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Abstract: In this paper, a novel online and adaptive truncation method is proposed for differentially private Bayesian
online estimation of a static parameter regarding a population. A local differential privacy setting is assumed where
sensitive information from individuals is collected on an individual level and sequentially. The inferential aim is to
estimate, on the fly, a static parameter regarding the population to which those individuals belong. We propose sequential
Monte Carlo to perform online Bayesian estimation. When individuals provide sensitive information in response to a
query, it is necessary to corrupt it with privacy-preserving noise to ensure the privacy of those individuals. The amount
of corruption is proportional to the sensitivity of the query, which is determined usually by the range of the queried
information. The proposed truncation technique adapts to the previously collected data to adjust the query range for
the next individual. The idea is that, based on previous data, one can carefully arrange the interval into which the next
individual’s information is to be truncated before being distorted with privacy-preserving noise. In this way, predictive
queries are designed with small sensitivity, hence small privacy-preserving noise, enabling more accurate estimation while
maintaining the same level of privacy. To decide on the location and the width of the interval, an exploration-exploitation
approach is employed, a la Thompson sampling, with an objective function based on Fisher information. The merits of
the methodology are shown with numerical examples.
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1. Introduction
During the past couple of decades, there has been a rapid increase in the amount of collected data as well as
concerns about individuals’ privacy. This has made privacy-preserving data analysis a popular and important
subject in data science. Along the way, differential privacy has become a popular framework for privacy-
preserving data sharing algorithms [1, 2].

There are two conflicting interests in privacy-preserving data analysis: (i) The individuals of a population
who contribute to a data set with their sensitive information want to protect their privacy against all possible
adversaries. Conflicting with that, it is desirable to be able to estimate a common quantity of interest regarding
the population based on sensitive data with reasonable accuracy. To put the conflict in a statistical context, let
Xt ∼ Pθ be the sensitive information of t ’th individual of a sample randomly chosen from a large population
with a population distribution Pθ . The goal is to estimate θ while also protecting the privacy of the individuals
contributing to the sample, i.e. without revealing much information about Xt s individually.

This paper studies a setting where sensitive information from individuals is collected on an individual
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level, i.e. every individual randomly corrupts their information before sharing it. In that way, the proposed
methodology fits in the framework of local differential privacy [3], where there is no need for a central aggregator.
Local differential privacy also addresses concerns about the possibility of an adversary having access to the
sensitive data stored in the database, thereby offering a stronger notion of privacy.

We are particularly interested in online Bayesian estimation of θ as we sequentially collect Y1, Y2, . . . ,
which are the corrupted versions of X1, X2, . . . respectively. The cases where individuals contribute to a data
set sequentially in time are not common: Imagine, for example, web users registering to a web application after
entering their information, patients being admitted to a hospital, customers applying for a bank loan, etc. The
presence of such scenarios enables two methodological opportunities/challenges:

1. One can (and/or should) estimate the static parameter on the fly, that is, update the estimate as data
are being received.

2. As the parameter is being estimated, one can adaptively adjust the query for the next individual’s
information to make the response as informative as possible. For example, if, based on the noisy income
values collected so far from 100 individuals, it has been estimated that the mean income of the population
is around µ̂ , the next individual can be asked to provide their income information after truncating it to
an interval around µ̂ , such as [µ̂−∆, µ̂+∆] , and then privatizing it by adding noise.

The motivation behind pursuing such an adaptive truncation technique is to improve the estimation
performance with less noisy data while maintaining a given level of privacy. As we shall see below, the
standard deviation of the privacy-preserving noise added to the outcome of a query is proportional to
the sensitivity of the query. By default, the queried information may be unbounded or have very large
ranges, which renders many practical privacy-preserving mechanisms useless. Continuing with the income
example above, assume that the natural limits of an income are [xmin, Xmax] so that a query that directly
asks for income information has a sensitivity of Xmax − xmin , which is expectedly large. With adaptive
truncation, the query interval for 101’th individual would be [µ̂−∆, µ̂+∆] with sensitivity 2∆ .

This paper contributes to the literature on differential privacy by addressing the two challenges described
above with a novel methodology. For the first challenge, that is, online estimation of θ , we propose a
sequential Monte Carlo (SMC) method [4] for online Bayesian inference. For the second challenge, we propose
an adaptive truncation method that employs an exploration-exploitation heuristic to maximize the aggregate
information in the sequence of observations Y1, Y2, . . . about θ . The Fisher information is chosen as a measure of
informativeness as suggested in [5, 6]. The exploration part of the proposed approach can be seen as an instance
of Thompson sampling [7] from reinforcement learning, as we will show in subsection 3.2. The exploitation part
consists of finding the truncation points that make the resulting observations most informative in terms of Fisher
information. Finally, for the exploitation step, we pay special attention to location-scale families and show that
the maximization task can be performed for all time steps once and for all. To the best of our knowledge, this is
the first work that tackles the problem of online differentially private Bayesian estimation with adaptive queries.

The presented methodology has potential use for scenarios where a stream of sensitive data is collected
from individuals and needs to be processed privately and efficiently for various data-based goals varying from
inference to decision-making. Such scenarios are ample in today’s world, where valuable and sensitive personal
data such as health data, financial transactions, and internet activity, continually cumulate and can be used for
various useful purposes in anomaly detection, analysis of health data, user recommendation etc.
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The organization of the paper is as follows. In subsection 2.1, the basic concepts of differential privacy are
introduced, and in subsection 2.2 the existing related works in the literature are discussed. Section 3 contains a
discussion of the problem of online parameter estimation using privatized noisy statistics of the sensitive data,
as well as the proposed methodology in general. Subsections 3.1 and 3.2 contain the technical details of the
presented methodology. Section 4 contains the numerical experiments. Finally, concluding remarks and possible
future work are given in Section 5. This paper includes an Appendix section for some deferred details.

2. Background and related work

This section is reserved for an introduction to the basic concepts of differential privacy, followed by a discussion
of the data privacy literature relevant to this work.

2.1. Differential privacy

Let X be a set of individual data values and X =
⋃∞

n=1 Xn be the set of data sets. Define the Hamming
distance between the data sets x,x′ ∈X as the number of different elements between those data sets, denoted
by h(x,x′) . We call two data sets x,x′ ∈ X n neighbours if h(x,x′) = 1 . A randomized algorithm can be
defined as a couple A = (A,µ) , where A : X × E 7→ Y is a function and µ is a probability distribution on
E , which represents the randomness intrinsic to A . Upon taking an input x ∈ X , the randomised algorithm
A generates random numbers ω ∼ µ(·) in E and outputs A(x, ω) . A differential private algorithm ensures a
certain sense of similarity between the probability distributions of A(x, ω) and A(x′, ω) when x and x′ are
neighbors.

Definition 1 (Differential privacy (DP) [1]) A randomised algorithm A = (A,µ) is (ϵ, δ)-DP if

P [A(x, ω) ∈ S] ≤ eϵP [A(x′, ω) ∈ S] + δ, ∀x,x′ ∈X s.t. h(x,x′) = 1, ∀S ⊆ Y .

where the randomness is with respect to ω ∼ µ(·) . We say A is ϵ-DP when δ = 0 .

As far as privacy is concerned, both privacy parameters (ϵ, δ) are desired to be as small as possible. The
following theorem states that (ϵ, δ) -DP is maintained by postprocessing the output of an (ϵ, δ) -DP algorithm.

Theorem 1 (Postprocessing) Define functions A1 : X × E1 7→ Y1 and A2 : Y1 × E2 7→ Y2 ; and probability
distributions µ1 , µ2 on E1 , E2 , respectively. Furthermore, let A : X × E1 × E2 7→ Y2 be defined by
A(x, ω1, ω2) = A2(A1(x, ω1), ω2) , and µ = µ1 ⊗ µ2 . Then, if A1 = (A1, µ1) is (ϵ, δ)-DP, A = (A,µ) is
(ϵ, δ)-DP, too.

Let φ : X 7→ R be a function and assume that φ(x) is queried. One common way of achieving differential
privacy, in this case, is the Laplace mechanism [8], which relies on the L1 -sensitivity of φ , given by

∆φ = sup
x,x′:h(x,x′)=1

|φ(x)− φ(x′)|. (1)

Theorem 2 (Laplace mechanism) The algorithm that returns φ(x) +∆φV given the input x ∈X , where
V ∼ Laplace(1/ϵ) , is ϵ-DP.
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Other useful definitions of data privacy have close relations to differential privacy. Some important examples
are Gaussian differential privacy [9] and zero-concentrated differential privacy [10], both of which promote the
Gaussian mechanism [2] (where V in Theorem 2 has a normal distribution) as its primary mechanism for
providing privacy. The Gaussian mechanism can also provide (ϵ, δ) -DP for δ > 0 if the variance is modified to
depend on δ also.

For the rest of the paper, we will consider the Laplace mechanism to provide ϵ -DP for the sake of
simplicity. We remark, however, that other additive mechanisms to provide privacy in other senses also fit into
our methodology with minor changes. In particular, our methodology applies to the Gaussian mechanism in an
almost identical manner.

2.2. Related work
Differentially private Bayesian inference of θ has been the subject of several recent studies, with Monte Carlo
being the main methodological tool for inference. Differentially private stochastic gradient MCMC algorithms
were proposed in [11, 12], while some reversible differentially private MCMC algorithms were proposed in [13–
15]. Those algorithms require as many interactions with sensitive data as the number of iterations they run
for. An alternative scheme to that is called input perturbation, where the sensitive data are shared privately
once and for all, and all the subsequent Bayesian inference is performed on the perturbed data without further
interaction with the sensitive data [6, 16–21]. All the cited works above consider differentially private Bayesian
inference conditional on a batch (static) data set. Unlike those works, in this paper, we consider the case with
continual observations, where data from the individuals are collected sequentially in a privacy-preserving way.

Differentially private estimation has been studied under the assumption of continual observation in several
works that are initiated by [22]; other important contributions include [23, 24]. However, those works are usually
applied to online tracking of dynamic summaries of data, such as the count of a certain property, rather than
estimating a static parameter of the population from which the data are being received. In particular, they do
not consider Bayesian estimation.

Locally differentially private protocols for estimation of frequency distributions [25], which is somewhat
more specific than the general parameter estimation problem, have been studied in several works. For frequency
estimation with LDP protocols, Barnes et al. [5] and Steinberger [26] consider Fisher Information as the utility
metric for finding nearly optimal LDP protocol for parameter estimation. Lopuhaä-Zwakenberg et al. [27]
use Fisher information for comparing the utility of various LDP protocols for frequency estimation and finding
the optimal one. The Fisher information is also proposed in [6] for statistic selection for differentially private
Bayesian estimation. In these works, the estimation task is mainly assumed a static one, and the main focus is
on a single protocol that is chosen once and for all for a given estimation task. In contrast to these approaches,
we incorporate the Fisher information into our estimation method algorithm in a dynamic way to adapt to
cumulating information in time. To the best of our knowledge, the proposed method in this paper is the first
one that adaptively uses Fisher information to dynamically optimise the query in a local differential privacy
setting.

3. Differentially private online parameter estimation with adaptive queries
In this section, we describe in detail the methodological contributions of the paper. First, we formalize the
inference problem and provide a general framework of the methodology, which is outlined in Algorithm 1.
Then, in subsections 3.1 and 3.2 we give the details required to implement Algorithm 1.
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Problem definition: In this paper, we assume a sequence of i.i.d. data points

Xt
i.i.d.∼ Pθ, t ≥ 1,

where Xt is some sensitive information that belongs to the t ’th individual sampled from a population. We
want to estimate the unknown parameter θ of the population distribution Pθ . However, we are not allowed to
access to Xt ’s directly; instead, individuals share their information through a function st : X 7→ R and with
privacy-preserving noise as

Yt = st(Xt) + ∆stVt, Vt ∼ Laplace(1/ϵ), t ≥ 1, (2)

where ∆st is the sensitivity defined as in (1). We consider online estimation of θ when {Yt}t≥1 are observed
sequentially in time. The recursion that corresponds to a sequential estimation procedure can be written down
generically as

Θt = G(Θt−1, Y1:t, s1:t).

The update function G produces Θt using all the information up to time t , which includes Θt−1 , the functions
s1:t , and the observations Y1:t . Generally, Θt is not necessarily a point estimate but a collection of variables
needed to construct the estimation of θ at time t . For example, in SMC for Bayesian estimation, Θt can
correspond to the particle system at time t . Details of such an algorithm will be provided in subsection 3.1.

This paper focuses on the possibility of choosing st adaptively so that θ is estimated with improved
accuracy relative to its nonadaptive counterpart. The choice of st is important because st determines how
much information is contained in Yt about θ in two ways [6]: (i) The first way is related to the sufficiency
or informativeness of st in a classical way. For example, if the population distribution were Pθ = N (θ, 1)

with an unknown mean θ , then st(xt) = xt would be a better choice than st(xt) = |xt| since |xt| masks the
information that is contained in xt about θ . (ii) Secondly, the standard deviation of the privacy-preserving
noise is proportional to the sensitivity ∆st . A large ∆st leads to the perturbation of useful information with
too much privacy-preserving noise. (As an extreme case, think of an unbounded st .) On the flip side, making
∆st too small could result in a small amount of information about θ . (Imagine a constant st(·) , which has
∆st = 0 but carries no information about θ .) Therefore, truncation and sensitivity establish a trade-off.

Example 1 Assume that our goal is to learn the average income θ of the individuals in a given population,
with a population distribution N (θ, σ2) , where σ2 is known. Assume that data is collected from (some of)
the individuals in this population in a sequential way. However, since the income information is sensitive,
each individual’s income is recorded (or shared by the individual) with privacy-preserving noise. For practical
applications, we must ensure a finite sensitivity, which is usually achieved either by truncating the income value
into the natural boundaries of the information or more generally into an interval [l, r]

Yt = min{max{Xt, l}, r}+ (r − l)Vt, Vt ∼ Laplace (1/ϵ) .

If the interval [l, r] is wide, true income Xt is not likely to be truncated but Yt suffers a large noise for ensuring
the given level of privacy. On the other hand, if [l, r] is small, Xt is likely to be truncated but Yt is less noisy.
This makes a trade-off between truncation and privacy-preserving noise, the two undesired components in terms
of statistical inference. It would therefore be reasonable to adjust the interval adaptively as we collect data, where
the interval for receiving the t ’th individual’s data is denoted by [lt, rt] . We aim to set [lt, rt] so that it will
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likely contain the true value and it is small so that the required privacy-preserving noise has a small variance.
We could do that by positioning [lt, rt] around the most recent estimate of θ if it is a location parameter.

General framework: The general online estimation method with adaptive functions st is given in Algorithm
1. The algorithm outlines the general idea in this paper: We gain knowledge about θ as we observe Yt ’s; which
we use to adapt the statistic st+1 such that the new observation Yt+1 carries more information about θ than
it would with an arbitrary choice of st+1 .

Algorithm 1 is ϵ -DP. Each observation Yt belongs to an individual and is shared with ϵ -DP. Furthermore,
all the updates in Algorithm 1 are performed using the shared data {Yt}t≥1 and not the private data {Xt}t≥1 .
Therefore, by Theorem 1, those updates do not introduce any further privacy leaks. A more formal statement
in Proposition 1.

Algorithm 1: Differentially private online learning - general scheme.
Initialise the estimation system Θ0 and s1(·) .
for t = 1, 2, . . . do

The function st is revealed to individual t , which shares his/her data Xt as

Yt = st(Xt) + ∆stVt, Vt ∼ Laplace (1/ϵ)

Update the estimation system Θt as

Θt = G(Θt−1, Y1:t, s1:t) (3)

Update the function
st+1 = H(Θt) (4)

end

Proposition 1 Algorithm 1 is ϵ-DP.

Proof Let Rt = (Θt, St, Yt) be the revealed outputs of Algorithm 1 at time t . For any n ≥ 1 , the conditional
distribution of R1:n at r1:n = (θ1:n, s1:n, y1:n) is given by

P (dr1:n|X1:n = x1:n) =

n∏
t=1

Laplace(yt − st(xt),∆st/ϵ)dyt

n∏
t=1

P (dst|θt)p(dθt|θ1:t−1, y1:t, s1:t),

where we used Laplace(y; b) to denote the pdf of Laplace(b) . The ratio between the conditional distributions
with x1:n and x′

1:n for any neighbour pair x1:n, x
′
1:n differing by some k ’th element is given by

e−ϵ ≤ P (dr1:n|X1:n = x1:n)

P (dr1:n|X1:n = x′
1:n)

=

∏n
t=1 Laplace(yt − st(xt),∆st/ϵ)∏n
t=1 Laplace(yt − st(x′

t),∆st/ϵ)
=

Laplace(yk − sk(xk),∆sk/ϵ)

Laplace(yk − sk(x′
k),∆sk/ϵ)

≤ eϵ,

where the first equality is because the other factors do not depend on x1:n (or x′
1:n ), the second equality is

because x1:n and x′
1:n differ by the k ’th element only. 2
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Remark 1 We remark that Algorithm 1 also satisfies ϵ-local differential privacy [3], since ϵ-DP is satisfied for
every user’s piece of data. This can be seen easily by checking that for every n the ratio

e−ϵ ≤ P (drn|X1:n−1 = x1:n−1, Xn = xn, R1:n−1 = r1:n−1)

P (drn|X1:n−1 = x1:n−1, Xn = x′
n, R1:n−1 = r1:n−1)

≤ eϵ

for every x1:n−1 , xn, x
′
n , and r1:n .

In the subsequent subsections 3.1 and 3.2, we describe the methods for the updates in (3) and in (4).

3.1. Sequential Monte Carlo for online Bayesian estimation

In this section, we focus on G in (3), which stands for the parameter estimation update upon receiving a new
observation. We consider the functions st given and present an SMC method for online Bayesian estimation of
θ . SMC is a popular numerical method for online Bayesian inference; see [4, 28] for some pioneer works. Let
pθ(·) be the probability density (or mass) function (pdf or pmf) of Pθ . With a prior distribution η(θ) on θ ,
the following sequence of posterior distributions is targeted sequentially with SMC.

pϵs1:t(θ, x1:t|y1:t) ∝ pϵs1:t(θ, x1:t, y1:t) = η(θ)

t∏
k=1

pθ(xk)Laplace (yk − sk(xk),∆sk/ϵ) , t = 1, . . . , n. (5)

A Monte Carlo approximation is indeed necessary for those posterior distributions since they are intractable
having no closed form. At time t , SMC approximates the posterior distribution in (5) with a discrete probability

distribution having N > 1 particles (points of mass) {(θ(i), x(i)
1:t); i = 1, . . . , N} with particle weights {w(i)

t ; i =

1, . . . , N} as

pϵ,Ns1:t (d(θ, x1:t)|y1:t) =
N∑
i=1

w
(i)
t δ

(θ(i),x
(i)
1:t)

(d(θ, x1:t)).

By marginalizing out the x1:t component in the above approximation, we can also obtain the particle approxi-
mation of the marginal posterior distribution of θ given the observations.

pϵ,Ns1:t (dθ|y1:t) =
N∑
i=1

w
(i)
t δθ(i)(dθ).

At time-step t , the particles and their weights from time t− 1 are updated after the resampling, rejuvenation,
propagation, and weighting steps. The propagation and weighting steps are necessary to track the evolving
posterior distributions, while the rejuvenation and resampling steps prevent the particle approximation from
collapsing to a single point. The update at a single time-step of SMC is detailed in Algorithm 2. The
algorithm is an instance of the resample-move algorithm of [28], specified for the sequence of posteriors in
(5). The most common resampling step is multinomial sampling, where the N new particles are sampled
independently from the categorical distribution with support points being the existing N particles and the
probabilities being their weights. For the rejuvenation step, one common type of MCMC move consists
of (i) an update of xk , k = 1, . . . , t , with a Metropolis-Hastings (MH) move with invariant distribution
pθ,sk(xk|yk) = pθ(xk)p

ϵ
sk
(yk|xk) , which is followed by (ii) an update of θ using an MH move with invariant

distribution p(θ|x1:t) ∝ η(θ)
∏t

k=1 pθ(x) . One such MCMC move is shown in Algorithm 4 in Appendix B.
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In general, the computational cost of SMC for processing n observations is O(Nn2) since an O(tN)

operation is needed to rejuvenate the particles at time t . The cost may be reduced in some cases: The cost for
updating x1:t can be reduced by updating a random subset, of a fixed size, of xk ’s at each time step t . The
cost for updating θ may be reduced depending on the model specifics, for example by using a Gibbs move for
θ if the posterior distribution p(θ|x1:t) is tractable.

Algorithm 2: SMC update at time t .
Input: Particles at time t− 1 , (θ

(1:N)
t−1 , x

(1:N)
1:t−1) , particle weights w

(i)
t observation yt , function st ,

DP parameter ϵ
Output: The particle system at time t
Resampling: Resample particles according to their weights:

(θ(1:N), x
(1:N)
1:t−1)← Resample((θ(1:N), x

(1:N)
1:t−1);w

(1:N)
t−1 )

for i = 1, . . . , N do
Rejuvenation: Update (θ(i), x

(i)
1:t−1) using an MCMC move that targets pϵs1:t−1

(θ, x1:t−1|y1:t−1) .
Propagation: Sample x

(i)
t ∼ Pθ(i) and append particle i as (θ(i), x

(i)
1:t) = (θ(i), (x̃

(i)
1:t−1, x

(i)
t )) ,

end
Weighting: Calculate w

(i)
t ∝ Laplace

(
yt − st(x

(i)),∆st/ϵ
)

for i = 1, . . . , N s.t.
∑N

i=1 w
(i)
t = 1 .

3.2. Adaptive truncation for the transformation
In this section, we focus on H in Algorithm 1 and describe a method to determine the function st adaptively
so that the estimation performance of SMC is better over a version where an arbitrary st is used. We confine
to st that corresponds to truncating xt into an interval [lt, rt] ,

st(x) = T rt
lt
(x) := min{max{x, lt}, rt},

so that the sensitivity is ∆st = rt−lt . We assume Xt is univariate; for multivariate Xt the truncation approach
can be applied to each component.

How should we choose the truncation points lt, rt ? Recall the trade-off mentioned earlier: A larger rt− lt

renders truncation less likely but leads to a larger noise in Yt ; whereas a smaller rt − lt renders truncation
more likely but leads to a smaller noise in Yt . Another critical factor is the location of lt, rt relative to θ . For
example, when θ is a location parameter, an interval (lt, rt) around θ may be preferred.

Following the works like [5, 6], we use the Fisher information as the amount of information that an
observation carries about the population parameter. The Fisher information associated to Y = T r

l (X)+(r−l)V
when V ∼ Laplace(1/ϵ) can be expressed as

F ϵ
l,r(θ) = E

[
∇θ log p

ϵ
l,r(Y |θ)∇θ log p

ϵ
l,r(Y |θ)T

]
, (6)

where pϵl,r(y|θ) is the pdf of the marginal distribution of Y = y given θ . According to this approach, we set
the truncation points lt, rt to those l, r values that jointly maximize F ϵ

l,r(θ) . When θ is multidimensional, an
overall score function sc(·) can be used to order the Fisher information matrices. An example of such a score
function is the trace, or a weighted (harmonic) average of the diagonals, of F ϵ

l,r(θ) .

F ϵ
l,r(θ) is smaller for a smaller ϵ , due to more noisy observations. However, it is not obvious how F ϵ

l,r(θ)

behaves with l, r . The exact calculation of F ϵ
l,r(θ) is not possible in general as the truncation of X between
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l, r , if nothing else, introduces an intractability in the calculations. That is why we numerically approximate
the Fisher information using the Monte Carlo technique proposed in [6],

F ϵ
l,r(θ) ≈

1

M

M∑
j=1

˜∇θ log pϵl,r(y
(j)|θ) ˜∇θ log pϵl,r(y

(j)|θ)T , y(1), . . . , y(M) i.i.d∼ pϵl,r(y|θ), (7)

where each gradient term in the sum is calculated using Algorithm 5 in Appendix B.

3.2.1. Exploration-exploitation for interval selection

We adjust the interval [l, r] to better estimate θ , and yet the adjustment is based on F (θ) , which itself depends
on θ . Therefore, we are adapting the intervals based on a technique that requires the knowledge of θ which we
want to estimate in the first place. This situation necessitates an exploration-exploitation approach. When we
have little knowledge about θ , we should let our adaptive algorithm have more freedom to locate the truncation
interval; but as we learn θ by receiving more and more observations, the location of the interval should be
chosen with less variety. Our exploration-exploitation approach consists of two steps. Let sc : Rd×d 7→ R be a
score function for Fisher information matrices, where d is the dimension of θ . Given Θt ,

1. Draw ϑ randomly from the particle approximation,

ϑ ∼ pϵ,Nl1:t,r1:t
(θ|y1:t) =

N∑
i=1

w
(i)
t δθ(i)(dθ), (8)

which corresponds to setting ϑ = θ(i) w.p. w
(i)
t .

2. Determine the interval for the next observation as

lt+1, rt+1 = argmax
l,t

sc(F ϵ
l,r(ϑ)). (9)

After determining [lt+1, rt+1] , the next data point Xt+1 is shared as

Yt+1 = T
rt+1

lt+1
(Xt+1) + (rt+1 − lt+1)Vt+1, Vt+1 ∼ Laplace(1/ϵ). (10)

The exploration size is decreased as t increases, that is, as more data are observed. Remarkably, this is
automatically handled by the posterior distribution in (8), which is spread over a wide region at the beginning
but gets more concentrated as more data are received.

Thompson sampling. The exploration-exploitation approach described above can be likened to Thompson
sampling in reinforcement learning (see e.g., [7]), albeit with latent ‘rewards’: Using the terminology from
reinforcement learning, in our case, the ‘action’ is the choice of the interval [lt, rt] , ‘state’ is Yt , the ‘model
parameter’ is θ , ‘past observations’ at time t are the states Y1, . . . , Yt , and the ‘objective function’ is sc(Fl,r(θ)) .
The exact implementation of Thompson sampling requires sampling from pl1:t,r1:t(dθ|Y1:t) . As often done in
practice, we approximate that step sample from the particle approximation pNl1:t,r1:t(dθ|Y1:t) .
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3.2.2. Location and scale parameters and truncation

In principle, the maximization step in (9) can be applied to any population distribution Pθ for sensitive data.
However, location-scale distribution families deserve particular interest due to their common use and certain
desirable properties. It is intuitive to suppose that the best truncation points for a location-scale distribution
can be obtained simply by scaling and shifting the best truncation points calculated for some base distribution.
We show here that this is indeed the case. For a general population distribution Pθ , the maximization (9) needs
to be performed afresh for each ϑt . For location-scale families, however, the computationally intensive part of
(9) can be done once for some base distribution and its result can easily be applied for all ϑt by scaling and
shifting. Below we explain how that is possible.

Definition 2 A distribution family {f(·;m, c) : (m, c) ∈ R × (0,∞)} is a location-scale family with a base
distribution g(x) if for all (m, c) ∈ R× (0,∞) we have f(x;m, c) = 1

cg((x−m)/c) for all x ∈ X . In particular,
f(x; 0, 1) = g(x) .

Assume that Pθ is a member of a location-scale family, e.g., a normal distribution with θ being the vector of
the mean and the standard deviation. When ϑt = (m, c) is sampled in Step 1 above, consider formalizing the
truncation points as

lt+1 = ac+m, rt+1 = bc+m, (11)

where a and b are the free parameters. Then, the problem in (9) reduces to choosing the best a, b that maximize
sc(F ϵ

ac+m,bc+m(m, c)) , where F ϵ
ac+m,bc+m(m, c) is the Fisher information associated to the random variable

Y = T bc+m
ac+m(X) + c(b− a)V, V ∼ Laplace(1/ϵ), X ∼ P(m,c). (12)

We show that for location-scale families, a uniformly best pair a, b over all possible values (m, c) exists.

Theorem 3 For any a, b ∈ R such that a < b , ϵ > 0 and (m, c) ∈ R × [0,∞) , let sc : R2×2 7→ R be a score
for Fisher information matrices. Then, for all pairs a, b and a′, b′ such that a < b and a < b , either one of
the three holds

sc(F ϵ
ac+m,bc+m(m, c)) > sc(F ϵ

a′c+m,b′c+m(m, c)), ∀(m, c) ∈ R× (0,∞);

sc(F ϵ
ac+m,bc+m(m, c)) < sc(F ϵ

a′c+m,b′c+m(m, c)), ∀(m, c) ∈ R× (0,∞);

sc(F ϵ
ac+m,bc+m(m, c)) = sc(F ϵ

a′c+m,b′c+m(m, c)), ∀(m, c) ∈ R× (0,∞).

A proof of Theorem 3 is given in Appendix A. Theorem 3 implies that it suffices to find

(a∗, b∗) = argmax
a,b

sc(F ϵ
a,b(0, 1)), (13)

the best a, b for the base distribution, i.e. for (m, c) = (0, 1) . Then, it is guaranteed that those a∗, b∗ are the
best choices for all (m, c) values when the intervals are chosen according to (11). Therefore, maximization for
interval selection needs to be done only once, implying significant computational savings.

4. Numerical results
In this section, we demonstrate the merits of our method, in comparison to its nonadaptive counterparts, both
on simulated and real data sets.
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4.1. Experiments on simulated data

In our experiments with simulated data, we take N (µ, σ2) as the population distribution, so that θ = (µ, σ) ,
and aim to estimate both µ and σ . Sensitive data X1, . . . , Xn of length n = 1000 are generated from µ = 50

and σ2 = 10 . The parameters are taken a priori independent with µ ∼ N (0, 104) and σ2 ∼ IG(1, 1) , where
IG(α, β) is the inverse gamma distribution with shape α and scale β . The SMC method is combined with the
exploration-exploitation strategy described in subsection 3.2, for the choice of the truncation points.

Note that N (µ, σ2) is a location-scale distribution with µ and σ being the location and scale parameters.
Therefore, we apply (12) to generate the noisy observations, where a and b are the optimal truncation points
corresponding to the N (0, 1) . The Fisher information matrix is a 2× 2 matrix, corresponding to the bivariate
parameter µ, σ . For the example’s sake, we consider that the primary goal is to estimate µ while σ2 is of
secondary importance. Thus, we chose the score function as the first entry of the Fisher information matrix,
that is, sc(F ϵ

a,b(0, 1)) = F ϵ
a,b(0, 1)[1, 1] . The maximization in (13) is performed by Monte Carlo estimation of

F ϵ
a,b(0, 1) on the 50×50 grid spanning [−3, 3]× [3, 3] of (a, b) points. The Monte Carlo estimation is performed

as in (7) with M = 1000 , where the gradient terms in (7) are approximated using Algorithm 5 with samples of
size 10, 000 . The best [a, b] intervals were numerically found as [−0.06, 0.06] , [−0.12, 0.12] , [−0.54, 0.54] , and
[−0.96, 0.96] for ϵ = 1, 2, 5, 10 , respectively.

Algorithm 3 summarizes the entire course of one run of SMC with adaptive truncation for the normal
distribution, which we call “SMC-adaptive”. For each of ϵ = 1, 2, 5, 10 , we repeat this experiment 30 times
independently.

Algorithm 3: SMC-adaptive: Differentially private SMC with adaptive truncation for the normal
distribution.

First, find a, b that maximize sc(F ϵ
a,b(0, 1)) the Fisher information matrix of Y = T b

a(X) + (b− a)V ,
when X ∼ N (0, 1) , V ∼ Laplace(1/ϵ) .

Start with, l1, r1 .
for t = 1, . . . , n do

Generate Yt = T rt
lt
(Xt) + (rt − lr)Vt , where Xt ∼ N (µ, σ2) and Vt ∼ Laplace(1/ϵ) .

Update the particle system of SMC using Algorithm 2 with N = 1000 particles to construct the
SMC approximation of the posterior pϵl1:t,r1:t(θ|Y1:t)

Sample ϑ = (m, c) from the SMC approximation pϵ,Nl1:t,r1:t
(θ|y1:t) .

Determine the new truncation points lt+1 = m+ ca , rt+1 = m+ cb .
end

We compared SMC-adaptive to two nonadaptive algorithms. The first one is the same SMC method
in Algorithm 2, but with constant truncation points, lc = µ − 10σ and rc = µ + 10σ for all t . We call this
algorithm “SMC-nonadaptive”. The second method is an MCMC sampling method that targets the conditional
distribution of θ given the entire batch of the observations at once, pϵlc,rc(θ|Y1:n) , where the observations are
generated using the same truncation points for all Xt as in SMC-nonadaptive as

Yt = T rc
lc
(Xt) + (rc − lc)Vt, Vt

i.i.d.∼ Laplace(1/ϵ), t = 1, . . . , n. (14)

The model for the random variables {θ,X1:n, Y1:n} is a latent variable model for independent observations.
That is why as the MCMC method we chose the MHAAR algorithm proposed in [29, Section 3], which is well
suited to such latent variable models. The interval [lc, rc] , chosen for the nonadaptive methods, represents the
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situation in many practical applications where there is not much strong a priori knowledge available about
θ . The comparison with the nonadaptive version of the SMC aims to show the merit of adaptive truncation.
Moreover, the comparison with the MCMC method aims to show the merit of adaptation even when online
estimation is not required.

Figure 1 displays the performance of the two SMC methods for a single run, for each ϵ . The scatter
plots of the particles at every 20th time step as well as the mean estimates are shown. Further, the truncation
points are also shown in the plots for the location parameter µ . Observe the decreasing amount of spread of
the particles as t . Also, as expected, accuracy increases with ϵ . We also observe the benefit of the adaptive
truncation method relative to its nonadaptive counterpart when we compare the particle distributions: the
particles of the SMC algorithm with adaptive truncation get more concentrated around the true values and do
that much more quickly than those of the nonadaptive version. The posterior means, shown with red lines, also
show the advantage of the truncation method.
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Figure 1. The particle distribution of SMC (every 20th time-step shown) (blue points) and the estimate of the posterior
means (red line) versus time. Black lines indicate the true values. In plots for µ , truncation points are also shown.
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While Figure 1 shows results by the SMC methods from a single run, Figure 2 shows the box plots
of the mean posterior estimates of θ , obtained from 30 independent runs, of all the three methods under
comparison, namely SMC-adaptive, SMC-nonadaptive, and the MCMC methods. The box plots clearly show
that the adaptive truncation approach is beneficial in terms of estimation accuracy as our method beats the
other two methods for both parameters and all the tried ϵ values.
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Figure 2. Box-plots of the posterior means, obtained from 30 runs.

Remark 2 At this point, we remark that the underperformance of SMC-nonadaptive and MCMC are not due
to the algorithmic inferiorities of their SMC or MCMC components. These methods do worse because they are
nonadaptive, hence fed with less informative observations.

4.2. Experiments on real data

In this part, we use a real data set that consists of annual median household incomes (×10−3 ) of a total of 4033
small geographical units in the state of Indiana, US, for the year 2016. Hence, for this data set Xt denotes the
median household income of the t ’th geographical region. Removing the problematic entries, we ended up with
n = 3982 households.

The data set fits naturally in the context of data privacy since the household income information is
collected from individuals and can be considered sensitive data. The data set has a median income value for
each geographical unit, typically or county or township, that contains a group of households.

As long as data privacy is concerned, it is reasonable to assume that a unit of data (corresponding to a
single ‘individual’) is a household income. Note that the median of a group of household incomes has the same
sensitivity as a single household income. That is, if the income for a household has some natural limits, those
limits apply, equally tightly, to the median income of a group of households, too.

Similarly to the experiments above, we fitted a normal distribution to the sensitive data. The MLE
solution based on the sensitive measurements X1, . . . , Xn yields µ̂ = 51.78, σ̂ = 17.57 . These values are used
as a benchmark for the performances of the methods that work on the privatized noisy data Y1, . . . , Yn .
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Differently than the earlier examples, this time we set the score function as

sc(F ϵ
a,b(0, 1)) =

(
1

F ϵ
a,b(0, 1)[1, 1]

+
1

F ϵ
a,b(0, 1)[2, 2]

)−1

,

the harmonic sum of the diagonals of F ϵ
a,b(0, 1) . We picked this form to simulate a scenario where we want

to estimate the population distribution itself, hence giving importance to both µ and σ (hence consider the
Fisher information with respect to both parameters). The harmonic mean implies that the used score function
somewhat accounts for the squared error in the estimates since the mean squared error is implied by the inverse
of the Fisher information matrix.

As before, we compared the performance of our method SMC-adaptive (Algorithm 3) to the nonadaptive
algorithms SMC-nonadaptive and MCMC, where the observations are generated as in (14). The constant
truncation points for the nonadaptive algorithms are taken lc = µ− 5σ and rc = µ+ 5σ for all t .

Figure 3 shows the results for a single run for SMC-adaptive and SMC-nonadaptive, which enable similar
conclusions as we drew from simulated data examples. The nonadaptive methods do well for µ while our
SMC-adaptive does well both for µ and σ2 . Overall, SMC-adaptive is more capable of estimating µ, σ2 jointly
than its nonadaptive competitors.

Another interesting observation here can be made from the truncation intervals for SMC-adaptive, shown
by the wrinkled lines in the left-most plot in Figure 3. Note that the truncation points are not around the mean,
in fact, they hardly overlap with the region where the particles concentrate. This is because those truncation
points are determined such that the resulting observations are informative about σ2 as well as µ .
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Figure 3. The particle distribution of SMC-adapt and SMC-nonadapt vs. observation number t for real data.

We performed 5 Monte Carlo runs on the real data, each time independently randomly permuting the
sensitive data (so that the values are observed in a different order each time) and adding independent DP noise.
The estimation results across those runs, in terms of posterior means for µ and σ , are shown in Table 1. The
table includes the estimation results obtained from the MCMC method as well. As we can see, SMC-adaptive
is not only stable but also the most accurate among the three methods. SMC-nonadaptive is the worst in terms
of stability. MCMC also estimates µ fairly well but fails to estimate the σ with reasonable accuracy.

5. Conclusion
This paper presents a novel methodology for differentially private online Bayesian estimation with adaptive
truncation. The proposed methodology is a working example of the general idea that, as we gain knowledge
about the process that generates sensitive data, we can modify our ‘query’ about sensitive data to get more
utility while maintaining the same level of privacy. The proposed method demonstrated its merits in the
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Table 1. Posterior means across 5 Monte Carlo runs on random permutations of the same sensitive data.

Run no µ (MLE: µ̂ = 51.78) σ (MLE: σ̂ = 17.57)
SMC-adaptive SMC-nonadaptive MCMC SMC-adaptive SMC-nonadaptive MCMC

1 50.3756 51.8790 49.6149 13.6397 4.8232 2.1333
2 55.0282 535.2168 46.7601 9.0344 1.6814 1.6139
3 53.5980 48.4388 49.3032 10.2802 2.6478 1.4627
4 46.6303 51.8498 51.6290 20.5239 2.0033 3.6181
5 48.3601 51.4870 53.4291 15.7926 2.4522 1.6269

numerical experiments involving the normal distribution, one of the most commonly used distributions for
modeling univariate i.i.d. data. It would be interesting to see the extension of the work to other distributions,
especially multivariate distributions.

Although we considered the Laplace mechanism throughout, the methodology can be modified straight-
forwardly for other privacy mechanisms, such as the Gaussian mechanism, that provide different senses of
privacy. All that changes throughout is the conditional distribution of Yt given xt, θ, st, ϵ .

We considered Bayesian inference in this work. Bayesian inference fits ideally into the exploration-
exploitation framework by providing a proper sense of uncertainty about θ via the posterior distribution.
However, its computational cost that grows quadratically with data size can be a concern when n is very
large. A viable alternative is finding the maximum likelihood estimate of θ using an online gradient method,
where the gradients can be calculated approximately using Monte Carlo as in Algorithm 5. The online gradient
method can be advantageous in terms of computational load but it would be more challenging to tune the
exploration-exploitation heuristic since a posterior distribution of θ would not be available.
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A. Proof of Theorem 3
We prove the theorem by first showing that the distribution of Y in (12) belongs to a location-scale family.
Lemmas 1 and 2 are used for establishing that. Given a distribution with density f on R and an interval
[l, r] , we define f[l,r] to be f truncated to [l, r] , that is f[l,r](x) ∝ f(x)I{x ∈ [l, r]} . Lemma 1 states that the
truncated version of a location-scale distribution is also a location-scale distribution.

Lemma 1 Let {f(x;m, c);m, c) ∈ R× [0,∞)} be a location-scale family of distributions with location parameter
m , scale parameter c , and base distribution g . For any a, b such that a < b ; the family of truncated distributions
{f[ca+m,cb+m](x;m, c) : (m, c) ∈ R×[0,∞)} is a location-scale family with location parameter m , scale parameter
c , and base distribution g[a,b] .

Proof (Lemma 1) For all x ∈ X , a, b ∈ R such that a < b , (m, c) ∈ R× [0,∞) , we have

f[ca+m,cb+m](x;m, c) =
f(x;m, c)I{x ∈ [ca+m, cb+m]}∫ cb+m

ca+m
f(u;m, c)du

.

Using f(x;m, c) = g((x−m)/c)/c , I{x ∈ [ca+m, cb+m]} = I{(x−m)/c ∈ [a, b]} , and
∫ cb+m

ca+m
1
cg((u−m)/c)du =∫ b

a
g(u)du by change of variables, we end up with

f[ca+m,cb+m](x;m, c) =
g((x−m)/c)/cI{(x−m)/c ∈ [a, b]}∫ b

a
g(u)du

=
1

c
g[a,b]((x−m)/c).

Hence, f[ca+m,cb+m](x;m, c) is a location-scale distribution with location m , scale c , base distribution g[a,b] .
2

Let f ϵ
[ca+m,cb+m](x;m, c) be the distribution of Y defined in (12). Let gϵa,b be the distribution of X0+(b−a)V0

where X0 ∼ g[a,b] , V0 ∼ Laplace(1/ϵ) , and assume that X0 and V0 are independent.

Lemma 2 Given a, b ∈ R such that a < b and ϵ ∈ (0,∞) , the distribution family {f ϵ
[ca+m,cb+m](x;m, c) : m ∈

R, c ∈ [0,∞)} is a location-scale family with location m , scale c and base distribution gϵa,b .

Proof (Lemma 2) By Lemma 1, the distribution of T bc+m
ac+m(X) is a location-scale distribution with location m ,

scale c , and base distribution ga,b . For Y in (12), it can be checked that Y = cY0+m where Y0 = X0+(b−a)V0 ,
where X0 = (T bc+m

ac+m(X)−m)/c ∼ ga,b , V0 ∼ Laplace(1/ϵ) and X0 and V0 are independent. Then, Y0 ∼ gϵa,b ,
which does not depend on m and c . Hence we conclude. 2

Finally, we proceed to the proof of Theorem 3.

Proof (Theorem 3) Since the distribution of Y is a location-scale distribution by Lemma 2, the Fisher
information associated to it is given by F ϵ

ac+m,bc+m(m, c) = 1
c2F

ϵ
a,b(0, 1) , where F ϵ

a,b(0, 1) is the Fisher in-
formation matrix associated with the base distribution gϵa,b(x) (for explicit formulae, see, e.g., [30]), and de-
pends on a , b , and ϵ , but not on m and c . Therefore, if sc(F ϵ

a,b(0, 1)) > sc(F ϵ
a′,b′(0, 1)) (resp. < , =), then

sc(F ϵ
a,b(m, c)) > sc(F ϵ

a′,b′(m, c)) (resp. < , =) for any other (m, c) ∈ R× (0,∞) . 2

1
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B. Supplementary algorithms
Algorithm 4 presents an MCMC algorithm for the rejuvenation step at time t of the SMC algorithm.

Algorithm 4: MCMC for pϵs1:t(θ, x1:t|y1:t) - a single update.
Input: The current sample (x1:t, θ) , proposal distributions q(x′|x) and q(θ′|θ) , ϵ
Output: The new sample
MH update for x1:t :
for k = 1 : t do

Sample x′
k ∼ q(x′

k|xk) and return x′
k as the new sample w.p.

min

{
1,

pθ(x
′
k)Laplace(yk − sk(x

′
k),∆sk/ϵ)q(xk|x′

k)

pθ(xk)Laplace(yk − sk(xk),∆sk/ϵ)q(x′
k|xk)

}
;

otherwise return xk as the new sample.
end
MH update for θ : Sample θ′ ∼ q(θ′|θ) and return θ′ as the new sample w.p.
min

{
1,

q(θ|θ′)η(θ′)
∏t

k=1 pθ′ (xk)

q(θ′|θ)η(θ)
∏t

k=1 pθ(xk)

}
; otherwise, return θ as the new sample.

Algorithm 5 approximates Fisher’s identity for the score vector, ∇θ log p
ϵ
θ,s(y) =

∫
∇ log pθ(x)p

ϵ
θ,s(x|y)dx ,

by using self-normalised importance sampling [31] with a sample of size N drawn from Pθ .

Algorithm 5: Monte Carlo calculation of the gradient.
Input: Parameter θ , observation y , DP parameter ϵ , truncation points l, r

Output: Gradient vector ˜∇θ log pϵl,r(y|θ)
for i = 1, . . . , N do

Sample x(i) ∼ Pθ ,
Calculate w(i) = Laplace(yk − T r

l (x
(i)),∆sk/ϵ) .

end
Calculate the (approximate) gradient as ˜∇θ log pϵl,r(y|θ) =

∑N
i=1 w(i)∇θ log pθ(x

(i))∑N
i=1 w(i) .

2
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