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Abstract: Hyperspectral imaging has emerged as a prominent area of research in the field of remote sensing science.
However, hyperspectral images (HSIs) pose a notable challenge due to the presence of numerous irrelevant and redundant
spectral bands exhibiting high correlation. Therefore, it is necessary to enhance the classification performance for HSI
processing by selecting the most relevant discriminative spectral bands. To this end, this paper introduces a metaheuristic
search method called enhancing exploration-exploitation in harmony search (E3HS). The standard harmony search
suffers from many weaknesses, such as premature convergence and falling easily into the local optimum. Consequently,
E3HS was proposed to evade falling into the local optimum by creating a balance between exploration and exploitation
strategies to accelerate convergence toward the global optimum solution. Finally, two machine learning classifiers (k-
nearest neighbor and support vector machine) were employed for hyperspectral image classification at the pixel level.
Moreover, the proposed method was compared with the bat algorithm, Archimedes optimization algorithm, particle
swarm optimization, standard harmony search, genetic algorithm, and krill herd algorithm. The experimental results
demonstrated significant improvement with overall accuracy equal to 87.49%, 94.85%, and 94.41% for the Indian Pines,
Pavia University, and Salinas datasets, respectively.
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1. Introduction
Hyperspectral imaging captures rich and discriminative information that enables the differentiation of chemical
and physical characteristics within regions of interest [1]. Hyperspectral images (HSIs) contain hundreds of ad-
jacent spectral bands that span the electromagnetic spectrum and can accurately distinguish similar objects [2].
Moreover, HSIs consist of three dimensions, with two dimensions describing the spatial features and the third
dimension representing the spectral features [3]. Furthermore, hyperspectral imaging has been widely utilized
across various disciplines, showcasing its versatility and potential for numerous applications such as precision
agriculture [4], environmental monitoring [5], mineral exploration [6], biomedical imaging [7], and archaeology
[8]. However, the rich spectral information provided by HSIs presents both opportunities and challenges. On the
one hand, it allows for detailed analysis and identification of materials based on their unique spectral signatures.
On the other hand, the high dimensionality of hyperspectral data poses computational and analytical complex-
ities, requiring advanced processing techniques for effective interpretation and classification [9]. Therefore, the
process of HSI dimensionality reduction plays a crucial role in achieving high accuracy, reducing computational
complexity, and mitigating the Hughes phenomenon. By extracting the most informative and discriminative
∗Correspondence: divyameena.s@vitap.ac.in
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spectral features, dimensionality reduction techniques enable more efficient data analysis, improved classification
performance, and better utilization of computational resources. The methods for HSI dimensionality reduction
can be classified into two main categories: feature extraction approaches and feature selection approaches [10].
Feature extraction approaches aim to transform the original high-dimensional HSI data into a lower-dimensional
representation by extracting a set of new features that capture the most relevant information. Some commonly
used feature extraction techniques for HSI include principal component analysis (PCA) [11], independent com-
ponent analysis (ICA) [12], and minimum noise fraction (MNF) [13]. These methods focus on finding a new
representation of the data that preserves the most discriminative spectral characteristics while reducing the
dimensionality. Moreover, deep learning models have been recently applied for feature extraction by learning
discriminative features from the input data and capturing both local and global spectral information, as well
as spatial dependencies [14]. Unlike feature extraction methods, feature selection (band selection) approaches
aim to select a subset of the original spectral bands that are most informative and relevant for the classification
task [15]. These methods evaluate the importance or relevance of each spectral band and retain only the most
discriminative ones. Popular feature selection techniques for HSI include sequential forward selection (SFS)
[16], sequential backward selection (SBS) [17], and mutual information-based methods [18,19]. By selecting a
subset of spectral bands, feature selection approaches reduce the computational complexity and enhance clas-
sification performance by eliminating irrelevant and redundant information. Moreover, band selection methods
are generally performed to select the most informative and relevant spectral bands while keeping the original
band’s discriminatory information and maintaining meaningful physical information for the HSI. According to
the availability of class labels, the methods for selecting spectral bands are classified into two types: supervised
and unsupervised methods [20]. Supervised methods rely on the class label information to choose the best infor-
mative bands [21]. On the contrary, unsupervised methods do not depend on preliminary information related
to the class labels to select the most discriminant bands [22]. Moreover, several approaches have been imple-
mented to specify meaningful bands, such as clustering-based approaches and ranking-based approaches [23].
As for band selection based on clustering methods, it mainly comprises two steps. In the first step, the spectral
bands are assembled into clusters where the intercluster variance will be maximized between bands in the other
cluster and the intracluster variance will be minimized between bands in the same cluster. Then, in the second
step, the best spectral bands with the highest average correlations are selected from the corresponding clusters
[24]. Despite clustering-based methods being widespread methods in selecting meaningful spectral bands, some
significant and relevant bands are still neglected when choosing spectral bands due to clustering-based methods
depending mainly on redundancy between bands. On the other hand, ranking-based techniques are performed
by ranking all the spectral bands according to a specific evaluation measure. The spectral bands are then ar-
ranged according to the top-ranked and, ultimately, the subset of the spectral bands of the top-ranked is formed
[25]. However, in some cases, ranking-based methods select redundant bands because the correlation between
bands is not considered while evaluating and ranking the bands. Although many previous techniques have been
introduced for choosing the most relevant discriminative spectral bands, it still represents a significant dilemma.

Additionally, nature-inspired optimization approaches have been utilized to select the most informative
spectral bands, such as artificial bee colony (ABC) [26], genetic algorithms (GAs) [27], particle swarm opti-
mization (PSO) [28], the bat algorithm (BA) [29], and wind-driven optimization (WDO) [30]. Table 1 presents
a literature review for HSI band selection using different optimization methods. Furthermore, metaheuristic
optimization algorithms consider the optimization problem as a spectral band selection problem addressed by
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effectively defining the appropriate fitness function [31]. The selected bands’ effectiveness is evaluated and their
quality is measured via the fitness function. Therefore, it is essential to carefully define the fitness function
as it affects the overall performance. Moreover, many evaluation measures can be considered as fitness func-
tions, such as distance criteria based on calculating the distance between selected spectral bands (Bhattacharya
distance or Hausdorff distance) [32], information measurement criteria (the entropy criterion or mutual infor-
mation) [33], and dependency criteria (measuring similarity and correlations between spectral bands) [34]. In
addition, selecting an effective optimization algorithm is also a significant factor in selecting discriminant spec-
tral bands effectively. A suitable optimization algorithm should be chosen, leading to convergence towards the
global optimum solution, avoiding premature convergence or falling into the local optimum [35]. Many previous
studies have been conducted for selecting the most informative spectral bands of hyperspectral images using
optimization algorithms such as GAs inspired by Darwin’s theory. However, comparing GAs with the standard
harmony search (HS), we find that the HS considers all the solutions in the harmony memory (HM) to generate
the new solution, unlike GAs, which depend on only two solutions (parents) to generate the new solution [36].
However, despite the HS algorithm being much faster than GAs in terms of execution time, the HS cannot reach
the optimal solution effectively, and it suffers from premature convergence and falling into the local optimum
easily. In this paper, HSI dimensionality reduction is addressed by selecting the most informative spectral
bands. The HSI also contains a large number of irrelevant and noisy spectral bands that need to be removed
in order to reduce the processing time and eliminate the Hughes phenomenon. The HS is used for selecting the
most important spectral bands as it requires less computation time compared to many optimization algorithms.
However, the HS algorithm suffers from some shortcomings such as easily falling into the local optima and pre-
mature convergence. In order to address all of these problems, the main contributions of this study are as follows:

1. This study introduces an enhanced version of the HS algorithm specifically designed for selecting the most
relevant and informative spectral bands. By effectively reaching the global solution within the search
space, the algorithm ensures that the selected bands are highly discriminative and valuable for subsequent
analysis tasks.

2. The proposed algorithm incorporates two additional solutions, referred to as harmonies, to further improve
the band selection process. The first harmony leverages the worst individual experiences. Conversely, the
second harmony exploits the best individual experiences of all harmonies. These improvisations enhance
the algorithm’s ability to balance exploration and exploitation strategies.

3. To evaluate the effectiveness of the proposed method, a comparative analysis is conducted with several
well-known algorithms, including the bat algorithm (BA), Archimedes optimization algorithm (AOA),
particle swarm optimization (PSO), harmony search (HS), genetic algorithm (GA), and krill herd (KH).
The comparison is performed on three benchmark datasets commonly used in HSI analysis. The results
demonstrate the remarkable superiority of the proposed method over the state-of-the-art band selection
approaches.

This paper is arranged in the following form: Section 2 offers a brief overview of the HS algorithm,
followed by the proposed methodology in Section 3, and the experimental results are outlined in Section 4. A
discussion is presented in Section 5 and conclusions are drawn in Section 6.
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Table 1. Literature review for HSI band selection using optimization methods.
References Dataset Optimization method Year Overall accuracy (OA)

Indian Pines OA = 73.67%
Pavia University OA = 88.17%[37]
Salinas

Gray wolf optimizer 2015
OA = 95.38%

Indian Pines OA = 78.07%
Pavia University OA = 90.56%[38]
Salinas

Artificial bee colony 2020
OA = 92.22%

Indian Pines OA = 99.44%
Pavia University OA = 99.86%[39]
Salinas

Improved whale optimization 2021
OA = 99.83%

Indian Pines OA = 96.54%
Pavia University OA = 98.93%
Salinas OA = 99.78%[40]

Botswana

Krill herd 2022

OA = 98.66%
Indian Pines OA = 88.98%
Pavia University OA = 94.85%[41]
Salinas

Moth–flame optimization 2022
OA = 97.17%

Indian Pines OA = 81.43%
Pavia University OA = 92.59%[42]
Salinas

Multimodal evolutionary algorithm 2023
OA = 93.51%

2. Harmony search

HS is a metaheuristic algorithm proposed by Geem in 2001 [43]. It relies on a musical improvisation strategy
by improvising a new harmony to reach the optimal harmony by updating the harmony memory (HM) upon
getting a harmony better than the worst harmony in the HM. Moreover, HS is characterized by its ability to
generate a new solution by considering all the solutions in the HM, while a GA depends on only two solutions:
the first and the second parent. Investigations also indicate that HS is better than GAs in terms of time [44].
Furthermore, HS has been employed in various scientific fields. The main steps of the HS method can be briefly
explained as follows:
Step 1: The optimization problem and all parameters are initialized in this step. The primary objective of
identifying the optimization problem is to maximize or minimize the fitness function (objective function). The
main parameters are harmony memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting
rate (PAR), maximum iterations (the total number of iterations for improvising new harmony), and bandwidth
(BW).
Step 2: The HM is initialized via Eq. (1) by generating solutions randomly between the lower and the upper
bounds, and then the harmonies are arranged according to their fitness function.
Assuming that HM = [X1, X2, .., Xz] , z = HMS , and Xi = (xi1, xi2, .., xid) , where i=1,2,….., HMS, d
represents the dimension of harmony (solution).

xiz = Lbz +R ∗ (Ubz − Lbz) (1)

Here, xiz is the zth harmony vector in Xi ; Lbz and Ubz represent the lower and the upper bounds, respectively;
and R represents a random number between [0, 1].
Step 3: A new solution is improvised from the HM by considering three significant factors: memory consider-
ation (MC), pitch adjustment (PA), and random selection (RS). A new candidate improvisation procedure is
presented in Algorithm 1.
Step 4: Updating the HM: if the new solution has a fitness function value better than the worst fitness function
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value in the HM, then the new solution is combined into the HM.
Step 5: Checking the stop condition: if the maximum number of new harmony improvisations is met, then the
best solution with the best fitness function in the HM is returned; otherwise, steps 3 and 4 are repeated.

Algorithm 1 Improvising new harmony.
1: for i = 1 to d: do
2: if RAND1 <= HMCR then % Memory Consideration
3: xnewz = xranz ; Where ran ∈ (1, 2, 3, ..., HMS)
4: if RAND2 <= PAR then % Pitch Adjustment
5: xnewz = xnewz ∓RAND3 ∗BW
6: end if
7: else
8: xnewz = Lbz +RAND4 ∗ (Ubz − Lbz) ; Where RAND1, RAND2, RAND3, RAND4 ∈ [0, 1]
9: end if

10: end for

3. Proposed methodology

The enhancing exploitation-exploration in harmony search (E3HS) algorithm is proposed here to choose the
most discriminative spectral bands for HSIs. The HSI is defined by X ∈ RA∗B∗C , where A and B signify
height and width, respectively, and C indicates the total number of bands. Moreover, the HS algorithm suffers
difficulty in reaching the best solution within the search space due to premature convergence and quickly falling
into the local optimum. Therefore, the HS algorithm has been enhanced by generating two additional harmonies
in the standard HS algorithm. This section illustrates the primary objective of adding the two extra harmonies
in addition to the fitness function used to select the most informative spectral band.

3.1. Enhancing search capability
The HS algorithm has been employed to solve many optimization problems effectively. However, the standard
HS suffers from some weaknesses such as premature convergence and falling into local optima easily. Therefore,
E3HS is introduced to handle those issues and improve the search capability to reach the global solution within
the search space efficiently. The search capability is enhanced to select the most informative discriminative
spectral bands according to the fitness function (classification performance) by improvising two additional
solutions (harmonies). Moreover, the best and worst individual experiences of all harmonies in the HM are
exploited to reach a global solution. More specifically, the first harmony enhances the global search (exploration)
for harmonies by maintaining the worst individual experiences of all the harmonies in each iteration and then
calculating the mean of all the worst individual experiences in the HM to generate the first harmony. Eq.
(2) pertains to the first harmony. The first harmony will be added to the HM if it has a cost function value
better than the worst cost function value in the HM. Moreover, the first harmony aims to maintain diversity,
discover new possibilities of the most informative spectral bands within the search space, and avoid premature
convergence. Figure 1 illustrates the mechanism for creating the first harmony.

xnew2z = xnew2z ∓ α ∗R1 ∗Mean(WorstHar) (2)

On the other hand, the second harmony enhances the local search (exploitation) for harmonies by
maintaining the best individual experiences of all harmonies in each iteration and then calculating the mean of
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Figure 1. Mechanism to create the first harmony.

all the best individual experiences in the HM to generate the second harmony. Eq. (3) pertains to the second
harmony.

xnew3z = xnew3z ∓ α ∗R2 ∗Mean(BestHar) (3)

Figure 2. Mechanism to create the second harmony.

Here, α = 0.1 indicates a constant value. R1 and R2 represent the random value within [0,1]. Mean
(WorstHar), and Mean (BestHar) define the mean of all the worst and best individual experiences in the HM,
respectively. The second harmony will also be added to the HM if the second solution has a cost function value
better than the worst cost function value in the HM. Moreover, the second harmony aims to accelerate the
convergence toward the optimal solution by considering the best individual experiences. Figure 2 illustrates the
mechanism to create the second harmony. The primary purpose of generating two harmonies is to improve the
search capability toward the optimal solution by selecting the most informative spectral bands. Consequently,
E3HS can avoid falling into the local optimum by balancing the exploration and exploitation search and reaching
the optimal global solution within the search space effectively.

3.2. Fitness function
The E3HS algorithm identifies the optimization problem by maximizing the fitness function. In other words, the
relevant and significant spectral bands are selected, which maximizes the cost function. Moreover, the primary
objective of this study is to reduce the HSI dimensions by selecting the lowest possible number of meaningful
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Table 2. Main parameters of the proposed method and state-of-the-art methods.
Optimization method Parameter Value

BA

Loudness constant 0.97
Emission rate constant 0.1
Minimum frequency 0
Maximum frequency 1
Population size 5
Maximum iterations 100

AOA

K1 (position constant) 2
K2 (position constant) 1
Upper range 0.9
Lower range 0.1
Population size 5
Maximum iterations 100

PSO

Inertia weight 0.9
Cognitive coefficient 2
Social coefficient 2
Population size 5
Maximum iterations 100

HS

HMCR 0.95
PAR 0.25
BW 1
HMS 5
Maximum iterations 100

GA

Crossover rate 0.4
Mutation rate 0.2
Population size 5
Maximum iterations 100

KH

Maximum speed 0.5
Foraging speed 0.5
Maximum diffusion speed 0.5
Population size 5
Maximum iterations 100

spectral bands with the highest fitness function. Assume that t number of classes for HSIs are indicated as
C = [c1, c2, c3, , ct] . Furthermore, subset k of the selected spectral bands is shown as B = [b1, b2, b3, , bk] , so the
fitness function (classification accuracy) is defined as in Eq. (4).

F (B) =

|A∗B|∑
i=1

Check(pi)/P (4)

Here, P represents the whole number of pixels, and pixel pi is evaluated through the classification process
by checking whether the pixel classification is correct. In addition, if a pixel classification is an actual class,
then (1) is assigned; otherwise, (0) is assigned, as in Eq. (5).

Check(pi) =

{
1, if Classify(pi) = C
0, otherwise (5)

The selection of significant spectral bands using E3HS is illustrated by Algorithm 2. Table 2 defines
the main parameters of the proposed method and the state-of-the-art methods. Moreover, the workflow of the
proposed method for selecting meaningful spectral bands is displayed in Figure 3.
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Algorithm 2 Spectral band selection using enhancing exploration-exploitation in harmony
search (E3HS).
Input: Hyperspectral data X.
Output: Subset of the most significant and relevant spectral bands.

1: Initialize all parameters of the algorithm: maximum improvisations (MI), HMS, HMCR, PAR,
BW, Lb, and Ub.

2: Initializes harmonies in the HM as well as the best individual experiences (BestHar)
and the worst individual experiences (WorstHar) of harmonies by generating unique random
integer values.

3: while iteration < = maximum improvisations (MI) do
4: for i = 1 to d: do
5: if RAND1 <= HMCR then % Memory Consideration
6: xnewz = xranz ; Where ran ∈ (1, 2, 3, ..., HMS).
7: if RAND2 <= PAR then % Pitch Adjustment
8: xnew1z = xnew1z ∓RAND3 ∗BW.
9: xnew2z = xnew2z ∓ α ∗RAND4 ∗Mean(WorstHar).

10: xnew3z = xnew3z ∓ α ∗RAND5 ∗Mean(BestHar).
11:
12: end if
13: else
14: xnew1z = URI1(Lb, Ub).
15: xnew2z = URI2(Lb, Ub).
16: xnew3z = URI3(Lb, Ub) where URI1, URI2, and URI3 are unique random integer values between

(Lb, Ub).
17: end if
18: end for
19: Calculate the fitness function for xnew1, xnew2, xnew3.
20: Update the HM according to xnew1, xnew2, xnew3 compared with the worst solution in the

HM.
21: iteration = iteration + 1.
22: Update the best harmony (optimal global solution).
23: end while
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Figure 3. Workflow of the proposed method.
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4. Experimental results

This section discusses the hyperspectral benchmark datasets used in this study. Moreover, the convergence
behavior is analyzed for different numbers of spectral bands (5, 10, 15, 20) in order to determine the optimal
number of bands with less complexity and outstanding classification performance. Additionally, the analytical
classification results for the proposed method and the state-of-the-art methods are discussed for three real
hyperspectral datasets.

4.1. Datasets
Three benchmark datasets were employed in this study to evaluate the performance of the E3HS approach
compared to competing optimization algorithms (BA, AOA, PSO, HS, GA, and KH), which are the Indian
Pines (IP), Pavia University (PU), and Salinas (SA) datasets. Figures 4a, 4b, and 4c demonstrate the ground
truth of the Indian Pines dataset (which consists of 16 classes), the Pavia University dataset (which consists
of 9 classes), and the Salinas dataset (which consists of 16 classes), respectively. Table 3 presents information
about the datasets utilized in this study.

Table 3. Details of the datasets used in this study.
Dataset Size Spectral range Spectral bands Area Sensor Spatial resolution
Indian Pines 145*145 pixels [0.4, 2.5] µm 200 Northwestern Indiana AVIRIS 20 m
Pavia University 610*340 pixels [0.43, 0.86] µm 103 Northern Italy ROSIS 1.3 m
Salinas 512*217 pixels [0.4, 2.5] µm 204 Southern California AVIRIS 3.7 m

4.2. Convergence behavior analysis

In this section, convergence behavior is explored for the proposed method compared to the state-of-the-art
methods by analyzing different numbers of spectral bands (5, 10, 15, and 20). Overall accuracy was calculated
to evaluate the goodness of the solutions for the proposed method and all the state-of-the-art methods (BA
[45], AOA [46], PSO [47], HS [43], GA [48], and KH [40]). Moreover, the convergence behavior was analyzed
by plotting the fitness function (overall accuracy) against the number of iterations. More specifically, overall
accuracy is calculated for the proposed method and the competing algorithms in each iteration using the
SVM classifier. The E3HS approach demonstrated significant performance in terms of convergence behavior
by selecting the best discriminative spectral bands compared to competing algorithms for different numbers of
spectral bands.

Figures 5a, 5b, 5c, and 5d illustrate the convergence behavior over 100 runs for 5 spectral bands, 10
spectral bands, 15 spectral bands, and 20 spectral bands on the Indian Pines dataset, respectively. The overall
accuracy is equal to 67.66%, 75.67%, 78.48%, and 79.13% for 5 spectral bands, 10 spectral bands, 15 spectral
bands, and 20 spectral bands, respectively. Moreover, Figure 5 shows the significant improvement of E3HS by
reaching the optimal global solution within the search space with the best overall accuracy compared to the
competing algorithms.

Additionally, Figures 6a, 6b, 6c, and 6d display the convergence behavior over 100 runs for 5 spectral
bands, 10 spectral bands, 15 spectral bands, and 20 spectral bands on the Pavia University dataset, respectively.
The overall accuracy is equal to 85.46%, 88.13%, 89.32%, and 89.53% for 5 spectral bands, 10 spectral bands,
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Figure 4. Ground truth for three hyperspectral datasets: (a) Indian Pines; (b) Pavia University; (c) Salinas.

15 spectral bands, and 20 spectral bands, respectively. Figure 5 shows that E3HS outperforms the competing
methods by selecting the best relevant spectral bands compared to the state-of-the-art methods.

Finally, Figures 7a, 7b, 7c, and 7d exhibit the convergence behavior over 100 runs for 5 spectral bands,
10 spectral bands, 15 spectral bands, and 20 spectral bands on the Salinas University dataset, respectively. The
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overall accuracy is equal to 90.11%, 91.24%, 91.72%, and 91.98% for 5 spectral bands, 10 spectral bands, 15
spectral bands, and 20 spectral bands, respectively. Figure 7 indicates the effectiveness of E3HS in reaching the
best global solution and avoiding falling into the local optimum compared to the competing algorithms.

Figure 5. Convergence behavior for the Indian Pines dataset: (a) 5 spectral bands, (b) 10 spectral bands, (c) 15 spectral
bands, (d) 20 spectral bands.
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Figure 6. Convergence behavior for the Pavia University dataset: (a) 5 spectral bands, (b) 10 spectral bands, (c) 15
spectral bands, (d) 20 spectral bands.

4.3. Analytical results

This section presents the classification results for the proposed method and the state-of-the-art methods.
Moreover, four standard evaluation metrics have been employed to evaluate the performance of the proposed
method and the competing methods. These evaluation metrics are defined in Eqs. (6), (7), (8), and (9) for
individual class accuracy (ICA), overall accuracy (OA), average accuracy (AA), and the kappa coefficient (KC),
respectively.

ICA =
Cij

Ti
(6)

OA =

∑
Cij

N
(7)

AA =

∑M
i=1 ICAi

M
(8)
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Figure 7. Convergence behavior for the Salinas dataset: (a) 5 spectral bands, (b) 10 spectral bands, (c) 15 spectral
bands, (d) 20 spectral bands.

KC =
N ∗

∑M
i,j=1 Cij −

∑M
i,j=1 Ti ∗ Uj

N2 −
∑M

i,j=1 Ti ∗ Uj

(9)

Here, Cij represents the total number of correctly classified pixels in row i and column j of the confusion
matrix, and Ti represents the total number of pixels in row i of the confusion matrix. N represents the total
number of pixels, M indicates the total number of classes, and Uj indicates the total number of pixels in
column j of the confusion matrix.

Table 4 illustrates the overall accuracy of the proposed method and the state-of-the-art after 100 iterations
by considering four different numbers of spectral bands (5 spectral bands, 10 spectral bands, 15 spectral bands,
and 20 spectral bands). The proposed method has significantly outperformed the competing methods for the
three hyperspectral datasets as demonstrated in Table 4. More importantly, Table 4 shows the significant
improvement of the proposed method for 15 selected spectral bands compared to 5 spectral bands and 10
spectral bands. On the other hand, Table 4 indicates little improvement for the proposed method and the
competing methods among the other selected bands (15 and 20 spectral bands). The classification results are
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Table 4. Overall accuracy for the proposed method and the state-of-the-art after 100 iterations on different numbers of
spectral bands (in %).

Dataset Optimization method 5 spectral bands 10 spectral bands 15 spectral bands 20 spectral bands
BA 63.3 72.26 75.89 77.95
AOA 62.12 71.06 75.21 76.09
PSO 63.47 69.53 72.22 75.82
HS 65.53 73.74 75.32 77.66
GA 66.23 74.03 77.56 78.57
KH 66.89 74.26 77.78 78.91

Indian Pines

E3HS 67.66 75.67 78.48 79.13
BA 83.22 85.17 87.82 87.92
AOA 83.11 85.67 88.21 88.27
PSO 84.37 86.23 87.17 88.32
HS 83.64 86.11 88.12 88.41
GA 84.32 87.24 88.36 88.82
KH 84.82 87.89 88.73 89.11

Pavia University

E3HS 85.46 88.13 89.32 89.53
BA 88.71 89.46 91.03 91.16
AOA 90.01 91.08 91.12 91.27
PSO 89.81 90.26 91.08 91.18
HS 89.94 91.07 91.24 91.44
GA 90.06 91.14 91.29 91.69
KH 90.03 91.12 91.37 91.78

Salinas

E3HS 90.11 91.24 91.72 91.98

considered for 15 spectral bands in this study for the proposed method and the state-of-the-art methods. Table
5 shows the 15 most relevant and significant bands for the proposed method and the state-of-the-art methods
for the three hyperspectral datasets.

Table 6 illustrates the classification results for E3HS and the competing methods using two machine
learning classifiers (KNN and SVM) on the Indian Pines dataset. Moreover, Table 6 shows the best accuracy
values (in bold) for all optimization techniques. Furthermore, four performance metrics are shown in Table 6,
which are ICA, OA, AA, and KC. The ICA is shown for E3HS and the state-of-the-art methods with 16 classes.
Table 6 also reveals the significant superiority of the E3HS model compared to the state-of-the-art methods
with OA equal to 77.68% using KNN and 87.49% using SVM. On the other hand, the OA for the competing
methods ranges between 71.42% and 76.95% using KNN and 82.13% and 85.70% using SVM.

Similarly, Table 7 shows the outstanding performance of E3HS and the competing methods using KNN
and SVM on the Pavia University dataset. The ICA is shown for E3HS and the state-of-the-art methods with
9 classes. Furthermore, Table 7 shows the outstanding performance of the E3HS model compared to the state-
of-the-art methods with OA equal to 90.44% using KNN and 94.85% using SVM. On the other hand, the OA
for the competing methods ranges between 86.57% and 88.56% using KNN and 90.92% and 93.90% using SVM.

Finally, Table 8 demonstrates the effectiveness of the E3HS model in selecting the most informative
spectral bands compared to the competing methods on the Salinas dataset. The ICA is presented for E3HS and
the state-of-the-art methods with 16 classes in Table 8. Moreover, Table 8 displays the considerable improvement
of the E3HS model compared to the state-of-the-art methods with OA equal to 90.55% using KNN and 94.41%
using SVM. On the other hand, the OA for the competing methods ranges between 90% and 90.30% using KNN
and 93.24% and 94% using SVM.
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Table 5. The 15 most relevant and significant bands for three hyperspectral datasets.
Dataset Optimization method Selected spectral bands

Indian Pines

BA 17,59,187,41,112,100,7,170,182,130,37,117,90,35,21
AOA 18,149,53,115,63,57,118,43,98,36,127,89,39,46,175
PSO 78,107,134,112,166,59,26,52,129,176,88,154,36,41,54
HS 175,137,119,35,64,42,127,74,28,114,138,16,8,17,20
GA 68,126,122,37,178,30,7,18,28,35,20,166,82,39,42
KH 37,131,17,34,154,46,160,177,178,68,172,149,82,66,127
E3HS 26,44,149,34,176,20,161,98,6,128,81,64,35,39,68

Pavia University

BA 16,84,85,43,65,75,82,53,68,21,6,67,97,23,64
AOA 12,17,42,63,72,82,52,68,21,6,66,92,23,64,33
PSO 38,81,46,18,94,52,49,61,24,66,69,83,8,19,71
HS 80,37,7,87,48,102,22,99,69,85,75,17,73,13,2
GA 68,23,25,85,19,83,87,18,5,36,3,8,66,9,71
KH 81,97,68,6,83,43,6,25,87,63,64,62,69,91,14
E3HS 44,18,77,19,103,83,85,68,41,20,60,99,87,41,69

Salinas

BA 44,8,78,163,151,87,41,20,17,26,171,37,10,36,33
AOA 162,20,56,5,112,16,61,27,86,52,64,45,153,37,121
PSO 82,28,104,136,51,101,115,80,66,93,44,120,54,34,8
HS 61,25,70,173,17,96,4,9,40,42,51,37,140,10,33
GA 164,17,30,20,19,65,55,37,137,48,16,18,91,83,28
KH 19,21,5,68,52,28,44,87,56,37,165,87,14,52,47
E3HS 47,66,34,51,39,46,37,27,63,65,87,20,32,8,167

Figures 8, 9, and 10 provide the classification maps for the Indian Pines, Pavia University, and Salinas
datasets, respectively. These figures show the significant improvement for the E3HS model in terms of smooth-
ness and a smaller number of misclassifications compared to the competing algorithms due to the effectiveness
of E3HS in selecting the most relevant and informative spectral bands.

Table 6. Classification accuracy (%) for E3HS compared with the competing algorithms for the Indian Pines dataset.
Class
Number Class name KNN SVM

BA AOA PSO HS GA KH E3HS BA AOA PSO HS GA KH E3HS
1 Alfalfa 63.33 44.68 46.67 76 66.67 51.28 70.59 70 90.91 88.89 96.97 75.56 80.95 93.94
2 Corn-notill 69.44 62.21 60.36 65.11 66.31 66.35 68.61 83.97 79.61 73.49 80.68 81.82 82.38 87.26
3 Corn-mintill 64.22 69.35 65.43 61.09 72.09 78.77 68.51 81.28 80.63 79.23 80.73 82.81 83.78 83.72
4 Corn 60.16 54.78 55 57.55 60.68 60.68 63.46 69.95 77.84 70.09 72.38 72.57 72.06 72.32
5 Grass-pasture 81.48 88.36 77.17 83.85 82.25 83.24 88.36 89.39 93.19 86.60 86.07 93.97 88.89 92.89
6 Grass-trees 86.44 79.72 81.36 80.03 79.63 83.03 83.06 92.86 90.82 92.97 90.91 92.74 92.08 92.88
7 Grass-pasture-mowed 94.74 87.50 71.43 83.33 100 91.67 94.74 90.91 82.61 66.67 90.91 100 100 80
8 Hay-windrowed 92.14 92.53 93.62 93.83 92.46 91.98 91.77 97.89 97.92 95.48 97.69 98.95 98.94 98.44
9 Oats 37.50 100 100 80 50 100 100 90.91 75 83.33 77.78 75 78.57 66.67
10 Soybean-notill 67.34 65.45 60.32 68.03 69.32 71.30 71.72 79.31 77.02 74.69 76.97 87.06 82.31 80.17
11 Soybean-mintill 76.49 76.20 69.84 76.14 76.94 77.16 77.93 82.62 80.13 78.91 83.93 81.57 81.96 85.09
12 Soybean-clean 62.95 56.49 52.79 66.47 65.46 63.79 65.10 85.46 90.31 82.28 81.30 78.12 86.72 88.27
13 Wheat 84.95 83.78 83.33 80.71 88.24 83.06 82.42 93.14 92.57 90.96 91.48 87.98 92.61 96.32
14 Woods 90.94 91.01 87.16 89.15 88.94 87.80 90.04 92.79 92.37 91.57 94.59 92.63 93.62 95.08
15 Buildings-Grass-Trees-Drives 72.46 73.95 70.83 66.43 83.33 68.83 66.06 74.14 80.43 83.26 83.19 74.18 74.71 77.27
16 Stone-Steel-Towers 100 98.48 100 98.36 100 96.72 98.46 93.24 98.55 98.55 97.18 100 97.06 100
OA 76.45 74.95 71.42 75.16 76.78 76.95 77.68 85.34 84.61 82.13 85.09 85.42 85.70 87.49
AA 75.29 76.53 73.46 76.63 77.64 78.48 80.05 85.49 86.24 83.56 86.42 85.94 86.67 86.90
KC 73.09 71.31 67.20 71.58 73.40 73.58 74.42 83.25 82.38 79.57 82.98 83.29 83.66 85.72

5. Discussion

In this study, the E3HS model has been introduced to select the most significant spectral bands in order to
decrease the calculation complexity and eliminate the Hughes phenomenon. Specifically, the proposed method
aims to create a balance between exploration and exploitation strategies by including two extra solutions in
each iteration. The first one considers the mean of the worst individual experiences for all solutions in the
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Table 7. Classification accuracy (%) for E3HS compared with the competing algorithms for the Pavia University dataset.
Class
Number Class Name KNN SVM

BA AOA PSO HS GA KH E3HS BA AOA PSO HS GA KH E3HS
1 Asphalt 91.97 92.59 92.04 91.08 91.60 92.52 93.82 93.87 94.28 93.13 93.92 94.12 94.12 94.85
2 Meadows 86.93 87.91 86.21 86.79 87.81 89.19 90.75 95.22 94.67 92.25 94.76 95.26 96.26 96.79
3 Gravel 73.42 71.38 75.41 67.83 72.30 73.73 77.81 81.38 86.13 84.57 83.19 87.06 85.16 85.02
4 Trees 95.81 95.16 95.27 97.26 95.42 96.64 96.61 96.54 96.08 95.61 96.72 94.97 97.15 96.64
5 Painted metal sheets 99.44 98.89 97.98 99.44 98.24 99.53 99.53 99.91 99.63 98.25 98.80 99.91 99.26 99.91
6 Bare Soil 81.68 82.70 81.50 84.37 85.13 86.99 89.93 89.83 90.04 85.79 91.58 89.82 91.83 93.94
7 Bitumen 74.74 76.31 77.88 76.87 73.82 76.14 82.67 81.68 86.14 83.53 86.55 86.64 86.30 88.92
8 Self-Blocking Bricks 78.11 78.35 79.73 79.10 78.83 80.39 83.38 86.48 85.30 84.13 84.46 86.17 85.66 89.08
9 Shadows 100 100 100 100 100 100 99.87 100 100 100 100 100 99.87 100
OA 86.63 87.19 86.57 86.65 87.23 88.56 90.44 92.85 92.97 90.92 92.96 93.25 93.90 94.85
AA 86.90 87.03 87.34 86.97 87.02 88.35 90.49 91.66 92.47 90.81 92.22 92.66 92.84 93.91
KC 81.92 82.72 81.81 81.90 82.73 84.58 87.15 90.49 90.63 87.87 90.62 91.02 91.89 93.16

Table 8. Classification accuracy (%) for E3HS compared with the competing algorithms for the Salinas dataset.
Class
Number Class Name KNN SVM

BA AOA PSO HS GA KH E3HS BA AOA PSO HS GA KH E3HS
1 Brocoli_green_weeds_1 99.94 100 100 100 100 100 100 99.75 100 100 100 100 99.81 99.94
2 Brocoli_green_weeds_2 98.77 99.36 99.30 99.53 99.37 99.27 99.23 99.60 99.77 99.60 99.90 99.80 99.63 99.90
3 Fallow 93.27 92.54 95.35 91.92 94.34 93.25 94.35 97.38 98.55 98.68 98.67 97.70 98.86 98.98
4 Fallow_ rough_ plow 98.14 96.52 97.54 98.41 98.32 97.71 97.63 98.67 99.20 98.92 98.93 99.28 98.58 99.11
5 Fallow_ smooth 98.81 99.18 98.53 98.81 98.96 99 99.09 97.25 99.25 98.83 98.92 99.01 98.83 98.47
6 Stubble 99.94 99.97 99.91 100 99.97 99.97 99.97 100 99.97 99.94 99.87 99.97 100 99.94
7 Celery 99.41 99.86 99.69 99.75 100 99.58 99.86 99.76 99.69 99.72 99.69 99.86 100 99.83
8 Grapes_ untrained 77.74 77.33 77.21 77.41 77.51 78.27 78.16 83.64 84.77 84.81 85.78 85.23 83.91 85.70
9 Soil_ vinyard_ develop 98.63 98.50 99.04 98.73 99.10 97.81 98.50 99.38 99.36 99.36 99.01 99.18 99.54 99.54
10 Corn_ senesced_ green_ weeds 93.75 94.39 92.01 91.19 91.72 93.90 91.44 97.24 97.53 97.17 96.26 97.56 97.43 97.59
11 Lettuce_romaine_4wk 89.89 88.70 93.47 89.98 93.54 84.70 92.35 96.46 99.18 96.99 95.02 98.13 98.15 97.80
12 Lettuce_romaine_5wk 96.31 97.16 96.17 96.42 97.65 96.42 96.85 99.03 99.93 99.61 99.68 99.48 99.48 99.68
13 Lettuce_romaine_6wk 93.82 96.34 97.29 95.98 95.32 94.62 95.76 98.37 99.32 99.04 98.78 99.59 99.73 99.73
14 Lettuce_romaine_7wk 96.47 94.15 97.12 95.61 95.95 96.79 95.76 97.20 98.72 96.37 98.25 97.91 99.76 98.36
15 Vinyard_ untrained 70.84 71.95 70.53 73.19 71.11 73.08 73.44 80.66 80.46 80.46 81.79 82.11 83.62 83.89
16 Vinyard_ vertical_ trellis 99.09 99.08 99.51 98.68 98.95 99.44 99.79 99.10 99.65 98.76 99.65 98.89 99.45 99.38
OA 90 90.12 90.09 90.20 90.23 90.30 90.55 93.24 93.79 93.62 93.95 93.99 94 94.41
AA 94.05 94.07 94.54 94.10 94.49 93.99 94.51 96.47 97.21 96.77 96.89 97.11 97.30 97.36
KC 88.86 88.99 88.96 89.07 89.12 89.19 89.47 92.46 93.08 92.89 93.26 93.31 93.31 93.77

Figure 8. Classification map for Indian Pines dataset using: (a) BA-KNN; (b) AOA-KNN; (c) PSO-KNN; (d) HS-KNN;
(e) GA-KNN; (f) KH-KNN; (g) E3HS-KNN; (h) BA-SVM; (i) AOA-SVM; (j) PSO-SVM; (k) HS-SVM; (l) GA-SVM;
(m) KH-SVM; (n) E3HS-SVM.

HM. On the other hand, the second one considers the mean of the best individual experiences for all solutions
in the HM. Consequently, both the global search and the local search are improved effectively. Moreover, the
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Figure 9. Classification map for Pavia University dataset using: (a) BA-KNN; (b) AOA-KNN; (c) PSO-KNN; (d)
HS-KNN; (e) GA-KNN; (f) KH-KNN; (g) E3HS-KNN; (h) BA-SVM; (i) AOA-SVM; (j) PSO-SVM; (k) HS-SVM; (l)
GA-SVM; (m) KH-SVM; (n) E3HS-SVM.

Figure 10. Classification map for Salinas dataset using: (a) BA-KNN; (b) AOA-KNN; (c) PSO-KNN; (d) HS-KNN; (e)
GA-KNN; (f) KH-KNN; (g) E3HS-KNN; (h) BA-SVM; (i) AOA-SVM; (j) PSO-SVM; (k) HS-SVM; (l) GA-SVM; (m)
KH-SVM; (n) E3HS-SVM.

proposed method can avoid falling into local optima and reach the optimal global solution within the search space
efficiently. Additionally, the proposed work has been compared with six competing optimization techniques:
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BA, AOA, PSO, HS, GA, and KH. The proposed method and all the state-of-the-art methods were executed
using MATLAB R2021b with 8 GB RAM in Windows 11. Moreover, 10% per class was randomly selected as the
training samples for the proposed method and the state-of-the-art methods, and the remainder was used for the
testing samples. Furthermore, two machine learning classifiers (KNN and SVM) were employed at the pixel level
to perform the classification phase using the selected spectral bands. Five-fold cross-validation was performed
on the training data for the SVM classifier, and the KNN classifier considered the five nearest neighbors (K = 5)
for classification. However, spatial features that represent strong relationships between neighboring pixels were
not incorporated within the classification phase, which is considered as the weakness of the proposed method.

6. Conclusion

The Hughes phenomenon is a notable challenge that arises due to the high dimensionality of HSIs. Therefore, it is
crucial to perform dimensionality reduction on HSIs in order to mitigate the processing time and computational
complexities. This paper has introduced the E3HS algorithm for the selection of the most discriminative spectral
bands in HSIs. The new algorithm improves upon the existing HS algorithm by incorporating two additional
solutions respectively derived from the best and worst individual experiences of the harmonies. The first solution
exploits the worst individual experiences of the harmonies. This strategy introduces an element of exploration,
allowing the algorithm to overcome premature convergence. Conversely, the second solution leverages the best
individual experiences of the harmonies, aiming to enhance the exploitation phase. By considering the knowledge
gained from successful harmonies, this approach seeks to identify and prioritize the most informative bands.
By incorporating these two additional solutions, the E3HS algorithm strikes a balance between exploration and
exploitation, enabling a more comprehensive search for the most discriminative spectral bands. The proposed
algorithm offers an improved approach for hyperspectral band selection, addressing the limitations associated
with existing methods and enhancing the overall performance of the band selection process. Consequently, the
proposed E3HS algorithm achieves the optimal global solution by effectively navigating the HM and avoiding
getting trapped in local optima. This capability ensures that the algorithm converges rapidly toward the best
possible subset of the most informative bands. The ability to reach the optimal global solution within the HM
is a significant achievement of the E3HS algorithm. It enhances the efficiency and effectiveness of hyperspectral
band selection by ensuring that the selected subset of bands is truly informative and discriminative. Finally,
two machine learning classifiers (KNN and SVM) have been employed for HSI classification at the pixel level on
the selected spectral bands. The proposed E3HS algorithm exhibited substantial improvements when compared
to six competing algorithms: the bat algorithm (BA), Archimedes optimization algorithm (AOA), particle
swarm optimization (PSO), harmony search (HS), genetic algorithm (GA), and krill herd (KH). In the course
of rigorous experimentation and comparative analysis, the E3HS algorithm consistently outperformed these
competing algorithms in terms of both convergence speed and the quality of the selected spectral bands. By
leveraging the diversity and knowledge gained from successful and unsuccessful harmonies, the E3HS algorithm
showcased a higher degree of robustness and efficiency in selecting the most informative bands. In future
work, we plan to apply the proposed method to other benchmark datasets of HSIs to further validate its
effectiveness in selecting significant discriminative spectral bands. To enhance the optimization process and
accelerate the convergence towards the optimal global solution, we will explore the use of hybrid optimization
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algorithms. Combining multiple optimization techniques can leverage their respective strengths and overcome
their limitations, leading to more efficient and effective band selection. Additionally, selecting an appropriate
fitness function tailored to the specific classification task can further enhance the algorithm’s performance and
ensure the selection of the most relevant spectral bands. Moreover, it is important to acknowledge that HSIs
contain not only spectral information but also valuable spatial information. In our future work, we aim to
incorporate and exploit this spatial information in the classification process. By integrating spatial features or
employing spatial-spectral methods, we can capture spatial dependencies and contextual information, leading to
improved classification results. This holistic approach will enhance the overall performance of HSI classification
and enable a more comprehensive analysis of the data.

References

[1] Elmasry G, Barbin DF, Sun DW, Allen P. Meat quality evaluation by hyperspectral imaging tech-
nique: an overview. Critical Reviews in Food Science and Nutrition 2012; 52 (8): 689-711.
https://doi.org/10.1080/10408398.2010.507908

[2] He X, Chen Y, Lin Z. Spatial-spectral transformer for hyperspectral image classification. Remote Sensing 2021; 13
(3): 498. https://doi.org/10.3390/rs13030498

[3] Zhong Z, Li J, Luo Z, Chapman M. Spectral–spatial residual network for hyperspectral image classification: a
3-D deep learning framework. IEEE Transactions on Geoscience and Remote Sensing 2017; 56 (2): 847-858.
https://doi.org/10.1109/TGRS.2017.2755542

[4] Sethy PK, Pandey C, Sahu YK, Behera SK. Hyperspectral imagery applications for precision agriculture - a systemic
survey. Multimedia Tools and Applications 2022; 81: 3005-3038. https://doi.org/10.1007/s11042-021-11729-8

[5] Stuart MB, Davies M, Hobbs MJ, Pering TD, McGonigle AJ et al. High-resolution hyperspectral imaging us-
ing low-cost components: application within environmental monitoring scenarios. Sensors 2022; 22 (12): 4652.
https://doi.org/10.3390/s22124652

[6] Peyghambari S, Zhang Y. Hyperspectral remote sensing in lithological mapping, mineral exploration, and
environmental geology: an updated review. Journal of Applied Remote Sensing 2021; 15 (3): 031501.
https://doi.org/10.1117/1.JRS.15.031501

[7] Leavesley SJ, Sweat B, Abbott C, Favreau PF, Annamdevula NS et al. Comparing methods for analysis of biomedical
hyperspectral image data. Proceedings of SPIE - Imaging, Manipulation, and Analysis of Biomolecules, Cells, and
Tissues 2017; 15: 10068. https://doi.org/10.1117/12.2252827

[8] Cucci C, Picollo M, Chiarantini L, Uda G, Fiori L et al. Remote-sensing hyperspectral imaging for applications in
archaeological areas: non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site.
Microchemical Journal 2020; 158: 105082. https://doi.org/10.1016/j.microc.2020.105082

[9] Ma Y, Wu H, Wang L, Huang B, Ranjan R et al. Remote sensing big data computing: challenges and opportunities.
Future Generation Computer Systems 2015; 51: 47-60. https://doi.org/10.1016/j.future.2014.10.029

[10] Moharram MA, Sundaram DM. Dimensionality reduction strategies for land use land cover classification based on
airborne hyperspectral imagery: a survey. Environmental Science and Pollution Research 2023; 30 (3): 5580-5602.
https://doi.org/10.1007/s11356-022-24202-2

[11] Jiang J, Ma J, Chen C, Wang Z, Cai Z et al. SuperPCA: A superpixelwise PCA approach for unsupervised feature
extraction of hyperspectral imagery. IEEE Transactions on Geoscience and Remote Sensing 2018; 56 (8): 4581-4593.
https://doi.org/10.1109/TGRS.2018.2828029

988



MOHARRAM and SUNDARAM/Turk J Elec Eng & Comp Sci

[12] Xia J, Bombrun L, Adalı T, Berthoumieu Y, Germain C. Spectral–spatial classification of hyperspectral images
using ICA and edge-preserving filter via an ensemble strategy. IEEE Transactions on Geoscience and Remote Sensing
2016; 54 (8): 4971-4982. DOI: 10.1109/TGRS.2016.2553842

[13] Chakravarty S, Mishra R, Ransingh A, Dash S, Mohanty SN et al. Feature extraction and classification of hy-
perspectral imaging using minimum noise fraction and deep convolutional neural network. Journal of Electronic
Imaging 2023; 32 (2): 021610. https://doi.org/10.1117/1.JEI.32.2.021610

[14] Zhao W, Du S. Spectral–spatial feature extraction for hyperspectral image classification: a dimension reduction
and deep learning approach. IEEE Transactions on Geoscience and Remote Sensing 2016; 54 (8): 4544-4554.
https://doi.org/10.1109/TGRS.2016.2543748

[15] Yang D, Bao W. Group lasso-based band selection for hyperspectral image classification. IEEE Geoscience and
Remote Sensing Letters 2017; 14 (12): 2438-2442. https://doi.org/10.1109/LGRS.2017.2768074

[16] Serpico SB, Bruzzone L. A new search algorithm for feature selection in hyperspectral remote sensing images. IEEE
Transactions on Geoscience and Remote Sensing 2001; 39 (7): 1360-1367. https://doi.org/10.1109/36.934069

[17] Persello C, Bruzzone L. Kernel-based domain-invariant feature selection in hyperspectral images for
transfer learning. IEEE Transactions on Geoscience and Remote Sensing 2015; 54 (5): 2615-2626.
https://doi.org/10.1109/TGRS.2015.2503885

[18] Chang CI, Kuo YM, Chen S, Liang CC, Ma KY et al. Self-mutual information-based band selection for hyper-
spectral image classification. IEEE Transactions on Geoscience and Remote Sensing 2020; 59 (7): 5979-5997.
https://doi.org/10.1109/TGRS.2020.3024602

[19] Feng J, Jiao L, Liu F, Sun T, Zhang X. Mutual-information-based semi-supervised hyperspectral band selection
with high discrimination, high information, and low redundancy. IEEE Transactions on Geoscience and Remote
Sensing 2014; 53 (5): 2956-2969. https://doi.org/10.1109/TGRS.2014.2367022

[20] Bajcsy P, Groves P. Methodology for hyperspectral band selection. Photogrammetric Engineering and Remote
Sensing 2004; 70: 793-802. https://doi.org/10.14358/PERS.70.7.793

[21] Moharram MA, Sundaram DM. Land use and land cover classification with hyperspectral data: a com-
prehensive review of methods, challenges and future directions. Neurocomputing 2023; 536: 90-113.
https://doi.org/10.1016/j.neucom.2023.03.025

[22] Luo X, Shen Z, Xue R, Wan H. Unsupervised band selection method based on importance-assisted column subset
selection. IEEE Access 2018; 7: 517-527. https://doi.org/10.1109/ACCESS.2018.2885545

[23] Zeng M, Ning B, Hu C, Gu Q, Cai Y et al. Hyper-graph regularized kernel subspace clustering for band selection
of hyperspectral image. IEEE Access 2020; 8: 135920-135932. https://doi.org/10.1109/ACCESS.2020.3010519

[24] Ren Z, Zhai Q, Sun L. A novel method for hyperspectral mineral mapping based on clustering-matching and
nonnegative matrix factorization. Remote Sensing 2022; 14 (4): 1042. https://doi.org/10.3390/rs14041042

[25] Xu B, Li X, Hou W, Wang Y, Wei Y. A similarity-based ranking method for hyperspectral
band selection. IEEE Transactions on Geoscience and Remote Sensing 2021; 59 (11): 9585-9599.
https://doi.org/10.1109/TGRS.2020.3048138

[26] Xie F, Li F, Lei C, Yang J, Zhang Y. Unsupervised band selection based on artificial bee colony algorithm for hyper-
spectral image classification. Applied Soft Computing 2019; 75: 428-440. https://doi.org/10.1016/j.asoc.2018.11.014

[27] Li S, Wu H, Wan D, Zhu J. An effective feature selection method for hyperspectral image classification
based on genetic algorithm and support vector machine. Knowledge-Based Systems 2011; 24 (1): 40-48.
https://doi.org/10.1016/j.knosys.2010.07.003

[28] Su H, Du Q, Chen G, Du P. Optimized hyperspectral band selection using particle swarm optimization.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2014; 7 (6): 2659-2670.
https://doi.org/10.1109/JSTARS.2014.2312539

989



MOHARRAM and SUNDARAM/Turk J Elec Eng & Comp Sci

[29] Nakamura RY, Fonseca LMG, Dos Santos JA, Torres RDS, Yang XS et al. Nature-inspired framework for hy-
perspectral band selection. IEEE Transactions on Geoscience and Remote Sensing 2013; 52 (4): 2126-2137.
https://doi.org/10.1109/TGRS.2013.2258351

[30] Sawant SS, Manoharan P. New framework for hyperspectral band selection using modified wind-
driven optimization algorithm. International Journal of Remote Sensing 2019; 40 (20): 7852-7873.
https://doi.org/10.1080/01431161.2019.1607609

[31] Anand R, Samiaappan S, Veni S, Worch E, Zhou M. Airborne hyperspectral imagery for band selection using moth–
flame metaheuristic optimization. Journal of Imaging 2022; 8 (5): 126. https://doi.org/10.3390/jimaging8050126

[32] Jia S, Yuan Y, Li N, Liao J, Huang Q et al. A multiscale superpixel-level group clustering framework
for hyperspectral band selection. IEEE Transactions on Geoscience and Remote Sensing 2022; 60: 5523418.
https://doi.org/10.1109/TGRS.2022.3150361

[33] Chowdhury AR, Hazra J, Dasgupta K, Dutta P. Fuzzy rule-based hyperspectral band selection algorithm with ant
colony optimization. Innovations in Systems and Software Engineering 2022: 1-14. https://doi.org/10.1007/s11334-
021-00432-4

[34] Deepthi, Devassy BM, George S, Nussbaum P, Thomas T. Classification of forensic hyperspectral pa-
per data using hybrid spectral similarity algorithms. Journal of Chemometrics 2022; 36 (1): e3387.
https://doi.org/10.1002/cem.3387

[35] Sawant SS, Prabukumar M, Samiappan S. A modified Cuckoo Search algorithm based optimal band sub-
set selection approach for hyperspectral image classification. Journal of Spectral Imaging 2020; 9: a6.
https://doi.org/10.1255/jsi.2020.a6

[36] Sheikh KH, Ahmed S, Mukhopadhyay K, Singh PK, Yoon JH et al. EHHM: Electrical harmony based hybrid meta-
heuristic for feature selection. IEEE Access 2020; 8: 158125-158141. https://doi.org/10.1109/ACCESS.2020.3019809

[37] Medjahed SA, Saadi TA, Benyettou A, Ouali M. Gray wolf optimizer for hyperspectral band selection. Applied Soft
Computing 2016; 40: 178-186. https://doi.org/10.1016/j.asoc.2015.09.045

[38] He C, Zhang Y, Gong D. A pseudo-label guided artificial bee colony algorithm for hyperspectral band selection.
Remote Sensing 2020; 12 (20): 3456. https://doi.org/10.3390/rs12203456

[39] Manoharan P, Boggavarapu PKL. Improved whale optimization based band selection for hyper-
spectral remote sensing image classification. Infrared Physics & Technology 2021; 119: 103948.
https://doi.org/10.1016/j.infrared.2021.103948

[40] Moharram MA, Sundaram DM. Spatial–spectral hyperspectral images classification based on Krill Herd band
selection and edge-preserving transform domain recursive filter. Journal of Applied Remote Sensing 2022; 16 (4):
044508. https://doi.org/10.1117/1.JRS.16.044508

[41] Anand R, Samiaappan S, Veni S, Worch E, Zhou M. Airborne hyperspectral imagery for band selection using moth–
flame metaheuristic optimization. Journal of Imaging 2022; 8 (5): 126. https://doi.org/10.3390/jimaging8050126

[42] Wei Y, Hu H, Xu H, Mao X. Unsupervised hyperspectral band selection via multimodal evolutionary algorithm and
subspace decomposition. Sensors 2023; 23 (4): 2129. https://doi.org/10.3390/s23042129

[43] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: harmony search. Simulation 2001;
76 (2): 60-68. https://doi.org/10.1177/003754970107600201

[44] Kim JH, Geem ZW, Kim ES. Parameter estimation of the nonlinear Muskingum model using harmony search.
Journal of the American Water Resources Association 2001; 37 (5): 1131-1138. https://doi.org/10.1111/j.1752-
1688.2001.tb03627.x

[45] Yang XS, Hossein Gandomi A. Bat algorithm: a novel approach for global engineering optimization. Engineering
Computations 2012; 29 (5): 464-483. https://doi.org/10.1108/02644401211235834

990



MOHARRAM and SUNDARAM/Turk J Elec Eng & Comp Sci

[46] Hashim FA, Hussain K, Houssein EH, Mabrouk MS, Al-Atabany W. Archimedes optimization algorithm: a
new metaheuristic algorithm for solving optimization problems. Applied Intelligence 2021; 51: 1531-1551.
https://doi.org/10.1007/s10489-020-01893-z

[47] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95-International Conference on
Neural Networks; Perth, Australia; 1995. pp. 1942-1948. https://doi.org/10.1109/ICNN.1995.488968

[48] Holland JH. Genetic algorithms. Scientific American 1992; 267 (1): 66-73.

991


	Introduction
	Harmony search
	Proposed methodology
	Enhancing search capability
	Fitness function

	Experimental results 
	Datasets
	Convergence behavior analysis
	Analytical results

	Discussion
	Conclusion

