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Abstract: Recent advances in deep learning, increased availability of large-scale datasets, and improvement of acceler-
ated graphics processing units facilitated creation of an unprecedented amount of synthetically generated media content
with impressive visual quality. Although such technology is used predominantly for entertainment, there is widespread
practice of using deepfake technology for malevolent ends. This potential for malicious use necessitates the creation
of detection methods capable of reliably distinguishing manipulated video content. In this work we aim to create a
learning-based detection method for synthetically generated videos. To this end, we attempt to detect spatiotemporal
inconsistencies by leveraging a learning-based magnification-inspired feature manipulation unit. Although there is ex-
isting literature on the use of motion magnification as a preprocessing step for deepfake detection, in our work, we aim
to utilize learning-based magnification elements to develop an end-to-end deepfake detection model. In this research,
we investigate different variations of feature manipulation networks, both with spatially constant and spatially varying
amplification. To clarify, although the proposed model draws from existing literature on motion magnification, we do
not perform motion magnification in our experiments but instead use the underlying architecture of such networks for
feature enhancement. Our objective with this work is to take a step towards applying learnable motion manipulation in
improving the target accuracy of a task at hand.

Key words: Deep learning, deepfake detection, motion magnification, computer vision, video classification, spatio-
temporal analysis

1. Introduction
Reenactment technologies have been around for at least a decade now [1–3], with earlier approaches relying
on 3D geometry and signal analysis to synthesize the target representation. The modern term deepfake,
often used to refer to synthesized image and voice media, is frequently associated with the popularized,
publicly available image synthesis method DeepFakes1. In the scope of this paper, we will refer to the
technology itself as deepfakes while using capitalized (DeepFakes) when referring to the name of the method in
question. Initially, face replacement technology has been primarily used to generate entertainment content. In
recent years, however, deepfakes have been increasingly often utilized for malicious purposes such as financial
scams, voter manipulation, damaging the image of politicians, celebrities, and regular citizens. The earliest
attempts at detecting artificially synthesized media are primarily inspired by antispoofing technologies [4–6] that
utilize diverse set of methods to prevent security breaches in biometric identification systems. More recently,
development of deep learning technologies and availability of large-scale datasets facilitated advancement of
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learning-based detection techniques [7–9]. These approaches can be categorized into two groups: spatial and
spatiotemporal discriminators. Image-based (spatial) deep learning approaches usually rely on use of off-the-
shelf convolutional neural networks (CNN), architectures to approximate authenticity of each frame and then
employ a voting scheme to calculate the cumulative probability of the entire video sequence being real. The
second family of approaches aims to capture temporal features along with spatial information extracted with
CNN network. To this end, such methods often utilize a combination of CNN and long short-term memory
(LSTM) networks to capture spatiotemporal information relevant to classification [8, 10]. Although several
other preprocessing routines have been employed for the task of deepfake detection, one particular temporal
processing framework has been employed more frequently than others. Motion magnification has seen a fair
bit of use in aiding detection of deepfake recordings as a preprocessing step with the goal of revealing subtler
temporal inconsistencies in the video. General thesis among such approaches is that motion magnification will
help to magnify temporal inconsistencies within consecutive video frames.

First proposed by Liu et al. [11], motion magnification aims to magnify transitional or color fluctuations
in the video sequence. Earliest approaches rely on use of complex Lagrangian signal analysis to isolate relevant
motions of interest [11], while later approaches benefit from more efficient Eulerian signal estimation [12].
Inspired by recent advancements in deep learning technology, Oh et al. [13], propose an encoder-decoder
network, to learn the magnification of small object movements on a synthetically generated dataset. In
reviewed literature, most magnification-based deepfake detection approaches utilize one of the aforementioned
magnification frameworks as a preprocessing step [14–17]. However, all of these magnification approaches, and
many similar ones are designed and optimized for a limited set of controlled motions and there is no viable
study proving that such approaches have the potential to generalize well to the recordings outside their domain.
Moreover, even magnification of selected band of motion frequencies, such as frequencies corresponding to eye
or mouth movement, does not guarantee optimal prediction outcome as many motion artefacts are likely to
exist at much lower frequency domains. Lastly, existing magnification frameworks magnify selected motions of
interest with a predetermined magnification constant. However, in the context of manipulation detection, it
might be of interest to suppress certain motions instead of magnifying them. These limitations necessitate the
development of a domain-specific magnification framework with the potential to generalize to the task at hand.
However, because mechanisms guiding learnable motion magnification are still a topic of active research, and
are not yet fully understood, we believe that a controlled and incremental approach is required in understanding
the use of motion magnification in relevant classification tasks.

Our proposed network uses smoothly varying enhancing-dampening mask ensuring selection and sup-
pression of spatial regions irrelevant to the final prediction while enhancing relevant ones. In this research, we
take the first step towards understanding and evaluating the performance of task-focused motion magnification
inspired network in the context of deepfake detection. For this reason, we propose an end-to-end learnable and
deepfake-focused feature enhancement framework and verify that it yields consistent improvements over the
baseline network. Our main contributions in this work are as follows:

1) We devise and test a learning-based, plug-in magnification-inspired model for the task of deepfake
detection.

2) We improve upon the existing feature manipulation unit by adding learnable spatial variability across
the image segments via use of spatially varying learned multiplication filter instead of a single predefined
magnification scalar.
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3) We enable free value range, and enforce spatial selectivity and dampening, by restricting the mean of
multiplication matrix values to unity.

Unlike previous approaches utilizing motion magnification for the task of deepfake detection, we devise
a plug-in learnable feature manipulation unit, inspired by motion magnification, for the purpose of deepfake
detection.

This paper is structured as follows: In Section 2, we offer a concise survey of the existing literature on
deepfake detection and motion magnification. Section 3, we present the proposed model in detail. In Section 4,
we describe the experimental setup and report our findings. Finally, in Section 5, we provide a comprehensive
summary of our contributions and key findings.

2. Related work
Over the past few years, a significant amount of progress has been made in the field of deepfake detection,
and a diverse set of solutions have been proposed to tackle the problem. These approaches vary in modality,
architecture, and types of features exploited. Given the visio-temporal nature of the problem, a significant
amount of work in deepfake detection literature focuses on the use of spatiotemporal information to reveal
transitional inconsistencies in the video sequence. To enhance such features some of the solutions focus on
the use of magnification methods as a preprocessing step. In our work, we aim to implement a learning-based
magnification-inspired feature manipulation architecture to explicitly learn and enhance representations valid
for deepfake detection. To this end, we provide a brief overview of relevant benchmarks and frameworks. In
the first section of this literature review, we conduct a summary of existing works on deepfake generation and
detection. In the latter section, we describe existing motion magnification frameworks and their application in
video forensics.

2.1. Generation and detection methods
Current fake media generation methods can be grouped either by the method of generation, or by types of
manipulation applied. Earlier methods rely on 3D geometry of the face and tracked landmarks to warp the
target face onto the source under different pose variations [18, 19]. More recent swapping approaches rely
on learnable representations to synthesize artificial face using neural networks. Korshunova et al. [20] utilize
convolutional neural networks to transform target image to the source after initial alignment, then realign the
synthesized face back into the original image. Recent learning based approaches increasingly utilize generative
networks to project the source face representation onto the target image. Bansal et al. [21] use spatiotemporally
constrained generative network to create context aware face videos where surrounding imagery is also altered to
increase the credibility of resulting video, while Zhu et al. [22] utilize hierarchical feature pyramids and feature
refinement to achieve one shot face-swaps of high resolution.

Rapid increase in the quantity and quality of face-swap generation methods, along with increasing
concerns over possible public and private impact of such technologies, had sparked an increase in the number
of frameworks attempting to detect such content. Early detection approaches rely on use of image classification
methods for classification of individual video frames and then extend the final prediction to the entire sequence,
either through use of probability accumulation, or through additional connected layers and classifiers [23, 24].
Although such approaches display competitive performance on many of the benchmark datasets, they do
not incorporate temporal information within consecutive video frames, thus evading a breadth of exploitable
information for classification. In contrast to frame-based approaches, Wu et al. [25] utilize constrained

168



MIRZAYEV and DİBEKLİOĞLU/Turk J Elec Eng & Comp Sci

convolutional filters to force the network to focus on low-level convolutional features and then fuse the obtained
feature map with learned steganalysis features. Features are then fed into a recurred neural network for temporal
consistency analysis. Chintha et al. [26] incorporate features extracted from optical flow and edges, in addition
to standard image features, and make use of bidirectional-LSTM to devise a multifeature CNN-LSTM network.
In a somewhat similar approach, Nassif et al. [27] propose to focus on inter-frame inconsistencies by estimating
optical flow in the videos and then feeding the resulting map into a CNN network.

2.2. Motion magnification and forensics

Motion magnification techniques are, most commonly, divided into two families: Lagrangian and Eulerian
motion magnification. With the Lagrangian magnification method, the pixels with correlated motion field are
grouped together, and then the motion of each pixel is estimated and magnified [11]. The major drawback of
Lagrangian motion magnification is the heavy computational cost associated with tracking and estimating pixel
motions. The Eulerian motion magnification method circumvents this problem by using spatial decomposition
and temporal filtering, thus eliminating the need for pixel-wise motion estimation [12]. Building further upon
this approach, in their work on learning-based motion magnification, Oh et al. [13] propose using machine-
learned features instead of using hand-crafted decomposition filters. They train and verify their network on a
synthetically generated motion magnification dataset, proving the feasibility of the learned motion magnification.
Our work borrows from the idea of learnable motion magnification, proposed by [13], and extends upon it by
incorporating a modified magnification inspired processing layer into the CNN backbone of the network and
reaiming loss function to optimize for the final prediction performance.

Earliest applications of motion magnification in the field of video forensics are with video spoofing
detection [28–30], where Eulerian motion magnification is used as a preprocessing step to enhance the subtle
motion cues in the video. Several others utilize motion magnification as a preprocessing step to enhance the
biometric cues. In their work, Fernandes et al. [16] use video magnification to obtain heart-beat rhythms from
the color variation in the face of the subject, and use the estimated signal to make the final prediction about
the origin of the video. In a similar approach, Qi et al. [15] display the generalizability of the approach to a
large-scale dataset. Several others postulate that the use of off-the-shelf Euler magnification as a preprocessing
step has the potential to magnify motion and color variations in the video stream which then can be fed into a
combination of CNN and LSTM networks [14, 31]. We present the summary of detection methods utilizing the
concept of motion magnification in Table 1. A common feature among the aforementioned methods is to use
readily implemented motion magnification features as a preprocessing step for the framework.

Our work differs from the above-mentioned methods in that it embeds a learnable magnification-inspired
manipulator unit in between CNN layers of the network. We believe this approach is superior to the aforemen-
tioned models for a few reasons. First, commonly utilized off-the-shelf magnification algorithms are optimized
to preserve the texture representation while the shape representation in the frames is transformed to magnified
proportions [13]. However, visual observation of many synthesized videos reveals significant observable texture
artifacts which, if magnified, can improve the prediction accuracy of the method in question. The relevance of
texture perturbation is supported by several other existing works in the deepfake detection literature [33, 34, 45].
Preservation of texture information in magnified videos is not necessarily desirable when the objective is to de-
tect artifacts caused by video tampering. Second, the two magnification methods [12, 13] most commonly
used as a preprocessing step by detection approaches are designed and optimized for a very limited, and con-
trolled set of small motions and color variations and are not necessarily optimized to reveal and magnify small
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perturbations in deepfake videos. Lastly, spatial decompositions in filter-based magnification algorithms and
encoding in learning-based magnification methods are optimized for the visually consistent reconstruction of the
input video frames, which is not necessarily beneficial in the context of classification as they might compensate
for innate temporal and spatial irregularities in the fake videos that help to detect them. To address these
shortcomings of applying magnification as a brute preprocessing for deepfake detection, we devise a learnable
motion enhancement unit inspired by the learnable magnification unit proposed by [13]. Because magnification
technologies are very much in their prime, we make the case that a phased approach is required to study the
effects of learning-based magnification for classification tasks, including deepfake detection. By embedding an
end-to-end feature manipulation layer, we can directly learn feature enhancement that is most relevant to the
prediction outcome. In addition, instead of using a predefined scalar value as a multiplication factor of the
magnification, we utilize a learnable multiplication mask, which facilitates different levels of amplification on
separate regions of the feature vector.

Table 1. Structural summary of the existing video forensics methods utilizing concept of motion magnification.

Author Overall
structure

Magnification
utilization

Description

Fei et al. [14] CNN, LSTM Preprocessing Use [13] to magnify video, extract spatial features with
InceptionV3 [40] network, and feed the features to LSTM
network.

Das et al. [31] SSIM, CNN,
LSTM, HR

Preprocessing Use [12] to magnify input video, then use frame similar-
ity (SSIM), CNN-LSTM network, and heartbeat rhythms
(HR) to make the final prediction.

Qi et al. [15] CNN,
LSTM, Spa-
tiotemporal
attention

Preprocessing Use [12] to magnify video, separate frames into ROI, and
feed them into temporal and spatial attention module, ag-
gregate the results with per-frame classification.

Fernandes et al.
[16]

Neural-ODE Feature
Extraction

Use [12] as one of the feature extraction methods to feed
to Neural Ordinary Differential Equations (Neural-ODE)
model.

Bharadwaj et al.
[28]

LBP, HOOF Preprocessing Use [12] to magnify input video, then extract Local Binary
Pattenrs (LBP) and Histogram of Oriented Optical Flow
(HOOF) for SVM and LDA classifiers.

Raja et al. [29] Fourier, CPI Adapted
Preprocess-

ing

Use phase-adapted Eulerian magnification [12] on in-
put video. Use magnified representation to compute and
threshold cumulative phase information.

Ge et al. [30] CNN,
LSTM,

Temporal
attention

Preprocessing Use [12] to magnify input videos, extract features using
VGG-Face network, and feed it to LSTM unit enhanced by
temporal attention.

Mehra et al. [17] CNN,
Residual

Preprocessing Use [13] to magnify input videos. Use the difference of
original and magnified frames for classification.

3. Method
The overall architecture of our approach is summarized in Figure 1. Here, we utilize a combination of CNN
and LSTM networks enhanced with the plug-in, end-to-end trainable magnification-inspired manipulator unit.
The network is trained on fixed-length input sequences. Unlike existing applications, we are proposing to
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learn a spatially aware multiplication array, to create spatially varying dynamic feature enhancement. In
addition, by restricting the mean of the multiplication array to unity, we enforce a mixture of enhancement and
dampening across the spatial domain to ensure that only relevant image sections are enhanced while features
in irrelevant regions are dampened. To enforce gradual variation across the multiplication array, we apply
Gaussian smoothing before multiplying the mask with the feature vector. During testing, we train the model,
both with and without a manipulator unit to compare the performance of feature-manipulated and baseline
variants.

Figure 1. A top-down overview of the proposed deepfake detection framework utilizing a magnification-inspired
manipulator unit. We first perform alignment of input video frames, then we segment the input video into nonoverlapping
sections of length K . Next, we use multilayer CNN network to extract spatial features from the video, which are then fed
into the magnification-inspired manipulator unit. Subsequently, we feed manipulated features to an LSTM-FC network,
followed by the utilization of two distinct aggregation methods to accumulate the results.

3.1. Video preprocessing

As the first step, we track the face landmarks in input videos using OpenFace tracking library [35–37]. Land-
marks are then smoothed with running median smoothing. We then rotate, resize, center, and crop the face so
that the eyes of the subject are always at the center of the frame and the line connecting the center of the eyes
is parallel to the horizontal axis. To approximate the roll of the face, first, the center of each eye is calculated
by averaging six available eye landmarks. Then, the angle between the horizontal plane and the line connecting
the centers is calculated as described in Equation 1.

θ = arccos
u · τ

||u|| ||τ ||
, where τ = −−→c1c2,

c1 =
1

|S1|
∑
i∈S1

pi, and c2 =
1

|S2|
∑
i∈S2

pi

(1)

Here, in Equation 1, u = ⟨1, 0⟩ is the horizontal unit vector, and S1 and S2 represent the subset of
landmarks pi corresponding to the left and right eye respectively. While τ represents the vector connecting
the centers of the eyes. As the next step, the image is rotated around the center by an angle θ . Landmarks in
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the image are rotated using a standard rotation matrix. After rotating the entire image, we resize the image so
that the distance between the center of the eyes is equal to a quarter of the width of the desired preprocessing
image shape. As the last step, we crop the image uniformly around the center of the line connecting the center
of the eyes. Frames are then ordered into consecutive sequences of length K , and each sequence is treated
as a separate sample during training. The reason for the choice of this windowing, and alignment process is
in consideration of the ultimate task at hand. Standard cropping utilized by many other approaches [23, 38]
introduces fluctuations between consecutive cropped frames, as bounding boxes shift considerably between
images. Inputs with no cropping, on the other hand, require a larger network to learn more content-rich
representations. By aligning the faces at the center of the image, and cropping a wider rectangle around it, we
hope to achieve a compromise between the input size and spatiotemporal consistency.

3.2. Backbone model
It has been shown by several previous works that utilization of an off-the-shelf pretrained CNN network can
achieve state-off-the-art performance on major deepfake detection datasets even in the absence of temporal
analysis or magnification. However, direct coupling of such approaches with motion magnification would prove
insufficient as existing motion enhancement frameworks require specialized and controlled conditions to function
effectively. Thus, rather than aiming to exceed the accuracy of overspecialized deepfake detection networks,
we aim to show significant and consistent performance improvement with a learnable, dynamic, and spatially
aware magnification-inspired manipulator unit.

Our baseline is composed of the CNN-LSTM network. As illustrated in Figure 2, the frames are first
fed through the backbone CNN model to obtain the latent representations of the input frames. If plugged into
the network, consecutive frames are then fed to the manipulator unit for further feature enhancement. Finally,
the features are rectified and fed through two stacks of LSTM networks before the final prediction. When the
manipulator unit is plugged out, features are directly fed to the LSTM network. To test if the manipulator unit
positively contributes to classification performance, we perform individual experiments both with and without
the manipulator unit.

Unlike the original approach on learnable-magnification[13], from which we draw inspiration, our network
does not separate the texture and shape representation of the image. This is done to preserve both shape and
surface artifacts relevant to the prediction outcome. We argue that the exclusion of texture information prohibits
the network from learning texture deformations in the output video, thus inhibiting the learning outcome.
Such an approach is also in agreement with our initial argument that the application of motion magnification
frameworks as a preprocessing step is suboptimal for the task of deepfake detection. It should be mentioned
that, as illustrated by Figure 2, embedding of the manipulator layer in the network yields K − 1 frames for the
LSTM layer since the F1 , the first frame, has no reference frame of its own. Therefore, the number of frames
used in the final prediction is always one less for the network with the manipulator unit.

3.3. Feature manipulation unit

In our work, we use the formulation of motion magnification inspired by Oh et al. [13] and Wu et al. [12].
Provided a spatiotemporal interpretation of a moving frame I(x, t) = f(x + δ(x, t)) , where motion image is
defined by I(x, t) and the field of motion, δ(x, t) , is expressed as both the function of time and position.
Motion magnification then can be expressed by Equation 2 as selective amplification of motion field between
consecutive frames.
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Ĩ(x, t) = f(x+ (1 + α)J (δ(x, t)) (2)

Figure 2. Architecture of baseline model with motion manipulator unit inserted in between. The figure illustrates
how frames are fed to the model in a time-distributed manner, with each arrow representing path of the corresponding
frame in the processing pipleine. In other words, consecutive frames are processed by the same feature extractor, and
the results are then accumulated in the fully connected layer. Here Ik denotes the kth frame of the video, while Fk

denotes the feature representation for that corresponding frame. The model consists of CNN spatial feature encoder,
manipulator unit, LSTM, and fully connected layer for the final prediction, as detailed in Section 3.2.

Here in Equation 2, α is the factor of magnification and J (·) is the feature selector that isolates the
motions of interest relevant to the task at hand. Early approaches rely on hand-crafted decomposition filters to
select motions of interest. However, in this research, we use a manipulator block inspired by the architecture
proposed by Oh et al. [13]. We further extend this architecture to transform the magnification factor α from
a scalar predefined value to a learnable mask. That is, provided a feature vector F ∈ RH×W×C with H , W ,
and C representing the height, width, and number of channels respectively, our multiplication vector can be
represented by learned vector A(·) ∈ RH×W . The resulting magnification equation then takes the following
form:

F̃ (x, t) = f(x+A(·)⊙ J (δ(x, t))) (3)

where, similar to Equation 2, δ(x, t) represents the motion vector, and J (·) represents the feature
selector. In practice, the estimation of motion vector, however, is computationally expensive and also prevents
the model from training end-to-end. To reduce the overhead cost, the authors of [13] take a difference-of-two-
frames approach defined by Equation 4, where Di+1 is a feature vector selected by L(·) from the difference of
two consecutive frame representations, and Fi and Fi+1 are feature representations from consecutive frames.

Di+1 = L(Fi+1 − Fi) (4)

We extend this layout by incorporating learnable magnification damping unit A(·) as demonstrated by
Equation 5 below.

F
′

i+1 = Fi +H(A(Di+1)⊙Di+1) (5)
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In Equations 5 and 4, L(·) represents the first convolution layer, and H(·) represents the second
convolutional layer followed by residual layer illustrated in Figure 3. Here L(·) network is used to extract
the features of interest from the raw difference vector Fi+1 − Fi while H(·) , as per original research [13],
improves results by adding additional nonlinearity to the mask multiplied feature. Mask estimation itself can
be formulated as a composition of feature selection, value normalization, and Gaussian smoothing units.

A(Di+1) = G(Φ(T (Di+1)) (6)
Φ(X) =

exp(X)HXWX∑HX

i=1

∑WX

j=1 e
ai,j

(7)

where T (·) serves as mask-specific feature selector, G(·) represents spatial Gaussian smoothing, and Φ(·)
serves as a normalization function that enforces the mean of multiplication array values to 1, as demonstrated
by Equation 7. In Equation 7, X represents the input to the normalization equation, ai,j represents individual
elements of the input matrix X . HX and WX represent the height and with of the input matrix respectively,
and exp(X) represents the element-wise application of exponential function to the input matrix. This enforces
the enhancement of certain feature regions while dampening others, further ensuring that only features relevant
to prediction are included in amplified feature manipulation. The damping feature further creates spatial
feature selectivity and improves model performance. Lastly, resulting feature vector is spatially smoothed using
Gaussian smoothing G(·) .

Figure 3. Architecture of the manipulator unit with a learnable dynamic multiplication mask. The symbols and
characters used here are consistent with Section 3.3, where a comprehensive explanation of the functions L(·) , A(·) , and
H(·) is provided. Here H , W , C , and 1 in square brackets indicate the dimensions of the input. First, the difference of
consecutive feature vectors is obtained (as shown by the operation Fi+1−Fi ) and then passes through the convolutional
feature selector L(·) . A(·) is used to obtain the dynamic multiplication mask, while H(·) is used to add nonlinearity to
the final output.
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4. Experiments

In this section, we define our experimental setup and discuss the obtained results. We start by describing
the dataset in 4.1. In Subsection 4.2, we provide quantitative network parameters and framework details,
followed by an overview of the learning schedule with details of hardware and software platform. Finally, in
Subsections 4.3 through 4.6, we present and discuss our experimental results. In our experiments, we test and
validate several variations of the manipulator unit to arrive at the optimally performing learning framework.
We evaluate the effect of static, dynamic, and smoothed dynamic, manipulator units on the performance of
our model, and compare the results with the baseline architecture. To verify the consistency of the results,
for each configuration, we perform seven identical experiments and report average accuracy, area under the
ROC curve (AUC), and F-1 results. In addition, we visualize dynamic mask values from the manipulator unit
and comment on their relation to the input frame. We test our results on the publicly available Celeb-DF [39]
dataset that is composed of more than 6000 total video samples. In our experiments, we aim to demonstrate
that the manipulator unit can be flexibly inserted in and out of the standard baseline network and have a
significant contribution to the output performance. Therefore, rather than focusing on maximizing performance
across several benchmark datasets, we conduct a controlled set of experiments that demonstrate the potential
applicability of magnification-inspired manipulator unit in manipulation detection tasks.

4.1. Dataset
To test the performance of the proposed framework, we are using a publicly available Celeb-DF dataset [39]. The
dataset consists of 590 real and 5639 fake videos with a standard frame rate of 30 and an average length of 13
s, as well as 300 additional YouTube videos. It can be pointed out that the dataset at hand is class-imbalanced.
This is due the fact that the same original video clip is often processed by several deepfake generation methods
resulting in overrepresentation of corresponding class. However, we refrained from using data augmentation
or dataset enrichment for two reasons. First, we cautioned that addition of more ’real’ samples without ’fake’
counterparts could result in video memorization, and secondly, we refrained from data augmentation to prevent
learning of other forms of data alteration. Original real videos of the dataset are collected from a diverse set
of publicly available YouTube recordings of individuals of different ages, genders, and ethnicities. To obtain
deepfakes from original videos, authors use a modified and improved version of the DeepFakes algorithm. First,
they achieve higher image resolution by expanding the encoder-decoder to have additional layers and larger
output dimensions. Then, the authors manage to reduce the number of color deformations in resulting images
by adding color perturbations to the training frames, in addition to using color transfer between output and
input images. Furthermore, to reduce boundary distortions and inconsistencies between original and synthesized
faces, the authors devise a more accurate face region estimation along with boundary blurring. Finally, authors
reduce temporal flickering between consecutive frames by using Kalman filtering along the temporal dimension
of generated face landmarks.

4.2. Framework parameters

In preprocessing the dataset for our network, we use nonoverlapping segments of fixed length. The number of
frames (K ) per segment is set to 32, and the shape of input frames is set to 256× 256 , this decision is made in
light of the compromise between input resolution and hardware limitations, and initial experimental findings. We
conduct all of our experiments on GeForce GTX 1080 Ti and GeForce RTX 2080 Ti graphic processing units.
Average inference time for 32-frame video samples, measured in a batch of 1000 samples is around 520 ms with
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feature manipulation unit attached. However, in our experiments, we noticed that processing speed fluctuates
significantly based on the load of the system and temperature of the server room. In addition, measured time
does not include preprocessing described in Section 3.1, which could create additional computational overhead.

The architecture of the baseline network is outlined in Figure 2. The backbone of the CNN network
is made of three convolutional layers followed by max pooling operation. The leaky rectified linear unit
(LeakyReLU) function is used as activation for the convolutional layers and the leaking factor is at 0.4. In
addition, each max pooling layer is followed by a batch normalization and dropout layer that has a rate of
0.2. The sequence of convolutional and pooling layers is followed by a manipulator layer. All convolutional,
pooling, and manipulator layers are time-distributed, meaning each frame of the sequence passes through them
sequentially. All convolutional layers of the manipulator unit have the number of filters equal to the number
of filters in the last convolutional layer of the main network, which in our case, is equal to 16. We use linear
and ReLU activation functions for the convolutional layers of the manipulator network. In addition, all the
convolutional layers of the manipulator unit have a kernel size of 3x3 and padding to ensure that the feature
dimensions are not altered by the manipulator unit. In the manipulator unit, we employ spatial Gaussian
smoothing with a filter size of 3 and a standard deviation of 1.

During experiments, we train and test the network, first without and then with the magnification layer,
while the remaining parameters of the network remain intact. We do not alter the training parameters between
experiments and conduct a total of seven experiments for each configuration. At the start of each epoch, we
randomly shuffle training samples. We use the Stochastic Gradient Descent optimization function at a learning
rate of 0.0001 with no decay. During each epoch, we conduct validation accuracy checks and stop training
if the validation accuracy does not increase for 5 consecutive checks. The interval for validation accuracy
is set at 2000 samples where each video segment is counted as a single sample. Validation checks for early
stopping are performed only after the first epoch of the network. Network weights with the highest validation
accuracy were recorded and used to obtain test results. To obtain single video predictions from individual
segment probabilities, we use two probability accumulation techniques. The first method determines the class
of prediction by majority voting where the sample is categorized as being fake if the majority of segments are
predicted to be fake. This relation is expressed by Equation 8, where Pv corresponds to the probability of the
entire video, Sv is the subset of all segments for a video v , and Pv,i is the probability for an individual segment.

Pv =
1

|Sv|
∑
i∈Sv

di, where

di =

{
1, if Pv,i ≥ 0.5

0, otherwise

(8)
Pv =

1

|Sv|
∑
i∈Sv

Pv,i (9)

The second method obtains the mean of all segment probabilities for a single video, and treats the
obtained mean as the output probability for that video. Relation for the second aggregation method is expressed
in Equation 9, where the variable denomination is identical to Equation 8.

4.3. Effect of manipulator unit
In the first experiment, we compare the baseline network with a network that has a manipulator unit. We
first train the network from scratch without the manipulator unit and report the obtained results. We then
repeat the same set of experiments for the network with the manipulator unit. The precise configuration of the
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manipulator unit includes dynamic multiplication mask and Gaussian smoothing as illustrated in Figure 3. For
each configuration, we conduct seven individual runs to ensure the highest possible consistency in the results.
The corresponding results are presented in Table 2.

From the comparison in Table 2, we can observe consistent improvement over the baseline architecture in
both aggregation methods and also in predictions for individual segments. From the obtained average results,
we can observe that two aggregation methods yield very similar probability outcomes and outperform each other
on different subsets.

Table 2. Effect of the manipulator unit on performance.

Train Validation Test
ACC AUC F-1 ACC AUC F-1 ACC AUC F-1

Baseline 0.84 0.94 0.87 0.80 0.90 0.84 0.79 0.86 0.73
Manipulator 0.88 0.95 0.91 0.85 0.90 0.88 0.79 0.88 0.76
Baseline voting 0.85 0.94 0.89 0.82 0.92 0.86 0.81 0.86 0.77
Manipulator with voting 0.91 0.95 0.94 0.89 0.92 0.92 0.82 0.89 0.81
Baseline prob. mean 0.86 0.96 0.89 0.84 0.93 0.87 0.81 0.89 0.77
Manipulator with prob. mean 0.92 0.96 0.94 0.89 0.93 0.92 0.82 0.91 0.82

4.4. Effect of scalar multiplication
In the second set of experiments, we compare the results of the dynamic, Gaussian smoothed manipulator unit
to that of the scalar motion manipulator unit proposed by Oh et al. [13]. In this case, multiplication array
A(·) is replaced with a scalar value. This configuration of the manipulator is identical to the one appearing
in the original research. Here we set the multiplication factor to 2, and similar to the previous configuration
we conduct a total of seven experiments for each configuration and report results for aggregate and individual
segment results.

As can be seen from Table 3, a manipulator unit with a static scalar multiplier adversely affects the
results of classification. This observation further confirms the initial claim that motion magnification approaches
cannot be applied to classification tasks in isolation and need to be specifically designed for the task at hand.
By incorporating dynamic feature learning for the multiplication matrix A(·) , and ensuring both amplification
and dampening by normalization function Φ(·) , we enable the network to generalize the multiplication mask
to previously unseen samples. In the absence of dynamic and sample-specific mask generation, there’s a higher
likelihood of overfitting to the intrinsic characteristics of the samples in the training data. As evident from Table
3, results using a static multiplication factor tend to overfit strongly to the training set and fail to generalize to
the test subset.

4.5. Effects of Gaussian smoothing
In the third set of experiments, we compare the effects of Gaussian smoothing on the performance of manipu-
lation mask. We compare the model accuracy, AUC and F-1 score with the nonsmoothed dynamic multiplier.
During training, we turn off the Gaussian smoothing and train the network from scratch. As usual, we perform
seven runs with each configuration and report average results.

In Table 4, we can observe that the performance of the manipulator unit improves as we add Gaussian
smoothing to the manipulator. In fact, this improvement manifests itself not just in accuracy but also across
AUC and F-1, further proving the robustness of the model. This can be explained by the fact that enforcing
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spatial smoothness across frames ensures that the multiplication does not overfit to specific pixel values in the
input frame but rather distributes attention over the larger regions of interest. Similar to previous comparisons,
we observe that two probability aggregation methods reveal somewhat similar results and do not vary drastically.

Table 3. Performance of the dynamic and static manipulator units.

Train Validation Test
ACC AUC F-1 ACC AUC F-1 ACC AUC F-1

Static 0.68 0.56 0.80 0.66 0.58 0.79 0.42 0.57 0.58
Dynamic 0.86 0.93 0.91 0.81 0.88 0.87 0.71 0.85 0.71
Static voting 0.73 0.54 0.84 0.71 0.56 0.83 0.45 0.55 0.62
Dynamic voting 0.89 0.90 0.93 0.84 0.88 0.90 0.74 0.82 0.76
Static prob. mean 0.73 0.60 0.84 0.72 0.63 0.83 0.45 0.62 0.62
Dynamic prob. mean 0.89 0.95 0.93 0.84 0.92 0.90 0.74 0.87 0.76

Table 4. Effect of Gaussian smoothing on performance.

Train Validation Test
ACC AUC F-1 ACC AUC F-1 ACC AUC F-1

No Gaussian 0.86 0.93 0.91 0.81 0.88 0.87 0.71 0.85 0.71
Gaussian 0.88 0.95 0.91 0.85 0.90 0.88 0.79 0.88 0.76
No Gaussian voting 0.89 0.90 0.93 0.84 0.88 0.90 0.74 0.82 0.76
Gaussian voting 0.91 0.95 0.94 0.89 0.92 0.92 0.82 0.89 0.81
No Gaussian prob. mean 0.89 0.95 0.93 0.84 0.92 0.90 0.74 0.87 0.76
Gaussian prob. mean 0.92 0.96 0.94 0.89 0.93 0.92 0.82 0.91 0.82

4.6. Visualization of multiplication mask

The utilization of a dynamic multiplier mask enables us to attend differently to each section of the feature
vector Di , while Gaussian smoothing ensures smooth spatial variation. In addition, by generating a frame-
specific multiplication mask, we ensure optimal performance across samples. In our experiments we are curious
to observe the explainable visualization of the multiplication mask. Therefore, similar to spatial attention
frameworks, we visualize the multiplication mask along the corresponding input frames. In Figure 4, from left
to right,we present the original frame, multiplication mask, and the mask overlaid with the original frame for
the deepfake-synthesized samples in the dataset.

As demonstrated by Figure 4, a common region where the mask of the manipulator unit attends to are
the peripheries of the face and sections surrounding the eyes and the mouth. Such a result is not completely
surprising, since the most revealing synthesis artifacts are often found at the boundaries of the swapped
face. These regions usually contain color blending and alignment artifacts which are valuable to manipulation
detection. In addition, across samples, we observe that the network often focuses on the hair region of the image
which represents another section where deepfake generation methods display significant color inconsistencies.
As intended by the design of the multiplication vector, certain values, expressed by darker tones in Figure 4 are
dampening the corresponding sections of the feature vector Di , while others are amplified.
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Figure 4. Values of the multiplication mask A(·) represented along with frames that generated them. Original frame
is displayed on the left, multiplication mask in the middle, and overlaid picture of the two is on the right.

4.7. Comparison to other methods

In this section, we compare our method with some of the existing works in the literature. It is important to
emphasize that the main objective of this research is to investigate custom spatio-temporal feature manipulation
units that can yield interpretable improvements in tampered media detection. In addition, we retain a compact
architecture so as to fully train our model without employing a pretrained backbone. For a fair comparison, in
Table 5, we compare our model with a selection of relatively compact architectures from the recent state-of-the-
art literature. As observed, with the help the proposed manipulator unit, our model provides comparable results
with the state-of-the-art models while retaining a much simpler architecture and without using a pretrained
backbone.

Table 5. Comparison with existing models on CelebDF dataset.

Method ACC AUC
Frame inference-based detection [41] 0.90 0.93
Temporal Dropout 3D CNN [42] 0.81 0.89
Two-stream temporal analysis [43] 0.90 -
Self-supervised learning [44] 0.80 -
Multi-attentional network [45] - 0.67
Proposed: Spatio-temporal feature manipulation 0.86 0.91

5. Conclusion and discussion
In this work, we present a magnification-inspired learning-based attention network for deepfake classification.
Our model demonstrates the possibility of utilizing learnable magnification-like feature manipulation for the
task of video classification, and unlike off-the-shelf magnification approaches, our approach utilizes learnable
magnification-like network architecture for the task of deepfake classification. We believe that our work serves
as a valuable first step toward understanding the utilization of magnification for the tasks of classification. In
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this paper, we present and test several variations of the network and demonstrate consistent improvements over
the baseline architecture. We demonstrate that the proposed manipulator unit can be easily swapped in and
out of the entire network architecture and can be trained end to end. In addition, we observe improvements
over several metrics such as accuracy, AUC, and F-1, reinforcing our conclusions of statistically significant
improvement.

As future work, we aim to test the applicability of the manipulator unit for the broader task of video
classification and possibly extend the scope of the project to tasks such as object detection and segmentation.
We also aim to improve the performance of the unit on deepfake detection and experiment with multilayer
manipulator units.
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