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Abstract: Mixed-integer linear programming (MILP) techniques are widely used in cryptanalysis, aiding in the discovery
of optimal linear and differential characteristics. This paper delves into the analysis of block ciphers KLEIN and PRINCE
using MILP, specifically calculating the best linear and differential characteristics for reduced-round versions. Both
ciphers employ matrix multiplication in their diffusion layers, which we model using multiple XOR operations. To this
end, we propose two novel MILP models for multiple XOR operations, which use fewer variables and constraints, proving
to be more efficient than standard methods for XOR modeling.

For differential cryptanalysis, we identify characteristics with a probability of 2−59 for 7 rounds of KLEIN and a
probability of 2−56 for 7 rounds of PRINCE. In linear cryptanalysis, we identify characteristics with a bias of 2−27 for
6 rounds of KLEIN and a bias of 2−29 for 7 rounds of PRINCE. These results establish the best single-key differential
and linear distinguishers for these ciphers in the literature.
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1. Introduction

Mixed-integer linear programming (MILP) techniques have found extensive application in cryptanalysis [1–4]
since their introduction by Mouha et al. [5]. Although automated search techniques for optimal distinguishers
existed well before the introduction of MILP to the area, they were specific to attacks and ciphers and required
much-concentrated effort to develop. By contrast, MILP models for ciphers can be developed from existing
building blocks, such as models for S-boxes and XOR operations, and can be deployed to search for optimal
distinguishers of a given cipher in an effective manner.

MILP modeling commences by formulating an objective function based on the chosen cryptanalysis
method. For example, to find the best linear characteristic, the objective function is designed to maximize
linear biases. Next, the round operations of the cipher, such as S-box, permutation, XOR, multiplication, and
addition, are modeled as constraints, with the inputs and outputs of these components defined as variables.

The efficacy of an MILP model is highly dependent on its complexity, including the number of constraints
and variables involved. The quest for more efficient models capable of analyzing a higher number of cipher rounds
has been a focal point in MILP-based studies in the literature.
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Several notable studies have addressed this challenge. Sasaki and Todo [6] introduced a method to
represent an S-box with fewer constraints, Fu et al.[2] presented a methodology using a single constraint to
model XOR operations, and Yin et al.[7] proposed XOR operation models with fewer variables.

In the context of SPN block ciphers utilizing (MDS) matrix multiplication operations over GF (2n) for
diffusion, such as AES, expressing the multiplication of a vector by the matrix can be expressed in a set of
XOR operations. In the MILP modeling of such ciphers, the performance of the resulting MILP model can be
significantly improved by reducing the complexity of the combined XOR operations within the model.

This paper explores alternative methods to model combined XOR operations, presenting two new MILP
models. We apply these methods to the KLEIN [8] and PRINCE [9] block ciphers, modeling their differential and
linear characteristics. Each attack is modeled in three alternative ways, and their solution times are compared.
Ultimately, we derive the best single-key differential and linear characteristics for KLEIN and PRINCE available
in the literature.

The paper is organized as follows: Related work is reviewed in Section 2. Section 3 details the MILP
models used for XOR. Section 4 analyzes the differential and linear propagation of ciphers. Sections 5 and 6
provide details related to constructing the linear and differential MILP models of KLEIN and PRINCE,
respectively. The paper concludes in Section 7.

2. Related work

The application of MILP techniques in block cipher cryptanalysis has evolved through several notable works.
Mouha et al. [5] were the first to employ MILP to find a lower bound on the minimum number of active S-boxes
in a differential and linear attack on AES and Enocoro ciphers.

Sun et al. [10] used MILP to find the minimum number of differentially and linearly active S-boxes for
attacks on bit-oriented ciphers. They provided new related key and single-key characteristics for PRESENT-80.

Sun et al. [11] modeled SIMON, Serpent, LBlock, and DESL with a new S-box modeling approach. They
studied the exact representation of an S-box via H-representation and logical condition modeling.

Sun et al. [12] proposed a method to find the best differential and linear characteristics, rather than
lower bounds, using exact models for S-box probabilities. They studied PRESENT-128, DESL, LBlock, and
SIMON48 ciphers and obtained improved results for single-key and related-key cryptanalysis.

Sasaki and Todo [6] introduced a way to represent an S-box exactly, stating that the representation of
an S-box can be done with the minimum number of equations via the MILP approach.

Yin et al.[7] presented a model of XOR operations using fewer variables, focusing on the linear and
differential cryptanalysis of the HIGHT algorithm. Fu et al.[2] analyzed the SPECK cipher with an efficient
method of modeling the XOR operation.

3. Modeling the n-XOR Operation

In this study, we use the term “n -XOR” to denote the XOR operation involving n + 1 binary variables. For
example, y = x1 ⊕ x2 ⊕ x3 is a 2-XOR operation.
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We explore three models, namely the standard model, Model 1, and Model 2, to model the multiple XOR
operations used to represent matrix multiplication in the analyzed block ciphers.

3.1. Standard XOR model

In the standard XOR model, multiple XORs are divided into 1-XORs that are modeled separately. The 1-XOR
operation y = x1 ⊕ x2 , where y, x1, x2 ∈ F2 , is modeled with three variables and four constraints [6]:

x1 − x2 − y ≤ 0 −x1 + x2 − y ≤ 0

−x1 − x2 + y ≤ 0 x1 + x2 + y ≤ 2

We can model the 2-XOR operation y = x1 ⊕ x2 ⊕ x3 from two separate 1-XOR operations as, d1 = x1 ⊕ x2

and y = d1 ⊕ x3 with five variables and eight constraints:

x1 − x2 − d1 ≤ 0 d1 − x3 − y ≤ 0

−x1 − x2 + d1 ≤ 0 −d1 + x3 − y ≤ 0

−x1 + x2 − d1 ≤ 0 −d1 − x3 + y ≤ 0

x1 + x2 + d1 ≤ 2 d1 + x3 + y ≤ 2

where d1 ∈ {0, 1} is a dummy variable.

3.2. Model 1

In our method, we first calculate possible patterns for multiple XOR operations. We then use Sasaki and Todo’s
approach [6] to represent these patterns with the minimum number of constraints. The H-representation of these
patterns contains redundant inequalities, but with this approach, we can represent multiple XOR operations
with the minimum number of constraints. As an example, the 2-XOR operation is calculated as follows:

Let y = x1 ⊕ x2 ⊕ x3 in which y, x1, x2, x3 ∈ F2 . There are 8 possible XOR results (valid points) after
calculating H-representation, we obtain 16 inequalities. By applying Sasaki and Todo’s technique, we derive
the following 8 inequalities:

−x1 − x2 + x3 − y ≤ 0 −x1 − x2 − x3 + y ≤ 0

x1 − x2 − x3 − y ≤ 0 −x1 + x2 − x3 − y ≤ 0

x1 + x2 − x3 + y ≤ 2 −x1 + x2 + x3 + y ≤ 2

x1 − x2 + x3 + y ≤ 2 x1 + x2 + x3 − y ≤ 2

With this approach, 2-XOR is modeled without using dummy variables. In general, in order to model a
given n -XOR operation, we obtain the set of valid points of the XOR operation in Fn+2

2 and calculate its
H-representation. Then, Sasaki and Todo’s method [6] is applied to find the minimum set of inequalities to
represent the XOR operation.

3.3. Model 2

Fu et al. [2] provided a method to model y = x1 ⊕ x2 using a single constraint and a dummy variable d1 :

y + x1 + x2 = 2d1,
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where y, x1, x2, d1 ∈ F2 .

We generalize this approach to model n -XOR operation y = x0 ⊕ x1 ⊕ · · · ⊕ xn as,

{
x0 + x1 + · · ·+ xn + y = (n+ 2)d1 −

(
nd2 + (n− 2)d3 · · ·+ 2d(n/2)+1

)
, n is even

x0 + x1 + · · ·+ xn + y = (n+ 1)d1 −
(
(n− 1)d2 + (n− 3)d3 + · · ·+ 2d(n−1)/2+1

)
, n is odd.

In Table 1, we compare the number of variables and constraints that are needed to represent the n -XOR
operation in three alternative models.

Table 1. Number of variables and constraints used to represent n -XOR.
Standard XOR Model 1 Model 2

n-XOR # Variables # Constraints # Variables # Constraints # Variables # Constraints
1 3 4 3 4 4 1
2 5 8 4 8 6 1
3 7 12 5 16 7 1
4 9 16 6 32 9 1
5 11 20 7 64 10 1
6 13 24 8 128 12 1
7 15 28 9 256 13 1

4. Modeling differential and linear propagation

We provide an overview of the components of the MILP models developed in this section. Linear constraints
with binary variables are used to represent matrix multiplication, permutation, and S-box operations over a
finite field. The probability information in the difference distribution tables (DDT) or the linear approximation
tables (LAT) is encoded into constraints in order to be able to find the best differential or linear characteristics.
Although the constraints developed for the differential and linear models are mostly similar, the constraints
modeling the S-box substitution and the matrix multiplication operations differ significantly between the two
attack types. The three alternative XOR models explained in Section 3 are utilized to model the matrix
multiplication operations over GF (2m) . Other operations such as S-box substitutions and bit permutations are
modeled using methods from the literature.

4.1. S-box

We used the method of Sun et al. [11] to represent the S-boxes: Binary variable A represents the S-box’s
activity (where A = 1 indicates that it is active), and the activity of input and output bits, for a 4× 4 S-box,
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are denoted by binary vectors (x1, x2, x3, x4) and (y1, y2, y3, y4) , respectively, with the following constraints:

x1 −A ≤ 0

x2 −A ≤ 0

x3 −A ≤ 0

x4 −A ≤ 0

x1 + x2 + x3 + x4 −A ≥ 0

4x1 + 4x2 + 4x3 + 4x4 − y1 − y2 − y3 − y4 ≥ 0

4y1 + 4y2 + 4y3 + 4y4 − x1 − x2 − x3 − x4 ≥ 0

The differential behavior of an S-box is modeled using the method of Sun et al. [12]. Let, a 4× 4 S-box
has probability values in the DDT, p = Pr[(x0, x1, x2, x3) → (y0, y1, y2, y3)], which are exact powers of 2. Then
the exact probability values can be encoded by two bits (π1, π0) denoting the binary encoding of − log2 p as:

(π1, π0) = (0, 0) =⇒ p = 1

(π1, π0) = (0, 1) =⇒ p = 2−1

(π1, π0) = (1, 0) =⇒ p = 2−2

(π1, π0) = (1, 1) =⇒ p = 2−3.

Then the input, output, and probability entries in the DDT are encoded in binary vectors as:

v = (x0, x1, x2, x3, y0, y1, y2, y3, π1, π0).

For the set of vectors created, SageMath [13] is used to calculate its H-representation, which is a set of hyperplane
equations whose intersection contains the given set of vectors. Possibly, some of the inequalities produced by
the H-representation can be redundant. In order to remove these redundant inequalities, an MILP instance is
built and solved, which yields a minimized set of constraints that represent the S-box along with its LAT or
DDT. The details of the H-representation construction process can be found in [11] and [6].

4.2. Permutation

To represent the permutation P in differential and linear cryptanalysis, new binary variables yi ’s are introduced.
The input of the permutation is modeled by xi and the output of the permutation is modeled by yi = P (xi) [10].

4.3. Matrix multiplication

We model the matrix multiplications by multiple XOR operations, according to the primitive representation of
the matrix, using the method proposed by Sun et al. [14].

4.4. Objective function

The objective function is designed to find the characteristic with the maximum differential probability or linear
bias. The related probability information is taken from the S-boxes and encoded as described in Section 4.1.
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The differential probability to be maximized is taken as the product of differential probabilities,
∏

i pi ,
over the active S-boxes. Hence, the objective function can be formulated as minimizing

∑
i(πi,0+2πi,1) , where

(πi,1, πi,0) represents − log2 pi in binary, as described in Section 4.1.
The linear bias to be maximized is taken as the product of linear biases bi according to the Piling-up

Lemma, 2n−1
∏

i bi , for n active S-boxes. Hence, the objective function can be formulated as minimizing∑
i(πi,0 + 2πi,1) , where (πi,1, πi,0) represents − log2 bi in binary.

4.5. Experimental setup

The experiments were performed on a computer with a 2.3 GHz Quad-Core Intel Core i5 processor and 8 GB of
RAM, and the MILP models were solved using the Gurobi optimizer [15] version 9.0.2. The H-representations
were calculated using SageMath [13]. The reported timing results are CPU times in seconds.

The MILP models we constructed for KLEIN and PRINCE are available at https://github.com/
murat-ilter/Klein-Prince.

5. MILP analysis of KLEIN

This section explains the MILP models we developed for linear and differential cryptanalysis of KLEIN. Using
these models, we managed to find linear and differential characteristics for up to 6 and 7 rounds of the cipher,
respectively.

5.1. KLEIN cipher

KLEIN [8] is a lightweight block cipher that was designed for embedded systems. There are three versions of
this cipher with 64-bit, 80-bit, and 96-bit key sizes, and with 12, 16, and 20 rounds, respectively. All versions
have a block size of 64 bits.

The cipher has a square SPN structure, similar to AES: The 64-bit round input is organized as a square
4×4 matrix of 4-bit nibbles, and goes through the round operations of SubNibbles (SN ), RotateNibbles (RN ),
and MixNibbles (MN ):

SubNibbles: Each nibble is substituted according to the 4× 4 S-box of KLEIN:
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

RotateNibbles: The nibbles are rotated according to the following permutation:
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output 4 5 6 7 8 9 A B C D E F 0 1 2 3

where 0 denotes the most significant byte position.
MixNibbles: The block is multiplied by the MDS matrix M ,

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2
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defined over the finite field GF (28) = GF (2)/⟨x8 + x4 + x3 + x + 1⟩ for diffusion. The nibbles ci0, c
i
1, · · · , ci15

are organized into two 4× 1 byte vectors and multiplied by M :
2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



ci0||ci1
ci2||ci3
ci4||ci5
ci6||ci7

 =


di0||di1
di2||di3
di4||di5
di6||di7



2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2




ci8||ci9
ci10||ci11
ci12||ci13
ci14||ci15

 =


di8||di9
di10||di11
di12||di13
di14||di15


The inverse matrix,

M−1 =


E B D 9
9 E B D
D 9 E B
B D 9 E


with entries from GF (28) , is used for the decryption operation.

5.2. Differential model

The MILP model for differential cryptanalysis of KLEIN is constructed along the following lines:
SubNibbles: In the DDT of KLEIN’s S-box, the differential probabilities are 1 , 2−2 , and 2−3 . Possible

patterns with probability information are added to the MILP model, as described in Section 4.1. Then we
computed the H-representation with SageMath, obtaining 2489 inequalities. Applying Sasaki and Todo’s
reduction method on the H-representation, we obtained 21 inequalities representing the DDT of KLEIN’s
S-box with the related probability information.

RotateNibbles: This operation is modeled inside the MixNibbles operation.
MixNibbles: The primitive representation1 of M is a binary matrix MPRwhere the entries 1, 2, 3 in

M are replaced by

1 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


2 =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


3 =



1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


which are calculated according to the underlying finite field GF (28) = GF (2)/⟨x8 + x4 + x3 + x + 1⟩ . The
32× 32 binary matrix MPR is obtained by substituting 1,2 , and 3 in M .

1Consider two field elements a and x in GF (2m) . Multiplication of x by a defines a linear transformation of x . Hence, when
x is represented as an m -bit vector over GF (2) , multiplication by a has an m×m matrix representation, which we denote by a .
Accordingly, when we need to represent the MDS operation in the cipher, which is multiplication by a matrix M with entries from
GF (2m) , as a linear transformation of the given input vector with entries from GF (2) , we replace each entry in M by its matrix
representation and obtain the binary primitive representation of M , denoted by MPR .
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We can represent the MDS matrix multiplication operation in MixNibbles by multiplication of a 32-bit
input binary vector by MPR , which in turn can be modeled by multiple XOR operations as described in
Section 3.

5.3. Linear model

The MILP model for linear cryptanalysis of KLEIN is constructed along the following lines, where the main
difference from the differential model is in the representation of the S-box and MDS matrix multiplication
operations:

SubNibbles: Three different bias values exist in the LAT of KLEIN: 2−1 , 2−2 , 2−3 . 1633 inequalities
are acquired by means of computing the H-representation of possible patterns, which in turn can be reduced to
33 inequalities by Sasaki and Todo’s reduction method.

RotateNibbles: This operation is modeled inside MixNibbles.

MixNibbles: MPR is the primitive representation of M over GF (2) , which is a 32× 32 binary matrix,
as explained in Section 5.2. Let y and z be the 32×1 binary column vectors denoting the input and the output
of a matrix multiplication operation in MixNibbles operation; i.e., z = MPRy .

Let βT be the 32-bit linear mask (row vector) indicating the active bits of y in a linear approximation.
We need to transform this linear mask of y into a linear mask γT for z , which can be calculated as:

z = MPR y

M−1
PR z = y

βTM−1
PR z = βT y

Hence, γT z = βT y for

γT = βTM−1
PR.

The entries of M−1 are 9, B, D, E, which are replaced by 9,B ,D , and E in M−1
PR , according to the

underlying finite field polynomial GF (2)/⟨x8 + x4 + x3 + x+ 1⟩ :

9 =



1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
1 1 1 0 0 1 0 0
0 1 1 1 0 0 1 0
1 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 1 0 0 0 0 1


B =



1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
1 1 1 1 0 1 0 0
1 1 1 1 1 0 1 0
0 0 1 0 1 1 0 1
1 1 0 0 0 1 1 0
1 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1
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D =



1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
1 0 1 1 0 1 1 0
1 1 1 0 1 0 1 1
0 1 0 0 0 1 0 1
1 0 1 0 0 0 1 0
0 1 1 0 0 0 0 1


E =



0 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 1 1 0 0 1 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1
1 1 1 0 0 0 0 0


As in Section 5.2, multiplication of a vector by the binary matrix M−1

PR is modeled with multiple XOR
operations.

5.4. Results

We solved the MILP models for KLEIN using the Gurobi optimizer [15]. The best 2-round differential
characteristic we found is 0000 00E0 0000 0000 → E03B 00DB 4000 E0E0 which can be decomposed as:

0000 00E0 0000 0000 SN−−→ 0000 0030 0000 0000 RN,MN−−−−−→ 5060 3030 0000 0000 SN−−→ 2060 E0E0 0000 0000
RN,MN−−−−−→ E03B 00DB 4000 E0E0 with probability 2−10 , where SN , RN , and MN represent the SubNibbles,
RotateNibbles, and MixNibbles operations, respectively.

The best 3-round differential characteristic we found is, 0000 E000 10E0 0000 → 5090 9000 6030 3050

which can be decomposed as: 0000 E000 10E0 0000 SN−−→ 0000 3000 3030 0000 RN,MN−−−−−→ 6050 0000 0000 0000
SN−−→ 4020 0000 0000 0000 RN,MN−−−−−→ 0000 0000 60E0 E000 SN−−→ 0000 0000 6030 3000 RN,MN−−−−−→ 5090 9000 6030
3050 with probability 2−17 . 2 The best differential characteristics we found for 4–7 rounds are given in Table 2.

Table 2. The best differential characteristics of KLEIN we obtained for 4–7 rounds. The input difference for round i is
denoted by ∆Xi−1 .

# rounds 4 5 6 7
∆X0 0E0E 0000 0000 0D00 0000 0100 010E 0000 10E0 0000 0000 D000 0000 030E 000E 0000
∆X1 0000 0000 0000 0D0B 0605 0000 0000 0000 0000 0000 0000 D0B0 0000 0B0E 0000 0000
∆X2 0000 0000 0E0E 0400 0000 0000 060E 0E00 0000 0000 E0E0 4000 0B0F 0604 0000 0000
∆X3 0006 0305 0603 0305 070F 0D02 0603 0305 00E0 7090 6030 3050 000E 020E 010B 060D
∆X4 0613 0A1D 0203 090D 0000 0001 0000 0100 0000 0010 90D0 0000 0101 0000 0000 0B0E
∆X5 0506 0303 0603 0305 00D0 B000 0000 0000 0000 0000 0101 0000
∆X6 A050 50F0 2020 6040 0006 0305 0000 0000
∆X7 0118 0519 0606 0A0C
probability 2−32 2−42 2−48 2−59

The best 2-round linear characteristic we found is 0000 A000 0000 0000 → 2C64 9C34 CAA6 027E which
can be decomposed as: 0000 A000 0000 0000 SN−−→ 0000 8000 0000 0000 RN,MN−−−−−→ 70D0 B090 0000 0000 SN−−→

4050 C020 0000 0000 RN,MN−−−−−→ 2C64 9C34 CAA6 027E with bias 2−6 .
The best 3-round linear characteristic we found is, 0004 0000 0000 0808 → A662 25E7 8785 8781 which

can be decomposed as: 0004 0000 0000 0808 SN−−→ 0007 0000 0000 0A0A RN,MN−−−−−→ 0000 0000 090E 0000 SN−−→

2Correctness of the models and of the differential and linear probabilities found have been verified for smaller numbers of rounds
by statistical sampling.
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0000 0000 0201 0000 RN,MN−−−−−→ 0303 0003 0000 0000 SN−−→ 0206 0006 0000 0000 RN,MN−−−−−→ A662 25E7 8785 8781
with bias 2−9 . The best linear characteristics we found for 4–6 rounds are given in Table 3.

Table 3. The best linear characteristic of KLEIN we obtained for 4–6 rounds. The input linear mask for round i is
denoted by αi−1 .

# rounds 4 5 6
α0 0000 0808 0008 0000 0000 2010 8000 0000 0000 060A 0300 0000
α1 090E 0000 0000 0000 E0E0 0000 0000 0000 0404 0000 0000 0000
α2 0000 0000 0303 0003 0000 0000 80C0 E040 0000 0000 0201 0506
α3 0404 0004 0F05 080C 1030 7070 7030 5070 0506 0501 0007 0707
α4 E0A8 622C AC68 2FED 0000 8000 8000 A020 0D09 0000 0000 0400
α5 1692 2E7A 2E9A D612 0000 0000 0700 0400
α6 EBA9 672D 8284 8687
bias 2−17 2−24 2−27

To the best of our knowledge, these results provide the first single-key differential and linear characteristics
of KLEIN in the literature.

We employed the alternative XOR models described in Section 3 to model the matrix multiplication
operation in KLEIN and compared their efficiency. The solution complexity of the models, including the
number of constraints, the number of variables, and the execution time (in CPU seconds), are given in Tables 4
and 5 for the differential and linear models, respectively.3 The alternative XOR models employed in MILP
yielded the same probabilities throughout the experiments. In linear cryptanalysis, Model 1 turned out to
produce too many constraints to be handled by SageMath for the H-representation calculation and hence was
excluded from the linear experiments.

Table 4. Complexity of the alternative XOR models for differential MILP solutions of KLEIN.
Standard XOR Model 1 Model 2

Round #V. #C. T (s.) # V. # C. T (s.) # V. # C. T (s.)
2 592 2113 14 352 5249 14 568 961 9
3 1008 3777 30,373 528 10,049 15,074 960 1473 2322
4 1424 5444 136,556 704 14,852 50,582 1352 1988 77,279
5 1840 7109 881,567 880 19,653 382,301 1744 2501 297,421
6 (*) 2256 8769 >1,000,000 1056 24,449 >1,000,000 2136 3013 >1,000,000
7 (*) 2672 10,439 >1,000,000 1232 29,255 >1,000,000 2528 3527 >1,000,000

Table 5. Complexity of the alternative XOR models for linear MILP solutions of KLEIN.
Standard XOR Model 2

Round #V. #C. T (s.) # V. # C. T (s.)
2 1168 4801 564 856 1345 67
3 2160 8964 107,040 1536 2052 17,320
4 3152 13,124 >1,000,000 2216 2756 448,893
5 (*) 4144 17,285 >1,000,000 2896 3461 >1,000,000
6 (*) 5136 21,445 >1,000,000 3576 4165 >1,000,000

3The lines with an (*) indicate that the search did not conclude within the given time limit and possibly better characteristics
may exist.
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6. MILP model for PRINCE

This section explains the MILP models we developed for the linear and differential cryptanalysis of PRINCE.
We were able to identify the best single-key linear and differential characteristics for up to 7 rounds of the
cipher, after which point the probabilities (or, biases) of characteristics become too small for an effective attack.

6.1. PRINCE cipher

PRINCE [9] is a 64-bit block cipher with a 128-bit key and 12 rounds. The cipher has a square SPN structure,
similar to AES: The 64-bit round input is organized as a square 4× 4 matrix of 4-bit nibbles and goes through
a series of rounds consisting of a substitution and a linear diffusion layer.

In the substitution layer, each nibble is substituted according to the 4× 4 S-box:
Input 0 1 2 3 4 5 6 7 8 9 A B C D E F
Output B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

The diffusion layer consists of a shift row and a matrix multiplication operation. The shift row is identical
to the one in AES but operates on 4-bit nibbles instead of bytes. The matrix multiplication operation is based
on a 64× 64 binary matrix M ′ constructed from a number of submatrices, as explained below:

M0 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 M1 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 M2 =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 M3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



M̂ (0) =


M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

 M̂ (1) =


M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3


M ′ is the 64× 64 matrix where the diagonal blocks are (M̂ (0), M̂ (1), M̂ (1), M̂ (0)) and the rest are 0s.

6.2. Differential model

The MILP model for differential cryptanalysis of PRINCE is constructed along the following lines:
S-box Layer: In the DDT of PRINCE’s S-box, there are three nonzero probabilities: 1 , 2−2 , and 2−3 .

We encoded these probabilities with the corresponding differential patterns, as described in Section 4.1. Next,
we computed the H-representation with SageMath, obtaining 1975 inequalities. Applying Sasaki and Todo’s
reduction method on it, we obtained 22 inequalities representing the DDT of PRINCE’s S-box with the related
probability information.

Linear Layer: Each row of the 64×64 matrix M ′ contains exactly three 1s. Therefore, the multiplication
of an input vector by each row of the matrix consists of an XOR of three input bits and can be modeled as
a 2-XOR operation. The equations to model these 2-XOR operations are added as constraints to the MILP
model, as described in Section 3. Shift row operation is carried out as given in Section 4.2.
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6.3. Linear Model

The MILP model for linear cryptanalysis of PRINCE is constructed along the following lines:
S-box Layer: The LAT of PRINCE’s S-box is modeled with 1202 inequalities in the H-representation.

Sasaki and Todo’s method is applied, and 33 constraints are enough to represent the LAT.
Linear Layer: Since PRINCE uses an involutory matrix, the constraints that are needed to model the

inverse of M ′ are identical to those used to model M ′ in the differential model.

6.4. Results

We solved the MILP models for PRINCE using the Gurobi optimizer [15]. The best 2-round differential
characteristic we found is 000C 0000 0000 0000 → 0880 0080 8808 8088 which can be decomposed as: 000C

0000 0000 0000 Sl−→ 0001 0000 0000 0000 Ll−→ 0000 0001 0010 0100 Sl−→ 0000 0008 0080 0800 Ll−→ 0880 0080
8808 8088 with probability 2−8 , where Sl and Ll represent the S-box layer and Linear layer, respectively.

The best 3-round differential characteristic we found is 0000 0000 0000 1C01 → 8001 0118 1100 0801
which can be decomposed as: 0000 0000 0000 1C01 Sl−→ 0000 0000 0000 1101 Ll−→ 0000 0000 0100 0000 Sl−→ 0000

0000 0100 0000 Ll−→ 0010 0000 1000 0001 Sl−→ 0080 0000 1000 0001 Ll−→ 8001 0118 1100 0801 with probability
2−14 . The best differential characteristics for 4–7 rounds are given in Table 6.

Table 6. The best differential characteristics of PRINCE we obtained for 4–7 rounds. The input difference for round i
is denoted by ∆Xi−1 .

# rounds 4 5 6 7
∆X0 0000 1101 0000 0000 0000 0011 0C10 0000 001C 1100 0000 0000 0041 C800 0000 0000
∆X1 0000 1000 0000 0000 0000 1100 1001 0000 1100 0000 0000 0110 1100 0000 0000 0110
∆X2 0800 8000 0000 0080 0110 0000 0000 0011 0000 0011 0110 0000 0000 0011 0110 0000
∆X3 0400 0044 0444 4440 0000 0088 0880 0000 0000 1100 1001 0000 0000 1100 1001 0000
∆X4 3012 1203 0023 1120 0440 0000 0000 0044 0110 0000 0000 0011 0110 0000 0000 0011
∆X5 2002 0000 0110 3300 0000 0080 0810 0100 0000 0088 0880 0000
∆X6 0000 4404 4551 1101 0000 0440 0044 0000
∆X7 9A3B 3B9A 9A2B 9A3B
probability 2−32 2−40 2−48 2−56

The best 2-round linear characteristic we found is 0C00 0000 0000 0000 → 1011 0100 0110 1101 which
can be decomposed as: 0C00 0000 0000 0000 Sl−→ 0800 0000 0000 0000 Ll−→ 8000 0000 0080 0800 Sl−→ 1000 0000

0010 0100 Ll−→ 1011 0100 0110 1101 with bias 2−5 .
The best 3-round linear characteristic we found is, 1044 0000 0000 0000 → 4440 4404 4004 0400 which

can be decomposed as: 1044 0000 0000 0000 Sl−→ 2022 0000 0000 0000 Ll−→ 0000 0000 0000 0200 Sl−→ 0000 0000

0000 0400 Ll−→ 0004 0040 0400 0000 Sl−→ 0004 0040 0400 0000 Ll−→ 4440 4404 4004 0400 with bias 2−8 . The
best linear characteristics for 4–7 rounds are expressed in Table 7.

The best previously known single-key differential characteristic on PRINCE was for 6 rounds of the cipher
with a probability of 2−62 [16]. We improved the analysis to 7 rounds with a probability of 2−56 using the
MILP approach. As for linear cryptanalysis, our results provide the first known single-key linear distinguishers.
The minimum number of active S-boxes increases dramatically after the 8th round and these attacks become
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Table 7. The best linear characteristic of PRINCE we obtained for 4–7 rounds. The input linear mask for round i is
denoted by αi−1 .

# rounds 4 5 6 7
α0 0000 0088 0000 2004 0220 2002 0000 0000 0000 0000 0204 0202 0440 4004 0000 0000
α1 0000 1040 0401 0000 4400 4004 0000 0000 0000 0440 0000 4004 2002 0020 0000 0003
α2 0220 0000 2002 0000 4200 0000 0000 0420 0000 2040 0402 0000 2400 0000 0000 0240
α3 4000 0404 4000 0000 4004 0000 0000 4400 0000 4400 0000 0044 2002 0000 0000 2200
α4 4440 0404 0044 0004 0000 0002 0420 4000 0204 2040 0000 0000 0000 0000 0220 2200
α5 0044 4040 0004 4044 4000 4000 0040 0040 0000 0000 4200 2004
α6 4044 0444 4404 4440 0000 0000 2002 0220
α7 4044 0044 4044 0000
bias 2−17 2−21 2−25 2−29

infeasible [17].
We utilized the alternative XOR models described in Section 3 to model the matrix multiplication

operation in PRINCE and compared their efficiency. The solution complexity of the models, including the
number of variables, the number of constraints, and the execution time (in CPU seconds), is presented in
Tables 8 and 9 for the differential and linear models, respectively.

Table 8. Complexity of the alternative XOR models for differential MILP solutions of PRINCE.
Standard XOR Model 1 Model 2

Round #V. #C. T (s.) # V. # C. T (s.) # V. # C. T (s.)
2 480 1475 3 416 1475 2 544 1027 1
3 784 2500 1302 656 2500 464 912 1604 206
4 1088 3524 159,462 896 3524 15,368 1280 2180 38,705
5 1392 4548 177,410 1136 4548 290,543 1648 2756 141,780
6 1696 5575 330,389 1376 5575 235,481 2016 3335 575,157
7 1937 6536 431,921 1552 6536 303,585 2320 3848 365,911

Table 9. Complexity of the alternative XOR models for linear MILP solutions of PRINCE.
Standard XOR Model 1 Model 2

Round #V. #C. T (s.) # V. # C. T (s.) # V. # C. T (s.)
2 480 1859 3 416 1859 2 544 1411 1
3 784 3076 831 656 3076 324 912 2180 73
4 1088 4293 27,592 896 4293 24,513 1280 2949 91,409
5 1392 5510 21,610 1136 5510 68,815 1648 3718 14,601
6 1696 6727 23,807 1376 6727 79,587 2016 4487 25,981
7 1936 7880 156,500 1552 7880 47,481 2320 5192 74,070

7. Conclusions

In this paper, we proposed two alternative MILP modeling methods to model equations of multiple XOR
operations. Model 1 works with fewer variables, and Model 2 works with fewer constraints. We used these new
n -XOR models to model matrix multiplication over GF (2m) . The standard MILP model of XOR operations
is also used as the base case for comparisons.
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Using these three models, we constructed MILP models for the PRINCE and KLEIN ciphers. MILP
models in this study allowed us to determine the best single-key differential and linear characteristics for various
round numbers. The best single-key differential characteristics of probability 2−59 and 2−56 were found for
7 rounds of KLEIN and PRINCE, respectively; and the best single-key linear characteristics for 6 rounds of
KLEIN and 7 rounds of PRINCE were found with biases 2−27 and 2−29 , respectively.

The proposed models are quite general and can be applied to other ciphers that use matrix multiplication
operations over finite fields GF (2m) in the diffusion layer. Using these models, improved results on differential
and linear properties of similar ciphers can be obtained.
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