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Abstract: Millions of people throughout the world suffer from the complicated and crippling condition of chronic
pain. It can be brought on by several underlying disorders or injuries and is defined by chronic pain that lasts for a
period exceeding three months. To better understand the brain processes behind pain and create prediction models for
pain-related outcomes, machine learning is a potent technology that may be applied in Functional magnetic resonance
imaging (fMRI) chronic pain research. Data (fMRI and T1-weighted images) from 76 participants has been included
(30 chronic pain and 46 healthy controls). The raw data were preprocessed using fMRIprep and then parcellated using
five various atlases such as MSDL, Yeo’17, Harvard, Schaefer, and Pauli. Then the functional connectivity between the
parcellated Region of Interests (ROIs) has been taken as features for the machine learning classifier models using the Blood
Oxygenation Level Dependent (BOLD) signals. To distinguish between those with chronic pain and healthy controls, this
study used Support Vector Machines (SVM), Boosting, Bagging, convolutional neural network (CNN), XGboost, and
Stochastic Gradient Descent (SDQG) classifiers. The classification models use stratified shuffle split sampling to fragment
the training and testing dataset during various iterations. Hyperparameter tuning was used to get the best classifier
model across several combinations of parameters. The best parameters for the classifier were measured by the accuracy,
sensitivity, and specificity of the model. Finally, to identify the top ROIs involved in chronic pain was unveiled by the
probability-based feature importance method. The result shows that Pauli (subcortical atlas) and MSDL (cortical atlas)
worked well for this chronic pain fMRI data. Boosting algorithm classified chronic pain and healthy controls with 94.35%
accuracy on the data parcellated with the Pauli atlas. The top four regions contributing to this classifier model were
the extended Amygdala, the Subthalamic nucleus, the Hypothalamus, and the Caudate Nucleus. Also, the fMRI data
parcellated using a cortical MSDL atlas was classified using the XGboost model with an accuracy of 87.5%. Left Frontal
Pole, Medial Default mode Network, right pars opercularis, dorsal anterior cingulate cortex (dACC), and Front Default
mode network are the top five regions that contributed to classify the participants. These findings demonstrate that
patterns of brain activity in areas associated with pain processing can be used to categorize individuals as chronic pain
patients or healthy controls reliably. These discoveries may help with the identification and management of chronic pain

and may pave the way for the creation of more potent tailored medicines for those who suffer from it.
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1. Introduction

Chronic pain is a continuous or recurrent pain that lasts for several months or longer, usually longer than
customary for ordinary recovery[l]. It differs from acute pain [2, 3], which is a short-term pain usually caused
by injury or tissue damage and tends to go away as the injury heals. Many conditions, including arthritis [4],
fibromyalgia [5], nerve damage, cancer [6], and back problems [7], can cause chronic pain. It can also result
from an injury or infection that has not fully healed. Chronic pain can be debilitating and significantly affect
a person’s quality of life [8], leading to depression [9], anxiety[10], and social isolation [11]. It often requires a
multidisciplinary approach to treatment, including medication, physical therapy, cognitive-behavioral therapy,
and other interventions [12].

Several noninvasive imaging modalities have been used to understand chronic pain, including magnetic
resonance imaging (MRI) [13], functional MRI (fMRI) [14, 15], positron emission tomography (PET) [16], and
computed tomography (CT) [17]. Researchers can discover structural and functional changes related to chronic
pain using MRI and functional magnetic resonance imaging (fMRI), which can offer precise brain and spinal
cord pictures [20]. Insights into the underlying neurological processes of chronic pain may be gained by using
PET to evaluate changes in brain metabolism and blood flow [15]. CT can also be used to identify structural
changes in the spine and joints that may be associated with chronic pain [17].

The noninvasive neuroimaging method known as functional magnetic resonance imaging (fMRI) enables
researchers to track blood flow changes in the brain related to neuronal activity. fMRI can offer insights into
the brain processes underlying the perception of pain since chronic pain is a complex and varied disorder that
is frequently challenging to identify and treat [19]. More information of fMRI analysis has been found in the
literature [69, 70]. The use of machine learning algorithms to analyze fMRI data and create classification models
that can precisely predict if a person is suffering chronic pain based on their brain activity has gained increasing
attention in the past few years. One common machine learning technique used in fMRI chronic pain research is
pattern classification, where algorithms are trained to differentiate between brain activity patterns associated
with pain and those associated with nonpainful stimuli [20, 21]. Regression analysis is another method that
may be used to pinpoint the parts of the brain that are most closely linked to outcomes related to pain [22].

Chronic pain manifests in a myriad of ways, with diverse reporting methods available. The treatment
course is influenced by a multitude of factors, including hospital resources and patient financial situations.
Within the realm of machine learning and deep learning research, a wide array of data sources have been em-
ployed, encompassing self-reported data [58-60], Kinematics gait data [61], fMRI [21, 24, 25], Electromyographic
(EMG) readings [62], Inertial Measurement Unit (IMU) sensor data [63], Neurosensory analyzer outputs [64],
Electroencephalography (EEG) recordings [65], skin conductance level (SCL) measurements [66], and Electronic
Health Records (EHRs) [67, 68]. This study deliberately focused solely on fMRI data, as it provides a more
pertinent basis for meaningful comparisons between different subjects.

Here is an overview of several recent studies on categorizing chronic pain using fMRI. Based on fMRI
brain activity, a support vector machine (SVM) classifier has been used to determine if people suffer from
persistent back pain [23]. The study showed that by analyzing brain activity patterns in regions such as the
insula, thalamus, and other areas responsible for processing pain, the SVM classifier successfully distinguished
between individuals with chronic pain and healthy individuals with an accuracy rate of 92.45%. It is important
to note that the study included multimodel data such as brain imaging (resting-state blood-oxygenation-level-

dependent and arterial spin labeling functional imaging) and autonomic activity (heart rate variability). Using
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the fMRI data, Convolutional Neural Networks (CNN) accurately distinguished between chronic pain and
healthy controls in 86.8% of the samples [21]. Another important research used CNN to classify chronic pain
patients from healthy controls show an accuracy of 85% to make the classification[71]. The use of machine
learning on chronic pain data on various neuroimaging modalities was discussed and summarized previously
[25]. This study aims to classify the fMRI healthy controls and the chronic pain patient’s data using various
machine learning classifiers. The study also aimed to understand the best parcellation scheme for this data. A

detailed explanation of materials and methods, results, and discussions were given in the forthcoming sections.

2. Materials and methods

The study aims to distinguish chronic pain sufferers from healthy controls. The study used machine learning
algorithms to analyze brain biomarkers for persistent pain. The workflow of the study has been designed to test
the Chronic pain fMRI resting state data with various parcellation schemes and various machine learning
algorithms to understand the best possible algorithm and parcellation schemes. The design of the study
also focused on using hyperparameter tuning to tune the best suitable parameters for each machine learning

algorithm. Figure 1 shows the working model’s organizational structure.
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Figure 1. Schematic diagram of the Research flow A. fMRI data input preparation for Machine Learning; B. Machine
Learning general flow with hyperparameter tuning and the list of Machine learning classifiers used in the study.

2.1. Dataset

For the investigation, we utilized a dataset sourced from openneuro.org (https://openneuro.org/datasets/ds000208
/versions/1.0.1). This dataset is composed of both functional MRI (fMRI) and T1-weighted scans, encompass-
ing data from seventy-six individuals, including both healthy controls and patients with osteoarthritis. Notably,
a single resting-state fMRI session was conducted for each of these participants. This data collection was con-

ducted across two consecutive studies, aiming to discern the differential impacts of placebo versus duloxetine
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treatments on individuals suffering from chronic pain [19]. The demographic details of the original study have

been given as Table 1.

Table 1. Details of the study design in Tetreault et al’s experiment.

Participant type Count | Age (Mean+SD)
Healthy control 20 57.9 £ 6.66
2W-Placebo patient 17 56.88 4+ 5.68
3M-Placebo patients 20 57.6 £ 9.51
3M-Duloxetine patients | 19 59.16 4+ 4.61

Within this context, our study was devised as a cross-sectional analysis, with the objective of discerning
distinct brain biomarkers that differentiate between states of pain and absence of pain. These brain biomarkers

were identified based on the classification of patterns present in the collected data.

2.2. Participants

In this cross-sectional study, the patients and controls who reported experiencing no pain during the scan were
grouped as "No pain” patients. In contrast, those who reported feeling pain were grouped as "Pain” patients
(refer response column from the metadata file of dataset). The descriptive statistics on the study participant
group are given as Table 2. Age variable shows that there is a statistical difference between the Pain and
No pain groups (Welch two sample t-test; p = 0.0258; 95% CI [-6.7917, -0.4516977]). At the same time, the
gender variable does not show any statistical difference between the two groups (Pearson’s Chi-squared test;
p = 0.4003). The descriptive statistics were carried out using R Software (version R-4.2.2), Package: dgof
(https://cran.r-project.org/web/packages/dgof) library.

Table 2. Participant’s descriptive statistics.

Pain no pain ALL
Subjects 30 46 76
Gender Male: 14 Male = 20 Male: 34
Female: 16 | Female = 26 | Female: 42
Age 56.5 + 6.4 60.1 + 6.9 57.9 + 6.8
Where, Mean + Standard Deviation.

2.3. fMRI preprocessing

The data set contains both T1-weighted images (structural) and resting-state blood-oxygen-level-dependent
(BOLD) measurement images (functional). This study has used fMRIPrep (https://fmriprep.org/en/stable/),
a fMRI data preprocessing pipeline to prepare both structural and functional data for analysis. The fMRIPrep
uses standard software packages like FSL, ANTs, FreeSurfer, and AFNI to process the data. Initially, the
T1 weighted image followed a workflow to intensity normalization, image alignment, skull stripping, spatial
normalization, brain tissue segmentation, and surface reconstruction [57]. Similarly, the BOLD images were
preprocessed with processes like time-slice correction, head motion estimation, and distortion reconstruction.

Once the T1 weighted image and fMRI images are preprocessed, they will be aligned with each other to collect

1064



JEEVANAYAGAM et al./Turk J Elec Eng & Comp Sci

the signals on various brain regions [21, 23]. The fMRIPrep belongs to the Neuroimaging PreProcessing tools
(NiPreps) ecosystem (https://www.nipreps.org/).

2.4. Brain functional parcellation

The brain is complex because of its spatial heterogeneity and the diverse functions of each region. Brain
parcellation is a way to partition the brain into various partitions to understand its entire organization and
role. There are various parcellation schemes available to partition the brain into different regions for analysis.
This study utilizes five various atlases to analyze the chronic pain data. The atlases used in this study have
been tabulated below (Table 3). The region parcellation of atlases used in this study has been presented in the

supplementary Figure 1.

Table 3. Atlases and regions

Atlas Regions of Interest (ROIs) | Region Class
MSDL [29] 39 Cortical
Yeo-17 [30] 17 Cortical
Schaefer [31] | 400 Cortical
Harvard [32] | 49 Cortical
Pauli [33] 16 Subcortical

2.5. Feature extraction (ROI correlation matrix)

The brain functional connectivity of all the participants used in the study was extracted using the Python
Anaconda (Version 22.9.0), Nilearn (0.10.0) library [34]. For this study, the function connectivity (i.e. the
correlation between the regions) between the region of interests (ROIs) acts as the feature for the machine
learning classifiers used. The feature extraction process takes three different steps. The first step was to
remove the initial few slices from the functional image because it might consist of noise and artifacts. From the
remaining time series images, the movement confounds were removed using the orthogonal projection method
[35]. The second step was to extract the brain activities evident in the various ROIs defined by the parcellation
scheme. The third step was to create a correlation matrix marking the activities observed between regions. The
correlation matrix was calculated using the dynamic time warping distance (DTW) and correlation between
the ROIs. In this study, for each subject five different pair-wise connectivity matrices were created with various
parcellation schemes. For example, Subject 1 with MSDL parcellation scheme will have a 39X39 connectivity

matrix denoting the pair-wise connectivity measure between the 39 ROIs.

2.6. Machine learning classification models

This study has used six machine learning classification models to identify the best suitable algorithm suited for
this chronic pain fMRI dataset parcellated with various parcellation schemes (MSDL, Yeo-17, Harvard, Schaefer,
Pauli, See Table 3). The problem proposed here is a binary classification problem to classify controls from chronic
pain patients. The classification models used for this study are Support Vector Machines (SVM) [36], Stochastic
Gradient Descent (SDG) [37], convolution neural network (CNN) [38], Bagging [39], Boosting [40], and XGboost
[41]. The SVM classifier uses a hyperplane to differentiate the groups on a n-dimensional plane. SDG is an

approximate and iterative optimization technique which can be used to classify data points. CNN (Convolutional
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Neural Network) works by using convolutional layers to automatically learn hierarchical features from image
data, enabling effective pattern recognition and object detection. The tree-based classification models like
Bagging, Boosting, and XGboost were also used in this study for analysis. The machine learning classification
models were utilized from Python Anaconda (Version 22.9.0), sklearn (1.2) library. The deep learning models
were implemented using Python with the Keras (2.10.0) and TensorFlow (2.13.0) libraries.

The evaluation of classification algorithms was conducted by comparing their performance metrics,
including accuracy, sensitivity, and specificity, which were quantified using the following equations:

Accuracy measures the proportion of correctly classified instances over the total number of instances:

Number of Correct Predictions

A _ 100
ceuracy Total Number of Instances 8 %

Sensitivity (also known as True Positive Rate or Recall) assesses the algorithms’ ability to accurately
identify positive instances:
True Positives

Sensitivity — x 100
ensitivity True Positives + False Negatives %

Specificity calculates the algorithms’ proficiency in correctly identifying negative instances:

True Negati
rue Negatives « 100%

Specificity =
P Y~ True Negatives + False Positives
These metrics collectively provided a comprehensive appraisal of the classification algorithms’ perfor-

mance, enabling a robust assessment of their discriminatory capabilities in our study.

2.7. Hyper parameter tuning

Almost all the machine learning classifiers are statistical models that expect various parameters to be learned
from the data. Once the classification model gets trained by the existing data, the model will be able to fit
the model parameters. However, the best parameter fit for the model cannot be learned from the normal
learning process. Construction of the best machine learning model for a problem becomes tedious because
the algorithm needs the best available parameter for that problem. For Example, for the K- nearest neighbour
(KNN) algorithm, the algorithm needs an optimal number of neighbors to fit the model. Hyperparameter tuning
is a method where the models can have multiple hyperparameters from which the parameter tuning algorithm
chooses the best parameter for the given problem [42]. Grid search cross-validation is a search parameter
search approach that searches the best set of parameters from the grid of hyper parameters. For this study,
the hyperparameter tuning was done using the GridSearchCV approach utilizing Python Anaconda (Version
22.9.0), sklearn (1.2) library. The tuned parameter for various machine learning classifiers is available in the

supplementary information (Supplementary Table 3).

2.8. Training and evaluation

Training the model is a crucial step in the machine-learning process, during which the algorithm learns from
the provided training data. Machine learning models excel at processing data swiftly, recognizing patterns, and
detecting anomalies more efficiently than humans. In this study, supervised learning algorithms were employed

to establish a mathematical relationship between the data features and the corresponding data labels. In our
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research, the data feature consisted of connectivity matrices of both pain and control subjects, while the target
labels were used to categorize the subjects as either pain or control. After the machine learning algorithm learns
from the data features and labels, the resulting models can be evaluated and tested for their performance.

Training a machine learning algorithm means being a systematic, iterative scheme that uses the available
dataset to its maximum potential. Before the training, the data need to be preprocessed and formatted
concerning the machine learning algorithm’s input requirements. Also, the input parameters required for the
algorithms need to be determined before the start of the training. As mentioned in the previous section, this
study utilizes hyperparameter tuning methods to tune the parameters.

For some studies, the training data is very limited because the size of the population is less. In case
of limited data, the resource needs to be allocated carefully for training and testing. Using the same data
for testing and training might give overfitting results. To avoid overfitting problems and to use the limited
data well, cross-validation is a common way to split the data. A stratified shuffle split is a cross-validator that
provides stratified random folds at the same time preserves the ration of samples for each label. This study
utilizes stratified shuffle split from Python Anaconda (Version 22.9.0), sklearn (1.2) library. The parameters,
number of splitting (n_splits = 5) and random state instance (random_ state = 0) were used for this study.
We executed 5 distinctive rounds of data division, each encompassing train-test splits. In each iteration, 1/5
(or 20%) of your data is reserved for testing, and the remaining 4/5 (or 80%) are used for training. This
process is repeated five times, and the results (e.g., classification accuracy) from each iteration are typically
averaged to provide an overall assessment of the model’s performance. By design, this approach ensured the
retention of the dataset’s original class distribution, thereby averting any bias stemming from class imbalance.
Moreover, the employed ‘random_ state‘ value of 0 guaranteed the replicability of our split configuration for
future investigations. This meticulous randomization strategy provided a consistent basis for model training
and evaluation across these meticulously predefined partitions, fostering both rigor and reproducibility in our
experimentation. The performance evaluation of the classification model can be calculated using various matrices
like classification accuracy, confusion matrix, Log Loss, area under the curve, and F-Measure. This study
utilizes the classification accuracy and specificity and sensitivity to evaluate the chronic pain classification

model (sklearn.metrics (1.2)).

3. Result

The primary objective of this study is to differentiate between individuals suffering from chronic pain and healthy
controls through the analysis of the most optimal classification algorithm. Also, this study aimed to understand
the regions that are significantly contributing to classify the subjects as chronic pain patients from the healthy
controls. The experiment was designed to understand the best parcellation atlas and the best algorithm suitable
for the chronic pain fMRI data available. In this study, the methodology employed quantified the outcomes by
measuring the accuracy, sensitivity, and specificity of the classifier models utilized. These metrics were used to
evaluate and assess the performance of the classification models. A high accuracy indicates that the model can
effectively distinguish between different classes or conditions in the dataset. Along with accuracy, sensitivity
and specificity are three important metrics that are used to evaluate the performance of a classifier. Sensitivity
measures the proportion of true positives (i.e. the number of correctly identified positive cases) among all the
actual positive cases in the dataset. Specificity, on the other hand, measures the proportion of true negatives
(i.e., the number of correctly identified negative cases) among all the actual negative cases in the dataset. A

good classifier should have high sensitivity and specificity values, indicating that it can accurately identify both
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positive and negative cases in the dataset. The results clearly show the atlases and algorithms that are perfectly

suitable for identifying the biomarkers of chronic pain from the dataset used.

3.1. Analysis on accuracy, sensitivity, and specificity

The study involved parceling the fMRI data of chronic pain subjects into five different parcellation schemes
(refer to Table 3 and Supplementary Figure 1). The results displaying the accuracy of various algorithms are
presented in Figure 2. Sensitivity and specificity scores from various classifier models, along with different
parameter iterations, are visualized in Figure 3 and Figure 4, respectively.

When searching for the best atlas that performed well with the data, both Pauli (region labels in
Supplementary Table 1) and MSDL (region labels in Supplementary Table 2) showed superior results with
various classification models. For bagging classifiers, MSDL exhibited accuracy ranging from 62% to 78%,
while Pauli ranged from 62% to 76%. In both atlases (MSDL and Pauli), most hyperparameters achieved
approximately 70% accuracy. Similarly, for boosting classifiers, MSDL showed accuracy ranging from 75%
to 89%, whereas Pauli exhibited a range between 70% and 94%. Notably, for CNN, when using the MSDL
atlas, the accuracy varied from 40% to 85%, and when using the Pauli atlas, the range of accuracy for various
hyperparameters was 30% to 80%. MSDL and Pauli atlases also performed well in other algorithms, showing
variation in accuracy from 20% to 80%. However, other atlases such as Harvard, Schaefer, and Yeo did not
perform well with the data and the algorithms used. Even with sensitivity and specificity, the MSDL atlas and
Pauli atlas parcellations outperformed other parcellation schemes (refer to Figure 3 and Figure 4).

Six various binary classifier models were deployed on the chronic pain data parcellated with five different
atlases. The atlas that performed well in terms of accuracy metric with various algorithms is presented in Fig-
ure 5. The best classification accuracy classifying chronic pain patients from healthy controls was by the boosting
algorithm giving 94.35% accuracy with best parameters {’criterion’: ’friedman_mse’, learning_rate’: 0.075,
loss’: ’deviance’, 'max_depth’: 3, 'max_features’: ’log2’, 'min_samples leaf’: 0.20, 'min_samples_split’:
0.28, 'n_ estimators’: 10, ’subsample’: 0.95}, sensitivity noted 93.5% and specificity recorded as 82%. The
chronic pain data parcellated with Pauli atlas rendered the top accuracy in this experiment setup. The XG-
boost classifier was also performed well with the data parcellated with MSDL atlas rendering 87.5% of Accuracy
with hyperparameter {’learning_rate’: 0.1, 'max_depth’: 3, 'n_ estimators’: 100}, sensitivity noted 85% and
specificity recorded as 80.2%. The CNN classifier resulted in higher accuracy, specificity, and sensitivity noted
as 87.80%, 84.0%, and 86.7% respectively. The best accuracy for each algorithm and related parameters, sen-
sitivity, and specificity are tabulated in Table 4. It is important to note that, the Pauli and MSDL atlases give
better accuracy with all the algorithms. The top accuracy metric on each classifier model parcellated with Pauli
and MSDL atlases shows both parcellation schemes worked invariably well (Figure 2). When boosting classifier
is concerned, MSDL also gives 89.76% of accuracy while Pauli gives 94.35% of accuracy. Data parcellated with
MSDL atlas gave better accuracy than the data parcellated with Pauli atlas with SDG, CNN, and XGboost
Classifiers (refer Figure 5, Table 4).

3.2. Region of interests that contributes to classify chronic pain

The machine learning classification models are used to classify chronic pain patients and healthy controls.
Classifying and identifying the chronic pain patients may be the first step in diagnosing the problem but the

informatics behind the chronic pain is a matter of importance to treat the problem. Feature importance is a
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Table 4. Highest accuracy scores and corresponding parameters for each algorithm.

Algorithm

Atlas

Accuracy

Best Parameter (Parameter Tuning)

Sensitivity

Specificity

Bagging

Pauli

76.4%

{’base__estimator ___max_ depth’: 6,
'max__samples’: 0.7}

90.1%

70.1%

Boosting

Pauli

94.3%

{’criterion’: ’friedman_ mse’,
"learning rate’: 0.075,

"loss’: ’deviance’, 'max_ depth’: 3,
‘max_ features’: ’log2’,

‘min_ samples_ leaf’: 0.20,

‘min_ samples_ split’: 0.28,
'n__estimators’: 10, ’subsample’: 0.95}

93.5%

82.1%

CNN

MSDL

87.80%

{’optimizer’’adam’,
"learn__rate’:0.01,
‘momentum’:0.04,
’init__mode’:normal,
"activation’:softmax,
'weight__constraint’:3.0,
"dropout__rate’:0.5,
‘neurons’:15}

84.0%

86.7%

SGD

MSDL

85.2%

{’alpha’: 0.1, ’loss’: "hinge’,
‘penalty’: 127}

82.2%

43.3%

SVM

Pauli

71.6%

{’C’: 10, ’'gamma’: 1,
'kernel’: ’linear’}

62.05%

62.2%

XGBoost

MSDL

87.5%

{’learning_rate’: 0.1, 'max_ depth’: 3,
'n__estimators’: 100}

85.03%

80.27%

method in machine learning that assigns scores to the various features used as input based on the way that feature

is important in diagnosing the problem. There are various methods one can identify the feature importance score

such as decision tree models, statistical correlations, and permutation-based scores. Permutation importance,

a method used in this study, provides insights into the features that a model relies on the most. It involves

estimating the predictive performance of a pre-trained model on an independent dataset, typically a validation

dataset, and recording it as a baseline performance. While permutation importance is not a strict feature

selection technique, it helps identify the features that contribute significantly to the model’s overall predictive

capability.

Table 5. Comparative Analysis of Accuracy (% Acc), Sensitivity (%Sen), and Specificity (%Spec).

Study Population | Modality | Atlas | Methods | % Acc | % Sen | % Spec

Santana, 2019 [21] 150 fMRI MSDL | CNN 86.8% | NA NA
MRL

Lee, 2019 [23] 53 rCBF, NA SVM 92.45% | 92.45% | 92.45%
s1CONN

Chatterjee, 2023 [71] | 76 fMRI NA CNN 85.20% | NA NA

Proposed Study 76 fMRI Pauli | Boosting | 94.35% | 93.50% | 82%

Proposed Study 76 fMRI MSDL | XGBoost | 87.50% | 85.00% | 80%

Proposed Study 76 fMRI MSDL | CNN 87.80% | 92.30% | 86.50%
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Figure 2. Classifier accuracy to predict chronic pain patients and healthy controls. Atlases (MSDL, Pauli) show
relatively variable accuracy across various algorithms. Bagging and Boosting algorithms give better accuracy above 60%
when parceled using MSDL and Pauli atlases run across various hyper parameters. Boosting and XGboost algorithms
show accuracy above 80% in a few cases.
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Figure 3. Sensitivity of classification models. The mean Sensitivity of the boosting algorithm looks the best of all
algorithms compared to the data parcellated with MSDL and Pauli.

Feature importance analysis was conducted on Regions of Interest (ROIs) derived from both the MSDL

and Pauli atlases.

accuracy of 89.76% for MSDL and an impressive 94.35% for Pauli.
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Figure 4. Specificity of classification models. The mean Specificity of the boosting algorithm looks the best of all
algorithms compared to the data parcellated with MSDL and Pauli.
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Figure 5. Classification Accuracy metric for various classifiers utilized with the employed parcellation schemes.

To assess the significance of our findings, we compared the results of our fMRI-based chronic pain study
with those of previous studies and compiled the comparisons in Table 5, which evaluates accuracy, sensitivity,
and specificity. The "Population’ field in Table 5 indicates the number of included fMRI scans in each study,

while "Modality’ denotes the type of scan data used. Remarkably, our study showcased superior performance,
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achieving the highest accuracy among previously conducted studies. Notably, our SVM algorithm achieved a
maximum accuracy of 71.6%, although it falls short of the 92.54% reported in a comparative experiment by [23].
It is essential to highlight that the study by Lee et al. [23] utilized both rCBF (Regional Cerebral Blood Flow)
and s1CONN (S1 connectivity) data in addition to fMRI data, which may account for their higher accuracy,
sensitivity and specificity compared to our study. A notable point of comparison is a recent study by Chatterjee
et al. [71] that employed CNN on the same dataset, albeit with a different experimental design and method.
Their study achieved an 85.20% accuracy, whereas our proposed work outperforms it. In our sample setup and
method setup, we attained a maximum accuracy of 87.80%, accompanied by sensitivity of 92.30% and specificity
of 86.50%. These findings underscore the significant advancements and improvements introduced by our study
in accurately distinguishing between pain and nonpain conditions, thereby enhancing the diagnostic capabilities
of fMRI-based pain assessments.

Top five regions in cortical and four subcortical regions that contribute to chronic pain were selected
as important regions. The subcortical top five ROIs responsible for chronic pain are visualized in Figure 6A.
Similarly, the top five cortical regions that are responsible for Chronic pain are visualized in Figure 6B. The top
subcortical regions active during chronic pain are amygdala, subthalamic nucleus, hypothalamus, mammillary
nucleus, and parabrachial pigmented nucleus. Whereas ROIs like dorsal anterior cingulate cortex, Front Default
mode network, Right Temporoparietal Junction, Right Anterior Intraparietal Sulcus, and anterior insular cortex

are the important regions that are active in cortical regions in chronic pain patients.

3.3. Discussion
This study aimed to classify fMRI chronic pain data by employing a comprehensive approach. The process
began with meticulous data preprocessing, followed by partitioning the fMRI data into distinct regions using
five different atlases. Subsequently, we subjected the parcellated data to a range of machine learning classification
models to identify the most effective algorithm-parcellation scheme combination for our dataset. To evaluate
the classifiers’ performance, we utilized a range of metrics, including accuracy, specificity, and sensitivity.
Moreover, we employed a probability-based feature importance measure to pinpoint the key features driving
the classification.

Our results are highly promising. Using the Pauli atlas in conjunction with the boosting algorithm,

we achieved remarkable accuracy (94.35%), impressive specificity (93.5%), and substantial sensitivity (82%).
Similarly, the MSDL atlas paired with the XGBoost algorithm yielded strong results with an accuracy of 87.5%,
sensitivity at 85%, and specificity of 80.2%. Furthermore, we explored the use of the CNN classifier on data
parcellated with the MSDL scheme, achieving an accuracy of 87.80%, sensitivity of 92.30%, and specificity
of 86.50%. These outcomes are especially encouraging when juxtaposed with the findings of previous fMRI
classification studies related to chronic pain data [21, 23, 71].

The comparative analysis of previously available related studies has been tabulated (Table 5), comparing
their findings with the results of the proposed study. Specifically, the analysis focuses on the evaluation of
accuracy, sensitivity, and specificity in both the related studies and the proposed study. This comparison allows
for a comprehensive assessment of the performance and effectiveness of the proposed study in relation to existing
research in the field. The tabulated results provide valuable insights into the advancements and contributions
made by the proposed study in improving the classification accuracy and diagnostic capabilities for the given

target variables.
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Figure 6. Top ROIs in cortical and subcortical regions responsible for chronic pain.

The machine learning classifier results showed MSDL and Pauli atlas to be better for parcellating this
chronic pain fMRI data. The probability-based feature importance measure was implemented to get the top
regions that contribute to classifying these patients. The regions identified as top regions in this study are
the regions that are involved in chronic pain processing as identified in various previous studies. The top
five regions of the MSDL cortical atlas that contributed to classify the chronic pain subjects from the healthy
controls are the left frontal pole [43], the medial default mode network [44], the right pars opercularis [45], the
dorsal anterior cingulate cortex (dACC) [46] and front default mode network [47]. The data parcellated with
Pauli subcortical atlas classified with Boosting algorithm showed the extended amygdala [48-50], subthalamic
nucleus [51], hypothalamus [52, 53] and caudate nucleus [54-56] are the top four regions that contributed most
for classification.

It is very important to note that chronic pain is a complex condition that can be challenging to classify
due to its heterogeneity and comorbidities. Pain can vary greatly in terms of its location, duration, severity,
and underlying cause, making it difficult to group into distinct categories. Additionally, comorbidities of chronic
pain can further complicate classification. For example, a person with chronic pain caused by arthritis may
also have depression, making it difficult to determine whether the pain is primarily due to the arthritis or the
depression. Similarly, a person with chronic pain caused by fibromyalgia may also have sleep disturbances,
which can exacerbate their pain symptoms. The heterogeneity of chronic pain also makes it challenging to
develop effective treatment strategies. What works for one person may not work for another due to differences
in the underlying cause and comorbidities of their pain. This highlights the need for a personalized approach

to chronic pain management that considers each person’s unique circumstances.
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4. Conclusion

The study proposed a model that preprocessed fMRI chronic pain data and parcellated it into distinct regions
using different atlases. Various machine learning classification models were used to identify the best algorithm
and parcellation scheme. The performance of classifiers was evaluated using accuracy, specificity, and sensitivity
metrics, and important contributing features were identified. The results showed promising accuracy, sensitivity,
and specificity when parcellating data using Pauli and classifying with a boosting algorithm. Similarly, the
MSDL atlas showed promising results when classified with XGboost and CNN algorithms. The study’s findings
are encouraging compared to previous fMRI classification studies on various chronic pain data.

The study’s innovation is rooted in its novel methodology for decoding chronic pain dynamics from fMRI
data. However, it is essential to acknowledge the inherent limitations of such studies. The intricate nature of
chronic pain, coupled with its diverse comorbidities, presents challenges for accurate classification and effective
treatment. Additionally, while fMRI offers valuable insights, it may not comprehensively consider psychological
and emotional factors that intricately shape pain perception. Despite these limitations, the pursuit of ongoing
research and personalized management holds promise for improving outcomes in chronic pain management.
Further investigations are necessary to uncover precise underlying mechanisms, thereby identifying potential

targets for innovative treatments in the realm of chronic pain.
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