross-entropy loss is only calculated

for the student network. No self-training of the teacher network is performed.

4. Experiments

4.1. Datasets and evaluation

For video-text pretraining of the teacher multimodal encoder, WebVid-2M was used, which is a large-scale
video captioning dataset of over two million pairs of video and text captions. Example video-caption pairs can
be seen in Figure 4. For feature distillation, we used the training set of the UCF101 [28] and HMDB51 [29]
datasets and an additional 5% of the Kinetics-400 [1] training samples. We did not use any labels in distillation
training. Kinetics-400 is a large-scale benchmark dataset for action recognition mostly consisting of YouTube
videos. UCF101 and HMDB51, on the other hand, are popular and relatively small-scale benchmark datasets for
action recognition models. For performance evaluation, we used the validation set of the UCF101 and HMDB51

datasets. We used the top-1 accuracy metric for performance evaluation.
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4.2. Experimental results

Table 1 shows the zero-shot action classification (ZSAC) performance of the teacher multimodal encoder for the
HMDB51 and UCF101 datasets. We evaluate the performance for the official Test-Split-1 for both datasets.
For zero-shot inference we use cosine distance as a similarity metric. We assign videos to classes with maximum
cosine similarity calculated against class label text embeddings. Figure 5 and Figure 6 show T-SNE visualizations
of the UCF101 and HMDBS51 datasets, respectively. As shown in Figures 5 and 6, for both datasets, even without
fine-tuning, our multimodal encoder can extract representations that cluster videos with respect to action classes,
which shows its zero-shot inference capacity. We only fine-tuned the visual encoder of the teacher backbone
while keeping the text encoder weights fixed. After fine-tuning, the clusters became even more separable. Table
1 reports top-1 accuracy after fine-tuning with 10% of the labeled data for UCF101 and 50% of the labeled
data for HMDB51. The multimodal encoder appears to be a strong fine-tuner and it is fine-tuned quickly
after approximately only 10 epochs in our experiments. Our proposed training aims to exploit these learned
embeddings. Multimodal learning heavily depends on data. The more data used for training, the larger the
architecture will be. Additionally, for applications where architecture customization is required, fine-tuning may
not be a practical option. In this work we tried to train a lightweight 3D CNN from scratch using only feature

distillation without considering network heterogeneity or any intermediate representation distillation.

Table 1. Top-1 accuracies for multimodal encoder for action classification task.

Model UCF101 (10%) | HMDB51 (50%)
Teacher-ZSAC 45.5% 27.0%
Teacher-FineTuned 82.5% 57.4%
3D-ResNet-18 (from scracth) | 21.6% 29.1%

Table 2 shows a comparison with the state-of-the-art. In Table 2, bold values represent the best values.
The compared literature results in this table are derived from [24]. As mentioned in Section 2.2, one avenue
of study in the semisupervised action recognition literature proposes the usage of regulatory signals from
fixed /frozen pretrained networks for knowledge distillation. We first compare our proposed method with this line
of work since we also propose a distillation-based method. DANet and VideoSSL leverage knowledge distillation
in the form of feature distillation and logit distillation, respectively. Both DAnet and VideoSSL adopt 2D teacher
networks exclusively for knowledge distillation, while DANet employs a combination of three distinct 2D teacher
networks. However, recent SOTA methods in computer vision tasks rely on foundation models for representation
learning. In contrast to previous work, we propose distilling from a large-scale text-guided pretrained model.

SOTA non-distillation-based methods perform some form of FixMatch [7] like augmentation for the
pseudo-labeling process, which requires the processing of the same data when different kinds and levels of
augmentations such as horizontal flip, RandAugment, or CTAugment are applied. Although this does not
require additional costs for inference, it makes training more complex, especially when new modalities are
introduced like temporal gradients [24]. In the official implementation of [24], precalculated and extracted
temporal gradient frames from video clips are presented to the model, which requires a decent amount of memory
even for relatively small datasets like UCF101 and HMDB51. CMPL [23] applies strong and weak augmentations
in two parallel primary and auxiliary backbones with different depths. The mentioned backbones are then asked
to predict pseudo-labels for each other. This FixMatch-like auxiliary network requires more frames in training.
These works reported 79.1% and 25.1% top-1 accuracies for UCF101 using 10% and 1% of the labeled data,
respectively, with a 3D-ResNet-50 primary backbone. For a fair comparison, we only included 3D-ResNet-18
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Figure 5. T-SNE visualizations of extracted features for UCF101 dataset.
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Figure 6. T-SNE visualizations of extracted features for HMDB51 dataset.
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Table 2. Performance comparison with SOTA.

Method Backbone Input UCF101 (10%) | UCF101 (5%) | UCF101 (1%) | HMDB51 (50%)
Supervised 3D-ResNet-18 Video 21.6 15.1 6.5 29.1
Pseudo-Label [31] | 3D-ResNet-18 Video 24.7 17.6 - 32.4
Mean Teacher [9] | 3D-ResNet-18 Video 25.6 17.5 - 30.4
S4L [33] 3D-ResNet-18 Video 29.1 22.7 - 31.0
ActorCutMix [34] | R(2+1)D-ResNet-18 | Video 40.2 27.0 38.2
VideoSSL [20] 3D-ResNet-18 Video 42.0 30.9 - 34.9
DANet [21] 3D-ResNet-18 Video 64.6 - - -
LTG [24] 3D-ResNet-18 Video+TG | 624 44.8 - 48.4
Cross-model [23] | 3D-ResNet-18 Video 67.6 - 23.8 -
L2A[56] 3D-ResNet-18 Video 56.1 - - 43.2
TACL[49] 3D-ResNet-18* Video 55.6 - - 40.2
Proposed Method | 3D-ResNet-18 Video 62.4 53.6 24.2 34.5

*: Indicates modification.

Table 3. Effect of pseudo-labeling.

Labeled data ratio | Pseudo-labeling | Top-1 accuracy
0% Xo o1t
5 i

backbone results in our table. Our proposed method has higher top-1 accuracy for 5% and 1% labeled cases
whereas [23] has higher accuracy for 10% labeled cases for UCF101 for the ResNet-18 backbone. The proposed
method has higher accuracy in the low-label regime due to better weight initialization after the distillation
stage. We also did not include the work in [41] or [32] since those studies did not use a CNN-type architecture
and leveraged two additional modalities, respectively.

We reached 62.4%, 53.6%, and 24.2% top-1 accuracies for the UCF101 dataset using only 10%, 5%, and
1% of labeled samples, respectively, by simply using feature distillation and leveraging the teacher network in
the pseudo-labeling process. The HMDB51 dataset is more difficult compared to UCF101. We achieved 34.5%
accuracy for HMDBb51. As shown in Figures 6b and 7b, the T-SNE visualizations of learned embeddings are
well separable. Table 3 shows the effect of pseudo-labeling on the top-1 accuracy performance for UCF101.
The teacher-generated pseudo-labels improved the accuracy in all three cases differing in terms of the labeled
data ratio. Our results show that we reached a compatible performance regarding SOTA methods using a
lightweight architecture by making use of a single parallel network when we exploited the multimodal backbone
with a vanilla form of feature distillation accompanied by pseudo-labeling. Although our multimodal teacher
was previously trained on 2.5M video-caption pairs, our student could mimic its robust task-agnostic features
while training a relatively small amount of data (see Section 4.1 for dataset details). Training with more data

would be expected to improve the performance more.

4.3. Implementation details

PyTorch implementation of the 3D ResNet-18 model is used. The model is initialized with the “weights=None”

argument and training starts from scratch for the student network. We use the AdamW optimizer starting with
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a learning rate of 3 x 10~° for both the feature distillation stage and the action recognition fine-tuning stage.
For the distillation stage, training is performed with a batch size of 32. For the action recognition fine-tuning
stage, we initially perform training with only cross-entropy loss. For the action recognition fine-tuning stage,
the batch size is 4 initially. Once the teacher network predictions are confident enough, model weights are frozen
and the batch size is increased to 16. We train the student network for 300 epochs for knowledge distillation. We
randomly select 4 frames for each clip. The output size of the backbone visual encoders is 256. We randomly
select labeled examples from each of the datasets. The SoftMax output of the linear classifier is used as a
confidence metric and no other hypermeter or temperature scaling is used. The confidence threshold is selected
as 0.2 and 0.4 for UCF101 and HMDB51, respectively. The training and testing phases of the proposed method
are performed with NVIDIA GEFORCE RTX 2080 TT GPU.

5. Discussion

Video action recognition is a fundamental task of video understanding. Due to the annotation labor of
supervised learning, especially for large-scale video datasets, label-efficient learning strategies are required.
Existing SSL approaches for action recognition leverage video-specific augmentation strategies, FixMatch-like
training schemes, additional modalities like temporal gradients or optical flow, and distillation from models
previously trained on 2D still-images. In this work, we proposed a distillation-based SSL framework for video
action recognition. Unlike previously proposed distillation-based methods, instead of using pretrained fixed-
weight still-image networks, we used a vision-language model trained on pairs of videos and captions. During
distillation we trained the network using only training videos without any labels at all. In the fine-tuning phase,
we used only part of the labeled training data and used the teacher network to pseudo-label the rest. In this
study, we aimed to reduce the dependence of action recognition methods on labeled data through distillation
from a vision-language model.

We performed an evaluation of our algorithm based on two of the most widely used datasets. We
compared our proposed method against several baseline methods in the literature. The main contribution of
our paper is integrating a vision-language model into the SSL framework. Our results demonstrate that the
proposed feature distillation pretraining improves the performance of supervised learning. Even though we used
a relatively small and novel training set for distillation compared to the vision-language model originally trained,
knowledge transfer occurred (see Section 4.1. for details about the datasets used). When coupled with pseudo-
labeling, the proposed method achieves competitive performance compared to SOTA methods. The architecture
of our proposed method is flexible in terms of the choice of teacher and student networks. Therefore, any other
foundation model has the potential to be easily plugged into training. Moreover, leveraging more sources of
unlabeled data would be expected to improve the performance.

Although our findings show promising results, different forms of knowledge distillation to deal with
network heterogeneity and the effect of different distance metrics as loss functions while enforcing feature
consistency should be investigated and optimized for customized settings. The limitations of this work can be

summarized as follows:

¢ Knowledge transfer still heavily depends on data size, although not necessarily labeled data.

o The effects of distribution shifts between text-guided pretraining, distillation, and target datasets on

knowledge transfer are yet to be explored.
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6. Conclusion

In this work, we have proposed an approach for semisupervised action recognition exploiting multimodal feature
extractor backbones. We suggest training our student network to mimic the teacher network initially for
knowledge transfer using distillation loss for feature consistency. The mentioned distillation stage provides better
weight initialization and this results in higher performance in the case of less labeled data. We also propose
fine-tuning the teacher network for pseudo-labeling. Since the multimodal teacher backbone is a strong fine-
tuner, we generated pseudo-labels with high accuracy, improving the accuracy further. The experimental results
indicated that the proposed method achieves competitive performance compared to state-of-the-art methods.
There is a growing body of literature on multimodal learning for generating joint embedding spaces. Our
work has aimed to show that vision-language multimodal embedding spaces can be utilized in a semisupervised
learning framework for action recognition tasks. We hope that our work will inspire further research on the
intersection of multimodal learning and SSL. There is still room for improvement on how to effectively transfer
video representations from VL models for label-efficient training. Task-specific fine-tuning of foundation models
and the incorporation of video-specific augmentations could further reduce label dependency. In the future, we

plan to investigate the effectiveness of feature distillation for other downstream video applications.
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