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Abstract: Alzheimer’s disease (AD) is an illness that involves a gradual and irreversible degeneration of the brain.
It is crucial to establish a precise diagnosis of AD early on in order to enable prompt therapies and prevent further
deterioration. Researchers are currently focusing increasing attention on investigating the potential of machine learning
techniques to simplify the automated diagnosis of AD using neuroimaging. The present study involved a comparison of
models for the detection of AD through the utilization of 2D image slices obtained from magnetic resonance imaging
brain scans. Five models, namely ResNet, ConvNeXt, CaiT, Swin Transformer, and CVT, were implemented to learn
features and classify AD based on various perspectives of 2D image slices. A series of experiments were conducted using
the dataset from the Alzheimer’s Disease Neuroimaging Initiative. The results showed that ConvNeXt outperformed
ResNet, CaiT, Swin Transformer, and CVT. ConvNeXt exhibited an average accuracy, precision, recall, and F1 score
of 95.74%, 96.71%, 95.74%, and 96.14%, respectively, when applied to a 3-way classification task involving AD, mild
cognitive impairment, and normal control subjects. The results suggest that the utilization of ConvNeXt may have
potential in the identification of AD using 2D slice images.
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1. Introduction

Cognitive decline, memory loss, and other intellectual impairments are symptoms of Alzheimer’s disease (AD),
a degenerative brain disease that commonly affects individuals of advanced age. Dementia is a term used to
represent a variety of symptoms associated with a mental decline sufficiently severe to cause daily difficulties.
AD is a prominent cause of dementia, but it is still unclear what causes AD exactly. It is reported that in 2019
there were 57.4 million dementia sufferers worldwide; by 2050, that number might reach 152.8 million [1]. A
considerable amount of research in recent years has focused on comprehending the underlying reasons for AD
and creating efficient treatments. There is presently no medicine that can completely cure AD; instead, it can
only temporarily alleviate symptoms. Effective clinical intervention and reducing disease progression depend
on early detection [2].
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Conventional diagnostic techniques for AD can involve a tedious and complex procedure of assessing
symptoms, performing cognitive tests, and obtaining a medical history. Moreover, these approaches frequently
rely on subjective evaluations, such as memory and cognitive tests, whose results might be influenced by
anxiety, depression, and stress, making them less trustworthy. The diagnosis and treatment of AD could
be dramatically impacted by automatic diagnosis. Automatic AD diagnosis can increase diagnostic accuracy
by evaluating various data sources using machine learning and other artificial intelligence techniques. Effective
disease management and therapy depend on early detection, which can also reduce the disease’s progression.

The field of medicine has experienced rapid progress in the realm of artificial intelligence (AI), which led
to the successful integration of various AI-assisted applications, particularly those related to classification [3],
localization [4], and segmentation [5, 6]. Applying machine learning and other AI techniques for automatic AD
diagnosis has become progressively more common. Early diagnosis is essential for effective disease management
and therapy; therefore, the present research was motivated by the need for more precise and practical techniques
for classifying individuals with AD. Creating algorithms that can interpret medical imaging data, like structural
magnetic resonance imaging (MRI), to identify AD is considered a crucial area of research within this field.

MRI is a noninvasive imaging method that prevents the patient from being exposed to contrast agents or
ionizing radiation. High-resolution images of the brain are provided by MRI, which possesses the capability to
detect subtle alterations in brain structure associated with AD. AD can be identified using information on the
structural, functional, and metabolic aspects of the brain that can be obtained from MRI. Repeated MRI scans
make it possible to track an illness’s development and evaluate a treatment’s effectiveness. Further, in order to
create models that can automatically detect and quantify the alterations in cerebral morphology and cognitive
processes associated with AD, researchers are employing various machine learning methodologies, such as deep
learning techniques, in their investigations.

Compared with 3D models, 2D ones usually have fewer parameters and need less time for learning [7]. In
order to train a more generalized model, an affine transformation data augmentation technique was implemented
in the present study. The primary disadvantage of the 2D slice-level technique was that, in contrast to 3D MRI,
the slices of one subject were subjected to independent examination using 2D convolutional filters in most cases.
As a result, among the slices of a subject, spatial information that can be crucial in classification may be lost.
The aforementioned issue can be addressed by integrating data from several multiple slices.

The aim of the present research was to evaluate and compare the precision and effectiveness of models
based on convolutional neural networks (CNNs), models based on vision transformers (ViTs), and their incor-
porated models for the purpose of diagnosing AD through the utilization of 2D MRI slices. The present study
contains two research questions: How do CNN-based models compare to ViT-based models and their hybrid
models with regard to accuracy for diagnosing AD adopting 2D MRI slices and what is the influence of varying
perspectives, such as axial, coronal, and sagittal views, on the diagnosis of AD through the utilization of 2D
MRI slices?

AD is a prevalent neurological disease that impacts a significant number of individuals globally. Timely
intervention and treatment are contingent upon precise and prompt diagnosis. Through comparative analysis
of various deep learning models, the optimal methodology for precise diagnosis of AD via 2D MRI slices can
be identified. The utilization of ViT-based models has garnered considerable interest in diverse computer
vision tasks. However, their implementation in the diagnosis of AD through the utilization of 2D MRI slices
remains relatively underexplored. The integration of CNN-based models and ViT-based models in hybrid
models holds promise for enhancing the diagnostic accuracy in AD. The effectiveness of hybrid approaches and
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optimal configurations for future development and deployment can be assessed by comparing their accuracy and
efficiency with those of standalone models. Through the use of 2D MRI slices, our comparative study seeks to
provide important insights into the effectiveness of several deep-learning-based models in the diagnosis of AD.
The findings of the present study could be a useful resource for researchers, clinicians, and developers seeking
to identify the optimal strategy for achieving a precise and efficient diagnosis of AD. Ultimately, these insights
have the potential to enhance patient care and improve health outcomes.

The novelties of the paper include: the application of a ViT-based model for AD diagnosis, a thorough
examination of CNN-based, ViT-based, and their hybrid models, and an in-depth evaluation of the axial, coronal,
and sagittal views of the MRI scan utilizing 2D MRI slices to diagnose AD. The manuscript is organized as
follows: Section 1 presents a comprehensive overview of the contextual background pertaining to the diagnosis
of AD. Section 2 offers a review of the pertinent literature that has been published in recent years. Section
3 includes a thorough examination of the utilization of the dataset, the processing of the data, the adoption
of networks, and the implementation of experiments. Section 4 outlines the evaluation metrics employed in
the present study. Section 5 highlights the findings and outcomes of the experiments we conducted. Section 6
outlines the constraints of the present study and provides insight into potential avenues for future research.

2. Related work
CNNs have started to be widely used in medical fields, which goes hand in hand with the prominence of deep
learning in computer vision. Existing CNNs with outstanding success for natural image classification are of
benefit in medical diagnosis. In particular, numerous reliable pretrained 2D CNN models can be employed
in transfer learning, such as VGG [8], ResNet [9], DenseNet [10], and GoogLeNet [11]. In particular, various
research has investigated the use of deep learning models in the analysis of 2D MRI slices in the identification of
AD. In order to diagnose AD using 2D MRI slices, this section gives a thorough assessment of recent research on
CNN- and ViT-based models. Previous research has shown the effectiveness of CNN-based models in analyzing
medical images, including MRI scans. Valliani and Soni employed a CNN consisting of a single convolutional
layer and two fully connected (FC) layers [12]. For each subject, only one axial slice was employed. The
authors also adopted transfer learning through pretraining their CNN network on ImageNet [13]. In [14], Wen
et al. performed a series of experiments on three distinct datasets: ADNI, Australian Imaging Biomarkers
and Lifestyle Study of Ageing (AIBL) [15], and Open Access Series of Imaging Studies (OASIS) [16]. They
took pretrained ResNet as the backbone, added an FC layer on top of it, and achieved an accuracy of 79%.
In our research, the sagittal slices were retrieved and replicated into three channels of a fake red, green, and
blue (RGB) image for each patient. Puente-Castro et al. proposed a ResNet-SVM hybrid model to classify
sagittal slices of MRIs from ADNI and OASIS datasets [17]. SVM and ResNet were used as the classifier and
the feature extractor. The features extracted from ResNet were concatenated with sex and age and then fed
into the SVM. To create a three-channel image, each slice was replicated three times. Then the network was
trained using the images generated and it achieved an average accuracy of 86.47% on OASIS and 78.72% on
ADNI. Lim et al. examined a custom CNN, VGG, and ResNet to perform 3-way classification using pictures
of the brain taken from the axial perspective of the MRI image [18]. The highest accuracy in their study was
80.66% achieved by VGG. Additionally, following the preprocessing stage, the data were transformed into a
series of two-dimensional images. This process significantly decreases the size of the dataset from 37 GB to 260
MB.
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These studies demonstrate the capability of CNN-based models in accurately diagnosing AD using 2D
MRI slices. ViT-based models have been investigated in recent research as a potential alternative to CNN-based
models for medical image analysis. Bedel et al. presented a transformer-based model BolT with cross-window
attention and regularization for fMRI blood–oxygen-level-dependent response analysis [19]. BolT has high
efficiency in extracting features that range from local to global, which enables effective performance in detecting
tasks. Sarraf et al. proposed an optimized vision transformer (OViTAD) based on a vision transformer for
AD prediction using 2D MRI axial slices [20]. OViTAD achieves the same level of performance but uses a
reduced number of parameters in contrast to the vanilla vision transformer. The OViTAD model achieved an
average accuracy of 89.48% in a 3-way classification task. Their research indicates that models based on vision
transformers possess the capability to offer an alternative method for diagnosing AD by utilizing 2D MRI slices.
Despite the limited use of ViT-based models in the diagnosis of AD, current research efforts have started to
look at their potential benefits.

In general, the existing literature demonstrates the efficacy of CNN-based models in the context of
diagnosing AD through the utilization of 2D MRI slices. Additionally, it is conceivable that ViT-based models
or Vit–CNN hybrid models could potentially function as replacements for CNNs within this domain.

3. Materials and methods
3.1. Dataset
The ADNI dataset (https://adni.loni.usc.edu/) was utilized in our research. Its objective is to better understand
how MRI, PET, and other biological indications, in addition to clinical and neuropsychological testing, can be
used to diagnose MCI and early AD. The dataset included 188 AD, 401 mild cognitive impairment (MCI), and
229 normal control (NC) subjects. In total, 4174 MRI scans of 818 participants from the database were used
in the study. Only the standard 1.5 T T1-weighted sMRI data were used. The original dimensions of the raw
MRI images were 256× 256× 256 .

3.2. Preprocessing

A standard pipeline of preprocessing was implemented to preprocess the MRI images [21, 22]. The preprocessing
pipeline includes orientation, registration, skull stripping, bias field correction, image enhancement, and intensity
normalization. The overall preprocessing workflow is shown in Figure 1. Using the orientation tool in the
FMRIB Software Library (FSL) [23], an image can be rotated to make it align with the orientation of the
common template images (MNI152 template), making them appear to be ”the same way around.” In order to
ensure the spatial correspondence of anatomy across distinct images, image registration enables multiple images
to be aligned into one integrated image. Image rotation, skew, and scale are common issues when overlaying
images that can be resolved by registration. FLIRT (FMRIB’s Linear Image Registration Tool) in FSL was
utilized for brain image registration. Skull stripping is an essential step in the process of identifying brain
concerns. It involves separating brain tissue from other tissue types on an MRI brain scan. Accurate skull
stripping is the key to performing the subsequent neuroimage analysis. The Brain Extraction Tool (BET) in
FSL was utilized in the present study for skull removal [24]. Bias field correction is a method that has been
developed to eliminate this intensity gradient from the image. The N4 technique for bias field correction is
frequently applied for addressing the bias field in MRI image data. The N4 algorithm offered by ANTs was
utilized in the present research [25]. Image enhancement is the technique of modifying an image to improve
its visual impact by modifying the brightness levels of the pixels. A few image enhancement techniques were
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implemented to provide better input for the model. First, a median filter was used to remove noise from
images, then 0.5% and 99.5% of the value of each image were taken as the minimum and maximum pixel value
for rescaling, and lastly histogram equalization was used to improve contrast in the images. An image is scaled
and shifted during normalization so that each pixel has a mean and variance of 0 and 1, respectively.

Figure 1. The overall workflow of preprocessing.

3.2.1. Generation of 2D slices from 3D MRIs
Each 3D MRI image was sliced to generate slices from three perspectives, i.e. axial, coronal, and sagittal. After
preprocessing, the middlemost slices tend to be the most informative slices of the image and contain the most
significant information entropy. When choosing slices for classification, the slices in the middle should be used.
First, select the middlemost slice of the nonzero part of the image. Then take two more slices from a few steps
away before and after to compensate for missing 3D data. This step number is a hyperparameter, and was
taken as five in our research. Consider the three slices mentioned above as the three channels of a three-channel
image and stack them together to compose a fake RGB image. As a result, each MRI image will generate an
axial, a coronal, and a sagittal slice.

3.2.2. Data augmentation

Data augmentation is a technique that, without generating new data, significantly broadens the range of data
that are easily available for training models. To artificially extend the training set, data augmentation is the
process of altering existing data to produce changed copies of datasets. To produce reliable predictions, deep
learning models usually require an adequate quantity of training data, which is not always available. As a result,
additional data are added to the original data to create a more broadly applicable model. The two categories of
data enhancement techniques are position augmentation and color augmentation. A picture’s pixel positions are
altered through position augmentations. Position augmentation includes scaling, flipping, cropping, rotation,
padding, affine transformation, translation, etc. Color augmentation is an approach to changing the color
properties of an image by modifying its pixel values. Color augmentation consists of brightness, contrast,
saturation, etc. Specifically, contrast brightness, contrast, random flipping, random affine, random blur, and
random noise were used in the present study. Each data augmentation approach is implemented dynamically,
which means when loading an image from a disk an augmented image will be generated. The augmented image
will be resized to 224× 224 before being fed into a model.

3.3. Network architecture
The performance of multiple cutting-edge models for diagnosing AD using 2D MRI slices was evaluated and
compared in the present work. Three categories of models, i.e. CNN-based, ViT-based, and hybrid, were
chosen for analysis. Specifically, the models considered for analysis include ResNet, ConvNeXt, CaiT, Swin
Transformer (Swin-T), and CVT. These models were selected due to their success in the computer vision field
and their potential for assisting in a precise diagnosis of AD. The architectures of these models are shown in the
following sections. Some models, like vanilla ViT, were excluded due to the limited computational resources.
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3.3.1. CNNs
CNNs are deep learning models designed specifically for processing and analyzing data like images. As
CNNs can automatically extract and learn complex hierarchical features from images, they have drastically
changed computer vision. Convolutional, pooling, and FC layers are basic components of CNNs. Convolu-
tional layers analyze the input image for local patterns and features using filters and convolutions. Pooling
layers allow extraction of the most valuable information while increasing computing efficiency and reducing the
spatial dimensions of the feature maps. Finally, FC layers integrate the extracted features and make the final
prediction or classification.

ResNet When the depth of CNNs reaches a particular threshold, the gradient disappears, which causes the
accuracy to drop rather than rise. ResNet solves this issue by introducing residual connections. By skipping
some intermediary levels and connecting the layer to succeeding layers, the residual connection forms a residual
block. ResNet is constructed by stacking these residual building blocks. This type of skip connection, or
identity mapping, has the advantage that regularization will not include any layer that impairs architecture
effectiveness. As a result, vanishing or exploding gradient problems are not encountered while training very
deep neural networks.

In the present research, the pretrained ResNet on ImageNet, ResNet18, ResNet34, and ResNet50, were
adopted. Since the latest PyTorch version provides two pretrained weights for ResNet50, the newer one was
employed. ResNet34 and ResNet50 share a similar architecture with ResNet18 but contain different numbers
of residual blocks. Initially, the last dense layer of ResNet has an output dimension of 1000, but, in our study,
we modified the output dimension to 3, aligning it with the specific task of AD diagnosis. As an example, the
architecture of ResNet18 is depicted in Figure 2.

Figure 2. Architecture of ResNet18. ResNet34 and ResNet50 share a similar architecture with ResNet18 but contain
different numbers of residual blocks. The original output dimension of the last dense layer is 1000 and we changed it to
3 in the present study.

ConvNeXt Considering that the ViT has outperformed CNNs in numerous tasks of computer vision, the
author modified a conventional ResNet by incorporating the design of the Swin-T [26]. Through this process,
the author identified notable performance differences. The ConvNeXt model mimics the patching approach of
the Swin-T and substitutes the ResNet-style stem cell with a patchy layer. Specifically, a large kernel with
a correspondingly large stride was utilized to ensure that there was no overlap among the sliding windows.
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These sliding windows exhibit comparable behavior to the patches in ViT. ConvNeXt also modifies the number
of blocks within every stage following Swin. The utilization of depthwise convolution in ConvNeXt bears
a resemblance to the weighted summation process observed in self-attention. Last, moving up the depthwise
convolutional layer and utilizing larger convolutional kernel sizes were performed to enhance the global receptive
field. In the present study, ConvNeXt-tiny and ConvNeXt-small were utilized.

3.3.2. ViT

In [27], Vaswani et al. proposed transformer architecture to solve issues in the field of natural language processing
(NLP). The transformer is introduced and explained with an encoder–decoder architecture and becomes the
foundation for many state-of-the-art NLP models. The transformer now holds a dominant position in the NLP
field, and more and more research is being done to try to apply it in the realm of computer vision. One of
the transformer’s merits is that it excels at handling a wide variety of inputs. Additionally, the convolution
operation mainly considers local neighbors, which leads to global information being missed. In contrast, the
attention model is very adept at modeling lengthy periods as shown in Equation (1).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V, (1)

where query, key, and value are abbreviated as Q, K, and V.
The ViT model that Dosovitskiy proposed uses the transformer model framework from NLP to tackle all

of the challenges in computer vision [28]. A transformer may be used in the image domain by inputting a series
of tokens into the bottom layer of the transformer, using ViT’s proprietary technology, which is analogous
to NLP in image processing. Specifically, the image is separated into several parts, each of which is then
squeezed and mapped into a 1D vector with a fixed dimension using a neural network. The converted 1D
vector is subsequently fed into the transformer encoder. However, the drawback of ViT is splitting the image
into patches, resulting in a lower-resolution output. In addition, the transformer model’s computational cost
grows with the sequence’s length, and direct application of pixel-level prediction tasks can lead to a surge in
computation and memory consumption.

Swin Transformer Liu et al. proposed the Swin-T and achieved a better speed–accuracy trade-off than with
vanilla ViT [29]. Local attention is employed in the Swin-T to divide patches into windows, and interpatch
attention is performed only within the windows to improve efficiency. However, there would be no information
interaction between the patches of different windows. The Swin-T proposed a shifted window, borrowing from
the sliding window approach, which used different window configurations in different layers to address this
concern. The window positions are shifted horizontally and vertically by several patches, allowing the patches
within different windows to interact with information from different layers. The multihead self-attention (MSA)
block utilized in the ViT architecture is substituted with the Window and Shifted Window MSA block. In the
present study, Swin-T, Swin Transformer Small (Swin-S), and Swin Transformer Big (Swin-B) were utilized.
Similar to the method implemented on Resnet, the output dimension of the last dense layer was also revised to
3 and the rest of the layers were kept. An overview of a Swin-T’s structure is shown in Figure 3.
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Figure 3. The architecture of a Swin Transformer (Swin-T).

Class-attention in image transformers (CaiT) CaiT adds per-channel weighting (a diagonal learnable
matrix) to each residual block’s output [30] as shown in Equation (2).

x′
l = xl + diag (λl,1, . . . , λl,d)× SA (LN (xl))

xl+1 = x′
l + diag

(
λ′
l,1, . . . , λ

′
l,d

)
× FFN (LN (x′

l)) ,
(2)

where LN represents the LayerNorm operator, FFN stands for the feed-forward network, SA is for self-attention,
and diag (λl,1, . . . , λl,d) stands for the learnable diagonal matrix to assign weights for each channel. The use
of class embeddings is postponed compared with the ViT because, in the shallow layers, semantic information
about classification is merely extracted. CaiT utilizes a separate set of attention layers called class attention
(CA) to simulate the communication between the representations of the class token and the image patch. In
the present study, CaiT-S36 was utilized. The architecture of CaiT is shown in Figure 4.

Figure 4. The architecture of CaiT.
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3.3.3. Hybrid models

Convolutional vision transformer (CVT) CVT is a deep learning model that combines convolutional
layers and transformers, providing a hybrid architecture for vision tasks [31]. In CVT, overlapping patches are
initially created from the input image. Position encoding may not be required due to the presence of overlapping
tokens. Rather than directly inputting the patches into a transformer encoder, CVT integrates the convolutional
token embedding blocks to construct a model that captures the spatial context. Moreover, the linear projection
utilized in the ViT is substituted with a convolutional projection to attain supplementary modeling of the local
spatial context. The present study employed CvT-13 as one of the chosen models and the architecture of CvT
is shown in Figure 5.

Figure 5. The architecture of CVT.

3.4. Network training
The current research entailed the evaluation and comparison of five distinct models, namely ResNet, Swin-T,
ConvNeXt, CaiT, and CvT. Three experiments were conducted for each model, utilizing axial, sagittal, and
coronal slices. Cross-validation was used to train all of the models using the ADNI dataset. Firstly, the whole
dataset was randomly split into the test and nontest datasets with a ratio of 1 : 9 . Then the nontest dataset
was further divided into ten folds of equal size. Nine of the ten folds were used for training, while the remaining
one was used for validation. The AdamW optimizer was used for training, utilizing an initial learning rate of
5e−5 , and the batch size was configured to 32 . Weight decay and momentum were set to 1e−4 and 0.9 . Since
the dataset was unbalanced, the cross-entropy loss was applied along with manually adjusted weights assigned
to each class according to Equation (3).

weight (x) =
training examples

classes × training examples class x
(3)

All MRI images were processed and models were trained on a workstation equipped with an Intel Core
i5 16-core 3.69 GHz CPU and a 12GB NVIDIA GeForce GTX 3080ti GPU. The operating system of this server
was Ubuntu 20.04.3 LTS. Python 3.9.7 was used for preprocessing and model development. FMRIB Software
Library v6.0 (FSL) was used for all phases of the MRI processing workflow.

101



ZHAO et al./Turk J Elec Eng & Comp Sci

4. Results
4.1. Evaluation metrics
Each model’s accuracy, precision, sensitivity, and F1 score were computed to evaluate the performance of the
classification. All models’ performance measures were presented as a mean value across five cross-validation
folds.

The evaluation of the classification performance was conducted using four metrics: classification accuracy,
precision, sensitivity, and F1 score, as defined by Equations (4), (5), (6), and (7):

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision =
TP

TP + FP
(5)

Sensitivity = Recall =
TP

TP + FN
(6)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
, (7)

where TP, TN, FP, and FN denote true positive, true negative, false positive, and false negative, respectively.

4.2. Comparative analysis
The overall performance of the models is shown in Table 1. The deep learning models performed separate
training on the axial, coronal, and sagittal views, and their performance was evaluated through the use of
evaluation metrics consisting of accuracy, sensitivity, specificity, and F1 score. ConvNeXt-tiny demonstrated the
best performance among the examined models in the comparative analysis that was conducted when evaluated
with axial slices. Specifically, ConvNeXt-tiny achieved an average accuracy of 95.74%, precision of 96.71%,
sensitivity of 95.74%, and F1 score of 96.14%. As shown in Table 2, the finding implied that, in terms of
the given evaluation metrics, CNN-based models outperformed the other alternatives. The results in Table 3
indicated that the axial view exhibited superior accuracy compared to the other two perspectives.

5. DISCUSSION
The result of our comparative study shows that ViT-based models do not perform as well as CNN-based
networks on small to medium-sized datasets[32]. When dealing with a medical dataset of the size of ADNI, it is
recommended to use a CNN-based model rather than a ViT-based model. CNNs are developed to be capable
of identifying regional patterns and spatial data, which is advantageous for image-based jobs. In contrast, ViTs
rely heavily on self-attention mechanisms, making them more appropriate for larger datasets containing an
abundance of data. In comparison to ViTs, CNNs often have fewer parameters, making them more parameter-
efficient.

The axial view of MRI scans typically contains less nonbrain area and is easier to remove during brain
extraction compared with the sagittal and coronal views. As a result, the axial view images tend to contain a
reduced level of noise. Furthermore, axial slices effectively depict several prominent brain regions implicated
with AD, including the hippocampus and entorhinal cortex. A noteworthy limitation of our study pertains to
the comparatively small size of the dataset employed. The restricted size of the dataset utilized in the present
study means that it may not comprehensively involve the diverse and intricate characteristics of AD cases, which
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may restrict the generality of our results. Although the deep learning models employed in the present study
have exhibited potential in diverse computer vision assignments, they might not entirely grasp the temporal or
progressive characteristics of AD.

Furthermore, there currently exist general limitations within the realm of automated diagnosis of AD
using deep learning. Several existing models for automatically diagnosing AD rely heavily on data from MRI and
PET scans and other types of medical imaging. Automatic AD diagnosis using machine learning approaches can
provide hard-to-understand and -interpret models, making it difficult for medical professionals to comprehend
how the models yielded a specific diagnosis and to utilize this knowledge to guide treatment choices. Most
models have yet to be tested in real-world situations, where data complexity and unpredictability might be
significantly higher than in controlled laboratory conditions. Because of this, evaluating the precision and
generalizability of these models in a clinical situation is challenging. Moreover, while the data used for training
and testing models may contain sensitive information about individuals, using machine learning models for
autonomous AD detection raises ethical and privacy issues. Researchers must ensure the data are gathered and
used ethically and in accordance with applicable privacy laws. To summarize, the lack of diversity in datasets,
reliance on imaging data, limited interpretability of models, poor validation in real-world settings, and ethical
and privacy concerns all restrict current research on automatic AD detection.

The adoption of various datasets and an increase in the sample size are further options for improvement.
Assemble models that take multiple slices may improve the performance further. Several variables relevant to
AD detection are MRI, CT, PET, neurological examinations, cognitive or blood tests, sex, age, the pattern
of speech, retinal abnormalities, αβ protein, mini-mental state examination, Clinical Dementia Rating score,
logical memory test, genes, etc. [33]. Since multimodality of input may provide complementary information,
multimodal models that integrate more than one variable mentioned above may be helpful in future compre-
hensive diagnostics. In order to increase the accuracy and reliability of the diagnosis, research on automatic
AD diagnosis is generally moving towards the development of more complex and accurate algorithms and the
integration of multiple data sources.

A diffusion-based model proposed by Bedel and Çukur for fMRI interpretation also provides a new
perspective for future research [34]. There is still more to be accomplished in this field and more research is
required to create better systems for the early and precise identification of AD.

6. CONCLUSION
In the present study, using preprocessed MRI brain slices collected from the ADNI database, a series of
experiments were conducted using CNN-based, ViT-based, and their hybrid architectures. ConvNeXt-tiny
showed the best performance among the studied models in the comparative analysis carried out and evaluated
with axial slices. CNN-based models performed better than the other models. Compared to the other two
perspectives, the axial view demonstrated higher accuracy. These findings add substantial insight to the field
and show that CNN-based models remain a solid method for establishing a precise and effective AD diagnosis.
Additionally, axial slices emphasize how crucial it is to take into account the slice orientation when utilizing 2D
MRI slices to diagnose AD.
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Table 1. The number of parameters, testing accuracy, precision, recall, and F1 score for all models and slice types. The
superscripts a , b , and c indicate the model was tested on ADNI, AIBL, and OASIS. - stands for not specified. Boldface
indicates the highest-performing model in terms of each metric.

Model Params Slice Accuracy Precision Recall F1 score GFLOPS
ResNeta,b,c[14] 11.7M Axial 79 - - - 4.09

ResNet-SVMa[17] - Sagittal 78.72 68.96 58.66 60.79 -
ResNet-SVMc[17] - Sagittal 86.47 30.75 35.25 32.07 -

VGGa[18] 138.4M Axial 78.54 78.74 78.56 78.49 15.47
OViTADa[20] 38.4M Axial 89.49 89.20 90.02 88.79 -

ResNet18a 11.7M
Axial 91.87 91.70 91.87 91.72

Coronal 89.54 92.62 89.54 90.86 1.81
Sagittal 86.47 88.86 86.47 87.51

ResNet34a 21.8M
Axial 90.89 92.26 90.89 91.51

Coronal 87.43 87.79 87.43 87.56 3.66
Sagittal 85.53 85.23 85.53 85.36

ResNet50a 25.6M
Axial 93.08 94.64 93.08 93.73

Coronal 91.30 93.77 91.30 92.02 4.09
Sagittal 86.74 90.85 86.74 88.06

Swin-Ta 28.3M
Axial 88.93 88.66 88.93 88.18

Coronal 88.70 89.75 88.70 88.69 4.49
Sagittal 85.61 89.46 85.61 86.43

Swin-Sa 49.6M
Axial 89.20 90.19 89.20 89.50

Coronal 89.37 89.72 89.37 89.10 8.74
Sagittal 87.50 89.57 87.50 87.96

Swin-Ba 87.8M
Axial 88.24 89.40 88.24 88.59

Coronal 88.88 89.67 88.88 88.74 15.43
Sagittal 86.16 87.52 86.16 86.11

ConvNeXt-tinya 28.6M
Axial 95.74 96.71 95.74 96.14

Coronal 92.03 93.10 92.03 92.38 4.46
Sagittal 90.79 93.75 90.79 91.78

ConvNeXt-smalla 50.2M
Axial 92.85 92.19 92.85 92.38

Coronal 92.21 91.33 92.21 91.35 8.68
Sagittal 87.43 88.66 87.43 87.20

CaiT-S36a 68M
Axial 82.14 84.12 82.14 82.37

Coronal 74.93 72.85 74.93 71.41 48
Sagittal 82.50 81.93 82.50 81.72

CvT-13a 20M
Axial 86.28 84.87 86.28 84.49

Coronal 81.20 90.12 81.20 83.64 4.53
Sagittal 78.02 76.12 79.92 76.80

Table 2. Performance metrics comparison of CNN-based, ViT-based, and hybrid models for Alzheimer’s disease
diagnosis. The measurements are presented as the mean ± standard deviation (std) value calculated for the same
type of models.

Model Accuracy Precision Recall F1 score
CNN-based 90.26 ± 2.95 91.56 ± 2.93 90.26 ± 2.95 90.64 ± 2.89
ViT-based 86.01 ± 4.30 86.91 ± 5.12 86.01 ± 4.30 85.74 ± 5.19
Hybrid 81.83 ± 4.17 83.70 ± 7.07 82.47 ± 3.36 81.64 ± 4.22
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Table 3. Performance metrics comparison of accuracy, precision, recall, and F1 score for axial, coronal, and sagittal
slices in Alzheimer’s disease diagnosis. The measurements are presented as the mean ± standard deviation (std) value
calculated for the same type of models.

Perspective Accuracy Precision Recall F1 score
Axial 89.92 ± 3.88 90.47 ± 3.95 89.92 ± 3.88 89.86 ± 4.17
Coronal 87.56 ± 5.43 89.07 ± 5.99 87.56 ± 5.43 87.58 ± 6.23
Sagittal 85.67 ± 3.39 87.20 ± 5.01 85.86 ± 2.93 85.89 ± 4.06
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