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Abstract: Local differential privacy (LDP) has recently emerged as an accepted standard for privacy-preserving
collection of users’ data from smartphones and IoT devices. In many practical scenarios, users’ data needs to be
collected repeatedly across multiple iterations. In such cases, although each collection satisfies LDP individually by
itself, a longitudinal collection of multiple responses from the same user degrades that user’s privacy. To demonstrate
this claim, in this paper, we propose longitudinal attacks against iterative data collection with LDP. We formulate a
general Bayesian adversary model, and then individually show the application of this adversary model on six popular
LDP protocols: GRR, BLH, OLR, RAPPOR, OUE, and SS. We experimentally demonstrate the effectiveness of our
attacks using two metrics, three datasets, and various privacy and domain parameters. The effectiveness of our attacks
highlights the privacy risks associated with longitudinal data collection in a practical and quantifiable manner and
motivates the need for appropriate countermeasures.
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1. Introduction
In recent years, local differential privacy (LDP) has emerged as a popular standard for privacy-preserving
collection of users’ data [1–3]. To preserve privacy, LDP enables each user’s data to be locally perturbed on
their own device (e.g., smartphone, IoT device) before being sent to the data collector. LDP has been applied
in many contexts related to the Internet of things (IoT) and cyber-physical systems, including but not limited
to geolocation data [4, 5], indoor positioning [6, 7], health data and wearables [8–10], Internet of vehicles [11],
cybersecurity [12], and smart meters [13, 14]. LDP has also seen real-world deployment, including Google’s
RAPPOR for analyzing Chrome browser settings [15], Apple’s implementation in iOS to collect popular emojis
and trending words for typing recommendation [16, 17], and Microsoft’s implementation in Windows 10 for
collecting application telemetry [18].

On the other hand, in many practical scenarios, the data collector needs to collect users’ data periodically
and repeatedly across multiple iterations (with timestamps). One example of such iterative data collection is
LDP deployments in the industry, e.g., Apple collects Safari data twice every day and Health data once every
day [19], and Microsoft collects telemetry statistics once every 6 h [1, 18]. Another example is locally private
federated learning, in which a user iteratively contributes to the training of a global machine learning model
across many rounds [20, 21]. In such cases, LDP protocols are used for multiple iterations of data collection,
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whereas the underlying data being collected remains mostly static. For example, a user’s browser homepage,
most visited websites, or Health app settings on their smartphone are unlikely to change every day. In this
case, although each perturbed response satisfies ε -LDP individually by itself, we conjecture that longitudinal
collection of multiple responses from the same user will degrade that user’s privacy.

In order to demonstrate this claim, in this paper we propose longitudinal attacks against iterative data
collection with LDP. The added privacy risks of longitudinal data collection have been recognized in the past
LDP literature [15, 18, 22, 23]; however, to the best of our knowledge, there does not exist a practical attack
which can experimentally and quantifiably measure these privacy risks. Our paper fills this gap. We first
formulate a Bayesian adversary model that observes multiple perturbed responses from the user (each of which
satisfies LDP), and aims to predict the user’s true value using the observed responses and Bayesian inference.
Considering that the inference process is dependent on the specifics of the LDP protocol, we then apply our
adversary model to six popular LDP protocols: GRR, BLH, OLH, RAPPOR, OUE, and SS. For each protocol,
we algorithmically describe the inference attack step by step. In addition, we propose two metrics for measuring
the success of the attack (formally stated in Sec. 3.3): Adversarial success rate (ASR) and group inference rate
(GIR). ASR measures the ratio of exactly correct predictions made by the adversary, whereas GIR measures
the adversary’s ability to predict whether the user’s true value is among a group of predefined sensitive values.

We experimentally demonstrate the effectiveness of our attacks using three datasets (MSNBC, Kosarak,
Uniform), under varying privacy budgets ε , number of observations n , and domain and sensitive group sizes.
The key take-away messages from our experiments are as follows: (i) Our longitudinal attacks are effective.
For common values of ε such as ε = 2 or 4, although ASR is typically below 0.2 with n = 1 observation,
when many observations are made longitudinally (e.g., n = 9 or 11), ASR can exceed 0.8 which shows that
users effectively get very little privacy protection. (ii) The vulnerability of each LDP protocol to our attack
depends on multiple factors such as ε , domain size, and sensitive group size. For example, GRR protocol shows
higher vulnerability compared to other protocols for high ε values (such as ε = 4 or 6), but lower vulnerability
for low ε values. (iii) Increasing the sensitive group size increases attack effectiveness when measured by the
GIR metric, whereas increasing the domain size decreases attack effectiveness. (iv) Our Bayesian attack always
outperforms a random attacker model by a large margin.

The remainder of this paper is organized as follows. In Section 2, we give the preliminaries regarding
LDP and LDP protocols. In Section 3, we give the general Bayesian attack formulation, describe how the attack
is applied individually to each protocol, and define the attack success metrics. In Section 4, we provide our
experimental analysis and discuss the results. Finally, Section 5 concludes the paper.

2. Preliminaries
2.1. Local differential privacy

Local differential privacy (LDP) has recently emerged as a popular standard for privacy-preserving data col-
lection. In a typical LDP setup, there exists a population of users (clients) and a data collector (server). We
denote the user population by P and the domain of users’ possible values by D . For user u ∈ P , we denote this
user’s true value by vu , such that vu ∈ D . While the server wants to collect statistics regarding users’ values,
in order to protect privacy, each user perturbs his/her vu using a randomized mechanism M and shares the
perturbed response with the server. For mechanism M to satisfy LDP, the following definition must hold.
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Definition 1 (ε-LDP) A randomized mechanism M satisfies ε-local differential privacy (ε-LDP), where
ε > 0 , if and only if for any two inputs v1, v2 ∈ D we have:

∀y ∈ Range(M) :
Pr[M(v1) = y]

Pr[M(v2) = y]
≤ eε (1)

where Range(M) denotes the set of all possible outputs of M .

Here, ε is a key parameter that determines the privacy level, also commonly known as the privacy budget.
By definition of LDP, lower ε yields stronger privacy whereas higher ε yields weaker privacy.

Several LDP protocols have been developed in the literature [2, 15, 24, 25], which serve as building
blocks for more complex end applications with richer capabilities. Depending on the data syntax, application
semantics, domain D , budget ε and other factors, different protocols may be preferred in different applications
to maximize accuracy, reduce user-side computation effort or minimize user-server communication cost [1, 2]. In
the next section, we summarize six protocols that have been commonly used in the related literature [1, 26–29]:
GRR, BLH, OLH, RAPPOR, OUE, SS. We will use these protocols to demonstrate our longitudinal attacks.

2.2. LDP protocols

To summarize the technical descriptions of the protocols, we follow an approach similar to [2, 28] and specify
an LDP protocol in 3 fundamental steps: Encode, Perturb, Aggregate. The first two steps occur on the
user-side, whereas the third step occurs on the server-side after perturbed responses are collected from users.
For protocol Prot, we denote its encoding step by ΘProt , its perturbation step by ΨProt , and its aggregation
step by ΦProt . Collectively, the three steps ⟨ΘProt,ΨProt,ΦProt⟩ are sufficient to describe how Prot works.

Generalized Randomized Response (GRR) is an extension of the randomized response survey
collection technique. GRR generalizes and extends this technique to support nonbinary finite D and arbitrary
ε . The encoding step of GRR is trivial: ΘGRR(vu) = vu . Then, the perturbation step ΨGRR takes as input vu

and outputs yu ∈ D with the following probabilities:

Pr[ΨGRR(vu, ε) = yu] =

{
p = eε

eε+|D|−1 if yu = vu

q = 1
eε+|D|−1 if yu ̸= vu

(2)

where |D| denotes domain size. This satisfies ε -LDP since p
q = eε . The user sends yu to the server.

On the server side, upon receiving perturbed responses from all users, to perform estimation for some
value v ∈ D the server first finds Ĉ(v) : total number of users who reported v as their perturbed output. Then,
ΦGRR computes the estimate C̄(v) as:

C̄(v) = ΦGRR(Ĉ(v), ε) =
Ĉ(v)− |P| · q

p− q
(3)

Binary local hashing (BLH) is similar to [24], but instead of expensive matrix projection and
multiplication operations, it uses a logically equivalent construction by drawing a random hash function H

from a universal hash function family H . It was noted in [30] that Hadamard transform is also similar in
essence to BLH.
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Let H be a universal hash function family such that each hash function H ∈ H maps a value from D
into one bit, i.e. H : D → {0, 1} . For encoding, each user u first draws a hash function uniformly randomly
from H , i.e. Hu ←$ H . Then, user’s bit bu is computed by: bu = Hu(vu) . Overall, the output of the encoding
step of BLH is: ΘBLH(vu) = ⟨Hu, bu⟩ . The perturbation step ΨBLH takes as input bu and outputs b′u with the
following probabilities:

Pr[b′u = 1] = Pr[ΨBLH(bu, ε) = 1] =

{
eε

eε+1 if bu = 1
1

eε+1 if bu = 0
(4)

The user sends tuple ⟨Hu, b
′
u⟩ to the server.

The server receives tuples ⟨Hu, b
′
u⟩ from users u ∈ P . When performing estimation for v ∈ D , the server

first computes Sup(v) , which denotes the total number of tuples for which the condition b′u = Hu(v) holds.
Then, ΦBLH computes the estimate C̄(v) as:

C̄(v) = ΦBLH(Sup(v), ε) =
(eε + 1) · (2 · Sup(v)− |P|)

eε − 1
(5)

Optimized local hashing (OLH) differs from BLH in that the output spaces of hash functions in
family H are now g -ary instead of binary, where g ≥ 2 is an adjustable parameter of the protocol. Hence, OLH
enables users to encode their vu into an integer [1, g] instead of a single bit. The benefit of g -ary encoding
is to combat BLH’s high utility loss caused by binary encoding, especially when ε and D are large [2]. The
default value of g is g = eε + 1 as derived and used in [2, 27], which is also the default value we will assume in
the rest of the paper.

Let H be a universal hash function family where each H ∈ H maps a value from D into an integer in
[1, g] , i.e. H : D → [1, g] . For encoding, each user u first draws a hash function uniformly randomly from H ,
i.e. Hu ←$ H . Then, user computes integer xu as: xu = Hu(vu) . Overall, the output of the encoding step of
OLH is: ΘOLH(vu) = ⟨Hu, xu⟩ . The perturbation step ΨOLH takes as input xu and outputs perturbed integer
x′
u ∈ [1, g] with the following probabilities:

Pr[x′
u = i] = Pr[ΨOLH(xu, ε) = 1] =

{
eε

eε+g−1 if xu = i
1

eε+g−1 if xu ̸= i
(6)

The user sends tuple ⟨Hu, x
′
u⟩ to the server.

The server receives tuples ⟨Hu, x
′
u⟩ from users u ∈ P . When performing estimation for v ∈ D , the server

first computes Sup(v) , which denotes the total number of tuples for which the condition x′
u = Hu(v) holds.

Then, ΦOLH computes the estimate C̄(v) as:

C̄(v) = ΦOLH(Sup(v), ε) =
(eε + g − 1) · (g · Sup(v)− |P|)

(eε − 1) · (g − 1)
(7)

RAPPOR was originally developed by Google’s researchers and implemented in Chrome [15, 25]. In
RAPPOR, the user’s value is encoded into a bitvector and the bitvector is perturbed in a randomized fashion
to satisfy LDP. Here, we give a general version of RAPPOR with parameter ∆ that is determined by how many
1 bits can exist in the bitvector. If unary (one-hot) encoding is used as in [2, 12], in which only one 1 bit is
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allowed in the bitvector, then ∆ = 2 . If more complex encodings are used (such as Bloom filters, set-valued
encoding or graph neighbor lists as in [25, 31, 32]), in which at most h bits are allowed to be 1, then ∆ = 2h .

The encoding step of RAPPOR takes the user’s true value vu and encodes it into a bitvector Bu , i.e.
ΘRAPPOR(vu) = Bu . In case of unary encoding, Bu is constructed as follows:

∀i∈[1,|D|] : Bu[i] =

{
1 if vu = i

0 if vu ̸= i
(8)

The perturbation step ΨRAPPOR takes Bu as input and produces a perturbed bitvector B′
u . This

perturbed bitvector is constructed by considering each bit in Bu one by one, and either keeping the existing
bit or flipping it with probabilities controlled by ε and ∆ :

Pr[B′
u[i] = 1] =

{
eε/∆

eε/∆+1
if Bu[i] = 1

1
eε/∆+1

if Bu[i] = 0
(9)

The user sends B′
u to the server.

The server receives perturbed bitvectors B′
u from users u ∈ P . When performing estimation for index

i ∈ [1, |B|] , the server first finds C̃[i] as:

C̃[i] =
∑
u∈P

B′
u[i] (10)

Then, ΦRAPPOR computes the estimate C̄(i) as:

C̄(i) = ΦRAPPOR(C̃[i], ε) =
C̃[i] + |P| · (α− 1)

2α− 1
(11)

where α is the bit keeping probability: α = eε/∆

eε/∆+1
.

Optimized unary encoding (OUE) has the same encoding step as RAPPOR with unary encoding,
i.e. ΘOUE is equivalent to Equation 8. However, OUE’s perturbation step ΨOUE is different than ΨRAPPOR

– it treats the 0 and 1 bits asymmetrically. More concretely, ΨOUE takes bitvector Bu as input and produces
perturbed bitvector B′

u according to the following probabilities:

Pr[B′
u[i] = 1] =

{
1
2 if Bu[i] = 1
1

eε+1 if Bu[i] = 0
(12)

The user sends B′
u to the server.

The server receives perturbed bitvectors B′
u from users u ∈ P . When performing estimation for index

i ∈ [1, |B|] , the server first finds C̃[i] in the same way as in Equation 10. Then, ΦOUE computes the estimate
C̄(i) as:

C̄(i) = ΦOUE(C̃[i], ε) =
2 ·

(
(eε + 1) · C̃[i]− |P|

)
eε − 1

(13)

Subset selection (SS). In SS, each user u sends a randomized subset of values Zu to the server. The
size of the subset, denoted by k = |Zu| is a parameter of the protocol. According to [30, 33], the default value

of k is k = |D|
eε+1 .
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On the user side, Zu is first initialized as an empty set. ΨSS adds vu to Zu with probability k·eε
k·eε+|D|−k .

Then, ΨSS constructs the remainder of Zu as follows:

• If vu was added to Zu in the previous step, then k − 1 items are sampled from D \ {vu} uniformly at
random without replacement, and they are added to Zu .

• If vu was not added to Zu in the previous step, then k items are sampled from D \ {vu} uniformly at
random without replacement, and they are added to Zu .

The user sends the resulting Zu to the server.
The server receives randomized sets Zu from users u ∈ P . The server defines two constants σk and θk :

σk =
keε

keε + |D| − k
θk =

(k − 1)(keε) + (|D| − k)k

(|D| − 1)(keε + |D| − k)

To perform estimation for value v ∈ D , the server computes Sup(v) as the total number of users whose reported
set Zu contains v . Then, ΦSS computes the estimate C̄(v) as:

C̄(v) = ΦSS(Sup(v), ε) =
Sup(v)− |P| · θk

σk − θk
(14)

3. Longitudinal attacks against LDP
3.1. General attack formulation
We formulate our longitudinal attack against iterative data collection using a Bayesian adversary A . This
adversary can be the server (i.e. data collector), a man-in-the-middle who observes the communication between
a user and the server, or a third-party analyst with whom the collected data is shared. For user u , let Ou

denote the perturbed responses A has observed from u . Since we study iterative data collection, A is assumed
to observe multiple perturbed responses from the user. We denote the number of observations by n = |Ou| . We
extend the notation from Section 2.2 and write superscripts on protocol outputs (ranging from 1 to n) to denote
the observation number. For example, in case of GRR we write: Ou = {y1u, y2u, ..., ynu} ; in case of RAPPOR we
write: Ou = {B1

u, B
2
u, ..., B

n
u} ; and in case of OLH we write: Ou = {⟨H1

u, x
1
u⟩, ⟨H2

u, x
2
u⟩, ..., ⟨Hn

u , x
n
u⟩} .

Armed with Ou , the goal of A is to correctly predict vu . Denoting A ’s prediction by vpu , the Bayesian
strategy to compute vpu can be derived using the Bayes theorem:

vpu = argmax
v̂∈D

Pr[v̂|Ou] = argmax
v̂∈D

Pr[Ou|v̂] · Pr[v̂]
Pr[Ou]

= argmax
v̂∈D

Pr[Ou|v̂] · Pr[v̂] (15)

∝ argmax
v̂∈D

Pr[Ou|v̂] (16)

The computation of Pr[Ou|v̂] is protocol-dependent and it varies from protocol to protocol. In the next section,
we describe how to compute it for each of the protocols given in Section 2.2.

3.2. Applying the attack to individual LDP protocols

The computation of Pr[Ou|v̂] is dependent on ΘProt and ΨProt functions of each protocol, since these functions
determine the probabilities of obtaining certain perturbed responses from v̂ . Therefore, we need to analyze the
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ΘProt and ΨProt functions of each protocol given in Section 2.2 (GRR, BLH, OLH, RAPPOR, OUE, and SS)
one by one, and describe how to apply A to each protocol.

Application to GRR: In case of GRR, the output of ΨGRR is a value from the original D . Therefore,
we have: Ou = {y1u, y2u, ..., ynu} such that yiu ∈ D for all i . Next, we observe from Equation 2 that p > q , and
consequently, Pr[yiu = vu] > Pr[yiu = v′] for all v′ ∈ D \ {vu} . Since vu is more likely to be observed in Ou

than any other v′ ∈ D , the value of v̂ that maximizes Pr[Ou|v̂] can be found by counting the occurrences of
each distinct v in O , and assigning the one that has the highest number of occurrences as vpu . The pseudocode
of this approach is given in Algorithm 1.

Algorithm 1 Attack application to GRR protocol.
1: function AttackGRR(Ou = {y1u, y2u, ..., ynu})
2: for v ∈ D do
3: Initialize count(v) = 0

4: for i ∈ [1, n] do
5: Increment count(yiu) = count(yiu) + 1

6: Find v∗ = argmax
v

count(v)

7: return v∗

Application to BLH and OLH: Since BLH and OLH both use local hashing, we describe the attack
strategy for them together. For ease of explanation, we follow OLH’s notation and terminology. However, we
note that BLH can be parsed as an instance of our attack explanation with a binary hash (g = 2) instead of
OLH’s g -ary hash.

In case of OLH, we have: Ou = {⟨H1
u, x

1
u⟩, ⟨H2

u, x
2
u⟩, ..., ⟨Hn

u , x
n
u⟩} such that each Hi

u is a random g -
ary hash function from a universal hash function family and xi

u is an integer between [1, g] . We make two
observations from ΨOLH . First, for all pairs of values vj , vk ∈ D such that Hu(vj) = Hu(vk) , the following
holds: Pr[xi

u|vj ] = Pr[xi
u|vk] . In other words, vj and vk have an equal probability of resulting in xi

u . Second,
consider that a certain xi

u was reported to the server, and we divide D into two disjoint subsets D1,D2 such
that D1 = {v|v ∈ D,Hi

u(v) = xi
u} and D2 = D \D1 . In that case, by construction of ΨOLH in Equation 6, the

following inequality regarding the user’s true value vu must hold: Pr[vu ∈ D1] > Pr[vu ∈ D2] .
Combining these two observations, we apply A to OLH as shown in Algorithm 2. For i ∈ [1, n] , we

consider each ⟨Hi
u, x

i
u⟩ pair individually, and construct the subset of D such that {v|v ∈ D,Hi

u(v) = xi
u} under

each pair. We call this subset Dsub . According to the second observation, Pr[vu ∈ Dsub] > Pr[vu ∈ D \ Dsub] ,
therefore A increases the scores of values in Dsub . The fact that scores of each value in Dsub should be
increased equally follows from the first observation. There are two options regarding how much the score of
each value should be increased: (i) inversely proportional to the size of Dsub , e.g., 1

|Dsub| so that the probability

is uniformly distributed across all values in Dsub , or (ii) by a fixed constant c across all iterations, regardless of
|Dsub| . We choose the second option in our attack because the size of Dsub often changes in different iterations
(i ∈ [1, n]), and this may cause certain values’ scores to be unfairly high if they happened to be in Dsub in an
iteration that had small |Dsub| by chance. Such situations would negatively impact the overall success rate of
our attack. The second option does not suffer from this problem since scores are increased by a fixed constant
c (e.g., c = 1) that stays the same across all i . In fact, we implemented and empirically tested both options to
validate this intuition.
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Algorithm 2 Attack application to BLH and OLH protocols
1: function AttackLH(Ou = {⟨H1

u, x
1
u⟩, ..., ⟨Hn

u , x
n
u⟩})

2: Let c be a global constant such as c = 1 (see main text)
3: for v ∈ D do
4: Initialize score(v) = 0

5: for i ∈ [1, n] do
6: Initialize Dsub = {}
7: for v ∈ D do
8: if Hi

u(v) = xi
u then

9: Dsub = Dsub ∪ {v}
10: for v ∈ Dsub do
11: score(v) = score(v) + c

12: Find v∗ = argmax
v

score(v)

13: return v∗

Application to RAPPOR: The output of ΨRAPPOR is a bitvector, therefore we have: Ou =

{B1
u, B

2
u, ..., B

n
u} . By design of RAPPOR, the decision of ΨRAPPOR to keep or flip each bit j ∈ [1, |B|] is

independent of other bits; in addition, the decision at each iteration i ∈ [1, n] is also independent of the other
iterations. Thus, for RAPPOR with unary encoding, if we consider a particular index j and a particular
iteration i , we can derive from Equations 8 and 9 that:

Pr[Bi
u[j] = 1|vu = j] =

eε/2

eε/2 + 1
(17)

Pr[Bi
u[j] = 0|vu = j] =

1

eε/2 + 1
(18)

Then, taking into account the independence of the iterations i ∈ [1, n] :

Pr[Ou|vu = j] =

n∏
i=1

Pr[Bi
u|vu = j] (19)

Indeed, this is the derivation used in the function shown in Algorithm 3. The inner for loop computes the score
of a particular j value using Equation 19, which are internally determined by Equations 17 and 18. The outer
for loop ensures scores are calculated for all possible j . Finally, the value v∗ that corresponds to the index
with the highest score is returned by the algorithm.
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Algorithm 3 Attack application to RAPPOR protocol
1: function AttackRAPPOR(Ou = {B1

u, B
2
u, ..., B

n
u})

2: Initialize vector scores of length |B|
3: For all j ∈ [1, |B|] , initialize scores[j] = 1
4: for j ∈ [1, |B|] do
5: for i ∈ [1, n] do
6: if Bi

u[j] = 1 then
7: scores[j] = scores[j] · eε/2

eε/2+1

8: else
9: scores[j] = scores[j] · 1

eε/2+1

10: Find v∗ = argmax
j

scores[j]

11: return v∗

Application to OUE: Similar to RAPPOR, in OUE we have: Ou = {B1
u, B

2
u, ..., B

n
u} . Also similar

to RAPPOR, the decision of ΨOUE to keep or flip each bit j ∈ [1, |B|] is independent of other bits, and the
decision at each iteration i ∈ [1, n] is independent of other iterations. However, the key difference of OUE
compared to RAPPOR is caused by the perturbation probabilities of ΨOUE . It can be observed from Equation
12 that:

Pr[Bi
u[j] = 1|vu = j] = Pr[Bi

u[j] = 0|vu = j] =
1

2
(20)

since the original 1 bit is kept or flipped with 1/2 probability. Hence, as opposed to RAPPOR, conditioning
the probabilities on vu = j is not effective in OUE. Instead, we observe from Equation 12 that the original 0
bits are kept with a large probability but flipped with a low probability. Therefore, we can condition on vu ̸= j

and obtain:

Pr[Bi
u[j] = 1|vu ̸= j] =

1

eε + 1
(21)

Pr[Bi
u[j] = 0|vu ̸= j] =

eε

eε + 1
(22)

Across i ∈ [1, n] , the following property holds:

Pr[Ou|vu ̸= j] =

n∏
i=1

Pr[Bi
u|vu ̸= j] (23)

This derivation results in the attack strategy used in Algorithm 4. Instead of RAPPOR’s attack which aims to
keep scores proportional to the likelihood of each index j ∈ [1, |B|] being originally 1 and choosing the index
with the highest score at the end, OUE’s attack maintains vector scores_zero which stores the likelihood that
the corresponding index is originally 0. The internal score multiplications follow from Equations 21 and 22. At
the end, whichever index has lowest likelihood of being 0 is the index whose likelihood of being 1 is highest,
therefore an argmin is performed.
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Algorithm 4 Attack application to OUE protocol
1: function AttackOUE(Ou = {B1

u, B
2
u, ..., B

n
u})

2: Initialize vector scores_zero of length |B|
3: For all j ∈ [1, |B|] , initialize scores_zero[j] = 1
4: for j ∈ [1, |B|] do
5: for i ∈ [1, n] do
6: if Bi

u[j] = 1 then
7: scores_zero[j] = scores_zero[j] · 1

eε+1

8: else
9: scores_zero[j] = scores_zero[j] · eε

eε+1

10: Find v∗ = argmin
j

scores_zero[j]

11: return v∗

Application to SS: In case of SS, we have: Ou = {Z1
u, Z

2
u, ..., Z

n
u} where each Zi

u is a subset of values
from D . From the definition of ΨSS , we know that vu is added to Zu with probability k·eε

k·eε+|D|−k . In addition,

we can use the definition of ΨSS to compute that for any v ∈ D \ {vu} , the probability that v is added to Zu

is: keε

keε+|D|−k ·
k−1
|D|−1 + |D|−k

keε+|D|−k ·
k

|D|−1 . Considering that k is the subset size that must satisfy k ≤ |D| , we

find that the prior probability is always larger than the latter. Hence, we establish that it is not possible for
any fake value’s probability of being added to Zu to be higher than the probability that vu is added to Zu .

Next, we observe that the only way vu is added to Zu is if ΨSS adds vu with probability k·eε
k·eε+|D|−k .

If vu is not added to Zu by this step, then vu cannot appear in Zu because the rest of the items are always
sampled from D \ {vu} uniformly at random without replacement. Combining this finding with the above,
it can be concluded that the value of v̂ that maximizes Pr[Ou|v̂] can be found by counting the occurrences
of each v in the sets {Z1

u, Z
2
u, ..., Z

n
u} , and finally choosing as vpu the value which has the highest number of

occurrences. The pseudocode of this approach is given in Algorithm 5.

Algorithm 5 Attack application to SS protocol
1: function AttackSS(Ou = {Z1

u, Z
2
u, ..., Z

n
u})

2: for v ∈ D do
3: Initialize count(v) = 0

4: for i ∈ [1, n] do
5: for v ∈ Zi

u do
6: Increment count(v) = count(v) + 1

7: Find v∗ = argmax
v

count(v)

8: return v∗

3.3. Metrics for measuring attack success

Recall that for user u , vu denotes the user’s true value and vpu denotes the adversary A ’s prediction of the
user’s value. Over a large user population P , it is in the best interests of A to achieve vpu = vu or vpu ≈ vu for
as many u ∈ P as possible. We propose two metrics to measure the success of the adversary in achieving this:
Adversarial success rate (ASR) and group inference rate (GIR).

Adversarial success rate (ASR) is used to measure what ratio of the adversary’s predictions is exactly
correct, i.e. vpu = vu . It is defined as follows:
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ASR =
# of users u ∈ P such that vpu = vu

|P|
(24)

Group inference rate (GIR): In some circumstances, even if the adversary cannot predict the user’s
true value exactly, it is sufficient for the adversary to predict that the user’s value is within a group of sensitive
values (or range of values) to cause a privacy breach. For example, consider that users’ heart rates are being
collected using LDP through a health app. Even if the adversary cannot predict the user’s heart rate exactly,
inferring that the user’s heart rate is among very high values can be sufficient to learn that the user has a heart
problem, which constitutes a serious privacy breach.

Our GIR metric is designed to address such situations. Let G ⊂ D be a group of sensitive values among
the domain D , e.g., D contains all heart rate values whereas G contains only high heart rates. We denote by
PG = {u ∈ P | vu ∈ G} and P∗

G = {u ∈ P | vu ∈ G, vpu ∈ G} . In other words, PG is the subset of the population
whose true values fall within G , and P∗

G is the subset of the population whose true values and adversary’s
predicted values for those users fall within G . Then, GIR is defined as:

GIR =
|P∗

G |
|PG |

(25)

For both ASR and GIR metrics, higher ASR and GIR imply higher success for the adversary, which
means there is weaker privacy protection for users.

3.4. Discussion and extensions
Changing true values of users. Throughout the paper, we denoted the user’s true value as vu . In reality,
the user’s true value may remain constant or change over the duration of iterative data collection. That is, if we
denote by viu the user’s true value at timestamp i , it is possible that viu = vju for all 1 ≤ i, j ≤ n (user’s true
value is constant) or there exist i, j ∈ [1, n] such that viu ̸= vju (user’s true value changes over time). Our attack
strategies are applicable in both scenarios. However, we should note that if the user’s true value is changing
frequently and arbitrarily, then the attack boils down to attacking individual observations, e.g., inferring viu

from yiu in case of GRR, inferring viu from Bi
u in case of RAPPOR, etc. Considering that each LDP protocol

satisfies ε -LDP, such inference is not possible beyond the probabilities given by Equation 1. (Otherwise, the
protocol would have been violating LDP.)

Overall, our longitudinal attacks are expected to be more successful if the user’s true value remains
mostly constant over time. As the amount of change increases, we would expect ASR and GIR to decrease.
We perform an experimental study regarding this in Section 4.5. When the user’s true value is changing over
time, the aim is to figure out the most frequently occurring value, i.e. we say that the adversary’s prediction is
correct if vpu = mode(v1u, v2u, ..., vnu) .

Extension to mean inference. In cases where the user’s true value is changing (v1u, v
2
u, ..., v

n
u) , it is

possible to extend our attack not just to infer the mode (i.e. single value) but also the mean of the vector:
mean(v1u, v2u, ..., vnu) . To achieve this, recall that each of Algorithm 1-5 maintains a list of scores (or counts) for
each v ∈ D , and then an argmin or argmax is taken over the scores of the values. For mean inference, instead
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of taking argmin or argmax, we can predict the mean as:

mean =

∑
v∈D

v · score(v)∑
x∈D

score(x)
(26)

Differences compared to related works. Our work contributes to a recent line of research in LDP
which aims to investigate the privacy properties and/or privacy risks of LDP protocols. The main differences
between our work and the related works in this domain are as follows. In [34], Murakami et al. evaluate
reidentification attacks in LDP, which aim to link obfuscated data to users. A new measure of reidentification
risk (called PIE) is proposed. Although Bayesian principles are used in this work, the goal of their attack
(reidentification) is different than ours; in addition, there is no longitudinal aspect which is the main focus of
our work. In [35], Gursoy et al. study LDP protocols from the perspective of a Bayesian adversary, and show
that the adversary’s inference ability can be different under varying protocols, parameters, and adversarial
knowledge. Again, there is no longitudinal aspect in [35], i.e. only a single round of data collection is assumed,
whereas the focus of our paper is longitudinal data collection. In [36], Gadotti et al. propose a new class of
attacks called pool inference in which the adversary defines pools of interest for the attack (e.g., groups of true
values), and then runs the attack to determine the user’s preferred pool. In this attack, the goal is to infer
the user’s preferred pool rather than exact true value, whereas our attack aims to recover the user’s true value
(which, we believe, is of higher severity). Furthermore, the attack in [36] is evaluated on the Count Mean Sketch
(CMS) mechanism, whereas our attacks are evaluated on multiple LDP protocols, including protocols that are
more recent compared to CMS (e.g., OLH, OUE). In [37], Arcolezi et al. study the risks of multidimensional
data collection under LDP. In this work, the main focus is on the multidimensionality of the user’s record,
i.e. the record contains multiple attributes. When collecting such records, typically two solutions are used:
Sampling (SMP) and RS+FD [38]. Arcolezi et al. [37] show that SMP and RS+FD are vulnerable against
reidentification and attribute inference attacks, e.g., due to the disclosure of the sampled attribute. Finally, the
Bayes security measure is proposed in [39], which quantifies the expected gain of an adversary who observes the
output of a perturbation mechanism. While the work of [39] is not specific to LDP, GRR is analyzed under the
Bayes security measure as a fundamental LDP mechanism. However, this work does not consider longitudinal
data collection, does not use other popular LDP protocols, and therefore does not show the empirical privacy
risks of popular LDP protocols under longitudinal collection as our paper does.

4. Experiments and discussion
4.1. Experiment setup
We conduct experiments to measure the effectiveness of our longitudinal attacks. The goals of our experiments
are to: (i) demonstrate that our longitudinal attacks are effective and therefore constitute a cause of practical
concern, (ii) analyze the impact of different protocols, ε budgets, n and |D| values on attack effectiveness, (iii)
understand the impact of G on the GIR metric, (iv) show that our attack is substantially more effective than
baseline adversary models, and (v) analyze the impact of consistency in users’ true values on attack effectiveness.

In our experiments, we use the six LDP protocols under consideration (GRR, BLH, OLH, RAPPOR,
OUE, SS) and three datasets: MSNBC, Kosarak, Uniform. MSNBC and Kosarak are real datasets, Uniform is a
synthetic dataset. We implemented the code for protocols and attacks in Python. We execute our longitudinal
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attacks on all six protocols and three datasets, for varying and commonly used values of the ε parameter:
ε = 0.5, 1, 2, 4, 6 . For the GIR metric, by default we designated the size of the group G as 10% of the overall
domain D , i.e.: |G| = |D| × 10% . We used Python version 3.9 and popular Python libraries such as numPy,
math, and pandas. Hashing operations in BLH and OLH were implemented using the xxhash library. All
experiments were conducted on a Windows 10 laptop with Intel i7 CPU and 16 GB RAM.

MSNBC contains logs from msnbc.com website for September 28, 1999. Each row in the dataset
corresponds to one user’s page visit sequence1. Page visits are recorded at the granularity of the webpage
category, e.g., frontpage, news, tech, weather, health, sports, business, etc. There are |D| = 17 categories and
|P| = 989, 818 users total. A large number of users either visit one category of pages or for users that visit
multiple categories, their visits are often dominated by one category. Hence, for each user, we determine the
most visited category and assume the user’s true value is equal to that category.

Kosarak contains click stream data from a Hungarian online news portal2. Similar to MSNBC, each
row in the dataset corresponds to one user’s page visit sequence. However, as opposed to MSNBC, page visits
are recorded at the granularity of URL IDs. There are around one million users and 41,270 unique URL IDs.
Due to many URLs having extremely small numbers of occurrences (e.g., visited only once or twice in the
whole dataset), we pre-processed the dataset by identifying the top-128 most visited URLs across the whole
dataset and removing the remaining URLs from each user’s page visit sequence. For users who had more than
one URL in their resulting stream, the most frequently occurring URL in their stream was picked as their vu .
Users who had zero URLs in their stream were discarded. At the end, we had: |D| = 128 different URLs and
|P| = 929, 669 users total.

Uniform: We created a synthetic dataset consisting of |P| = 100, 000 users and domain size |D| = 50 .
Each user was assigned a true value sampled from a Uniform distribution across D , i.e. for all u ∈ P and for
all j ∈ D , Pr[vu = j] = 1/|D| . The assignment of vu to u occurs once per user.

In Figure 1, we illustrate the distributions of users’ true values in each dataset. It can be observed from
the figure that the three datasets have varying distributions, e.g., the Uniform dataset resembles a uniform
distribution (as expected), Kosarak is highly skewed (some values are much more frequent than others),
and MSNBC contains some skew but it is more balanced (between Kosarak and Uniform). This variety in
distributions is beneficial for us to perform experiments in diverse conditions.

Figure 1. Ranked histograms of users’ values in each dataset (MSNBC, Kosarak, Uniform).

1UCI Machine Learning Repository: MSNBC.com Anonymous Web Data Set. http://archive.ics.uci.edu/ml/datasets/
msnbc.com+anonymous+web+data

2Frequent Itemset Mining Dataset Repository. http://fimi.uantwerpen.be/data/
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4.2. Impact of number of observations
In Figure 2, we plot how the ASR values change according to the increasing number of observations n . Results
with the GIR metric are not included in this section due to the page limit, but we remark that the overall
trends and take-away messages are very similar to those in Figure 2. First and foremost, results demonstrate
the clear increase in ASR as n becomes larger, which means that the adversary’s ability to infer the user’s
true value keeps increasing as the adversary obtains more observations. For example, consider the RAPPOR
protocol and a commonly used ε value such as ε = 2 . Under this setting, ASR is below 0.2 on all three datasets
when n = 1 , which means the adversary’s inference capability is limited. However, as n ≥ 5 , the adversary’s
inference capability becomes higher and higher (ASR ≥ 0.5). Eventually, as n approaches 15, ASR becomes
close to 1 which means the adversary’s inferences are almost always correct.

The second key observation is the positive correlation between ε and ASR. For example, ASRs are lowest
when ε = 0.5 , they are relatively higher when ε = 1 or ε = 2 , and they are highest when ε = 6 . This positive
correlation agrees with the expectations of ε -LDP because according to ε -LDP, lower ε causes higher amount
of perturbation and stronger privacy, therefore ASRs of the adversary are lower.

Figure 2. Attack results on six protocols, five different ε values, and three datasets: MSNBC (first row), Uniform
(second row), Kosarak (third row). Overall, longitudinal attacks become increasingly effective as n increases.

The third observation is that ASRs can differ from one dataset to another. For example, consider the
OLH protocol with ε = 4 and n = 3 . In this setting, the ASR of OLH is 0.75 on the MSNBC dataset, it is 0.62
on the Uniform dataset, and it is 0.53 on the Kosarak dataset. The reason for this is the varying prediction
difficulty on different datasets. Consider a completely random attack strategy: A predicts vpu by sampling an
element from D uniformly at random, without taking into consideration protocol outputs. In expectation, the
ASR of this A would be 1/|D| (see Table 1). Now recall that |D| is the smallest for MSNBC and highest for
Kosarak. Thus, one would expect ASR to be highest on MSNBC and smallest on Kosarak. The experiment
results indeed validate this expectation.

Another observation is that ASRs can differ from one protocol to another. Furthermore, the rate of
change in ASR may also differ from protocol to protocol, and from ε to ε . For example, as n is increased
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from 1 to 3, we observe a super-linear increase in ASR for RAPPOR when ε is 4 or 6, but a linear or sublinear
increase occurs on many other protocols and ε values. These differences in ASR behavior are not surprising
– each protocol has a different way of encoding and perturbing user data, and they are affected differently by
changing D and ε . For example, the bit keeping and flipping probabilities in ΨRAPPOR are affected by ε but
not D . In contrast, ΨGRR is impacted by both ε and D . The output space of the hash encoding (g ) in ΘOLH

is also affected by ε . Considering the varying Ψ and Θ functions of protocols, it is natural that changing
dataset characteristics and ε values yield different ASR and also different rates of change in ASR.

Overall, despite varying characteristics and behaviors, the main take-away message holds across all
protocols, datasets, and ε values: longitudinal attacks become increasingly effective in inferring users’ true
values when the number of observations (n) becomes larger. Even in cases where users have relatively strong
privacy when n is small (such as ASR ≤ 0.2 when n = 1), longitudinal observations may cause ASR to
approach 1.0 as n becomes larger.

4.3. Impact of group size in GIR

Next, we explore the impact of the group size |G| on the results of the GIR metric. Since the Kosarak dataset
has the largest D , it gives us the highest flexibility in terms of trying different |G| values; hence, this experiment
is conducted using the Kosarak dataset. Furthermore, we fix ε = 2 and n = 9 to best observe the trend of
impact on GIR, e.g., in other settings of ε and n , GIR values can become equal to 1 across different |G| values
and therefore the trends may not be clearly visible.

The results of this experiment are shown in Figure 3. We vary |G| between 5%×|D| and 35%×|D| , and
plot a separate graph for each of the five LDP protocols. For all protocols, the results show that GIR increases
as the size of G increases, but the speed of increase can be different from protocol to protocol. When G is
larger, the sizes of PG and P∗

G are also naturally larger. On the other hand, the increasing GIR shows that the
rate of increase in P∗

G is higher than that in PG . This indicates that although there may exist cases in which
the adversary’s predictions are not exactly correct, the predictions may be close to the user’s true value, and
therefore an increase in G will benefit the adversary’s inference success.

4.4. Impact of domain size and comparison to other approaches

In this section, we explore the impact of |D| on ASR and GIR. Since Uniform is a synthetic dataset, we are
able to modify its D and generate datasets with different D while keeping |P| constant. Therefore, we conduct
this experiment using the Uniform dataset, ε = 2, n = 5, and |D| varying between 10 and 90. In addition to
the Bayesian adversary A proposed in Section 3, we consider two additional adversary models for comparison.
First one is a random adversary A whose attack strategy is to randomly sample vpu from D . The ASR of this

random A is equal to 1
|D| and the GIR of this random A is equal to |G|

|D| . The second one is an adversary bound

by randomized response (denoted by RR Bound). Recall from Equation 1 that LDP allows vu to be reported
with probability eε times higher than some other value v ∈ D \ {vu} . Then, following the GRR principle,

the definition of LDP allows an ASR of eε

eε+|D|−1 and a GIR of eε+|G|−1
eε+|D|−1 . Thus, for our Bayesian A to be

considered effective, it should have higher ASR and GIR compared to Random A and RR Bound. In Table 1,
we report the ASR and GIR of the random A , the RR Bound, as well as the Bayesian A under varying D .
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Figure 3. GIR results on six protocols using Kosarak dataset, ε = 2 and n = 9. Size of G is varying between 5%×|D|
and 35%× |D| .

We make several observations from Table 1. First, our Bayesian A always achieves substantially higher
ASR and GIR compared to Random A and RR Bound. This demonstrates the effectiveness and added value
of our attacks. As indicated by the ratio Bayesian A

Random A , the differences between the two are most noticeable in case
of OLH, RAPPOR and OUE protocols. Second, when we study the ASR metric, we observe that in case of
GRR, as |D| increases we first observe an increase in Bayesian A

Random A from |D| = 10 to 30, which is followed by a

decrease in Bayesian A
Random A from |D| = 30 to 90. In contrast, when we study the ASR of all remaining protocols,

Bayesian A
Random A increases as |D| is increased. This is likely because of GRR’s reduced accuracy caused by increasing
|D| . As shown in Equation 2, GRR’s perturbation function is affected by |D| ; however, the perturbation
functions of the remaining protocols are not affected. Since GRR’s perturbation becomes less accurate as |D|
is increased, Bayesian A ’s ASR also drops more quickly in GRR compared to other protocols. Third, in terms
of GIR, Bayesian A

Random A decreases as |D| increases for all protocols. Since |G| = |D| × 10% in all experiments, the
GIR of random A remains constantly equal to 0.1. On the other hand, Bayesian A ’s GIR steadily decreases
as |D| increases, since making a correct prediction (or close-to-correct prediction) becomes more difficult as
the prediction space D is enlarged in general. Thus, we observe a steady decrease in Bayesian A

Random A in terms of
GIR. The speed of decrease is faster for the GRR protocol compared to other protocols (e.g., it is slowest for
OLH, RAPPOR and OUE) because of the same reason explained before, i.e. GRR’s reduced accuracy as |D|
increases. Fourth, we compare RR Bound and Bayesian A . We observe that Bayesian A always has higher
ASR and GIR compared to RR Bound, but their difference is more pronounced for some protocols and |D|
values. For example, the Bayesian A is particularly stronger than RR Bound in case of SS protocol, as well as
OLH, RAPPOR and OUE protocols with large |D| . It should be noted that the results in Table 1 are with n

= 5, which is not too high. If higher n values were used (such as n = 10), the difference between Bayesian A
and compared approaches (Random A and RR Bound) would have been even more significant.
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Table 1. Comparison of Random adversary, Bayesian adversary, and RR Bound in terms of ASR and GIR under varying
|D| . ε = 2 and n = 5 parameters are used throughout the table.

ASR GIR
|D| Random A RR Bound Bayesian A Bayesian A

Random A Random A RR Bound Bayesian A Bayesian A
Random A

GRR

10 0.100 0.451 0.709 7.09 0.100 0.451 0.713 7.13
30 0.033 0.203 0.326 9.88 0.100 0.258 0.372 3.72
50 0.020 0.131 0.192 9.60 0.100 0.202 0.255 2.55
70 0.014 0.097 0.134 9.57 0.100 0.175 0.205 2.05
90 0.011 0.077 0.102 9.27 0.100 0.159 0.185 1.85

BLH

10 0.100 0.451 0.595 5.95 0.100 0.451 0.601 6.01
30 0.033 0.203 0.377 11.42 0.100 0.258 0.417 4.17
50 0.020 0.131 0.281 14.05 0.100 0.202 0.338 3.38
70 0.014 0.097 0.220 15.71 0.100 0.175 0.297 2.97
90 0.011 0.077 0.178 16.18 0.100 0.159 0.249 2.49

OLH

10 0.100 0.451 0.676 6.76 0.100 0.451 0.679 6.79
30 0.033 0.203 0.511 15.48 0.100 0.258 0.533 5.33
50 0.020 0.131 0.440 22.00 0.100 0.202 0.483 4.83
70 0.014 0.097 0.398 28.42 0.100 0.175 0.456 4.56
90 0.011 0.077 0.361 32.82 0.100 0.159 0.418 4.18

RAPPOR

10 0.100 0.451 0.715 7.15 0.100 0.451 0.721 7.21
30 0.033 0.203 0.534 16.18 0.100 0.258 0.562 5.62
50 0.020 0.131 0.452 22.60 0.100 0.202 0.499 4.99
70 0.014 0.097 0.397 28.36 0.100 0.175 0.450 4.50
90 0.011 0.077 0.362 32.91 0.100 0.159 0.411 4.11

OUE

10 0.100 0.451 0.672 6.72 0.100 0.451 0.679 6.79
30 0.033 0.203 0.507 15.36 0.100 0.258 0.540 5.40
50 0.020 0.131 0.435 21.75 0.100 0.202 0.479 4.79
70 0.014 0.097 0.393 28.07 0.100 0.175 0.445 4.45
90 0.011 0.077 0.362 32.91 0.100 0.159 0.423 4.23

SS

10 0.100 0.451 0.710 7.10 0.100 0.451 0.709 7.09
30 0.033 0.203 0.541 5.41 0.100 0.258 0.571 5.71
50 0.020 0.131 0.451 4.51 0.100 0.202 0.489 4.89
70 0.014 0.097 0.399 3.99 0.100 0.175 0.447 4.47
90 0.011 0.077 0.374 3.74 0.100 0.159 0.434 4.34

4.5. Impact of consistency in users’ true values
Recall from Section 3.4 that users’ true values may remain constant or change over time, and in case of changing
values, the adversary aims to find: vpu = mode(v1u, v2u, ..., vnu) . In this section, we perform experiments regarding
the impact of the rate of change in users’ true values. We define consistency to denote how consistent the user’s
true value remains during the time of data collection. More formally:

Consistency =
# of times i ∈ [1, n] such that viu = mode(v1u, v2u, ..., vnu)

n
(27)

The higher the consistency, the more constant the user’s true value remains throughout multiple iterations of
data collection. We fix n = 10 and simulate varying levels of consistency = {0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. On one
extreme, consistency = 1.0 implies that the user’s true value always remains constant. On the other extreme,
consistency = 0.1 implies that the user’s true value changes every timestamp. We measure the ASR values for
different consistency levels, ε values, LDP protocols, and datasets. The results are shown in Figure 4.

Results in Figure 4 show that our attacks are most successful when consistency = 1.0, i.e. users’ true
values remain constant. As consistency decreases (i.e. users’ values become more random), ASR decreases.
These observations hold for a variety of ε values (ε = 0.5, 1.0, 2.0, 4.0, 6.0), LDP protocols (GRR, OLH,
RAPPOR, OUE) and datasets. Intuitively, these results agree with our intuition in Section 3.4 that inferring
highly changing (i.e. more random) values is more difficult since this problem becomes similar to inferring an
LDP protocol’s input from its output – as long as the protocol is correct, there is a theoretical limit (enforced
by the definition of LDP) regarding the effectiveness of achieving this. On the other hand, our longitudinal
attacks are much more effective when the users’ data remains mostly static.
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Figure 4. Impact of consistency on attack effectiveness for four protocols (GRR, OLH, RAPPOR, OUE), five different
ε values, and two datasets (MSNBC and Uniform).

5. Conclusion

In this paper, we proposed longitudinal attacks against iterative data collection with LDP. We first proposed
a general Bayesian attack formulation and then showed how to apply the attack to six commonly used LDP
protocols from the literature. Experiments conducted using three datasets and various parameters demonstrate
that the longitudinal attacks are effective. The effectiveness of our longitudinal attacks motivates the need for
countermeasures, i.e. strategies that can be used together with existing LDP protocols to reduce or restrict the
risks of longitudinal attacks.

In future work, we plan to extend our current work in several directions. First, we will explore potential
countermeasures such as memoization. In memoization, the user’s true value is first perturbed with ε1 and
stored (memoized) on the user’s device. Then, at each iteration, the memoized value is reperturbed with
a different budget (say ε2 ) and sent to the data collector. Hence, the privacy protection at each iteration
is achieved by a combination of ε1 and ε2 ; in addition, longitudinal privacy is achieved with ε1 -LDP despite
arbitrarily many data collections because the adversary’s attack recovers the memoized value. Yet, memoization
suffers from the key shortcoming of reduced data utility due to the perturbation applied twice. Second, we will
explore the application of w -event privacy. w -event privacy is a useful notion for ensuring the privacy of
continuously computed aggregate queries over streaming data. Its idea is to protect a sliding window of at most
w timestamps rather than protecting the full stream, which is more difficult and requires more noise [40, 41].
Although w -event privacy was originally proposed for centralized DP, we will investigate its formulation and
application to LDP. Finally, we will investigate the application of our attack in contexts where the user’s data
changes in correlated fashion. For example, in the context of location data, although the user’s location may
change at each timestamp, the next location is highly correlated with the previous location. In such cases,
an attack inspired by the attack proposed in this paper may be leveraged to exploit the correlations between
consecutive locations.
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