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Abstract: Technological developments in industrial areas also impact unmanned aerial vehicles (UAVs). Recent
improvements in both software and hardware have significantly increased the use of many UAVs in social and military
fields. In particular, the widespread use of these vehicles in social areas such as entertainment, shipping, transportation,
and delivery and military areas such as surveillance, tracking, and offensive measures has accelerated the research on
swarm systems. This study examined the previous investigations on swarm UAVs and aimed to create a more efficient
algorithm. The effectiveness of the proposed algorithm was compared with other leader-based applications. A swarm
consisting of 5 UAVs scattered throughout the environment was directed to a fixed altitude using a gathering algorithm.
Afterward, a virtual leader was added to the swarm and moved toward the target point by maintaining the flight formation
with the consensus-based virtual leader tracking algorithm (CBVLTA). Unlike leader-based applications, where leader or
member failure is not taken into account, here, in the event that a random number of UAVs crash and their communication
is broken in different scenarios, a new formation shape is created and a flight is made to the target point. The swarm
performs the determined formation flight with an error rate below 2% throughout its movement. If the error rate equals
or exceeds 2% , push-and-pull functions are applied between members and the error is reduced below 2% . Thus, the
results show that the proposed algorithm allows robust and flexible swarm structures against the distortions in topology
caused by external factors. In this way, swarm applications such as area coverage, target tracking or detection, collision
avoidance, and defense or attack can be performed.
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1. Introduction
In swarm robotics studies, the concepts of cooperation, coordination, and communication among many robots
come to the fore [1]. Many robots working simultaneously can perform tasks with complex structures much faster
than a single robot [2]. Having a distributed control mechanism among swarm members that is not managed
from a single center can eliminate the impact of mechanical failures on the system [3]. Thus, task errors due to
defective members can be reduced with the help of other swarm members. Besides mobile robots, unmanned
aerial vehicles (UAVs) have become very popular in civil, commercial, and military fields. In particular, UAVs
do not cause air pollution by using their electric fans and can use the 3D airspace very efficiently by vertical
landings/take-offs, which are essential advantages. Therefore, greater mobility compared to mobile and other
types of robots makes UAVs highly efficient for swarm robotics. When an unmanned and autonomous system [4–
∗Correspondence: yildizberat2086@gmail.com
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8] is designed under the control of such air robots, convenient applications can be realized in science, technology,
and society. On the other hand, the control of UAVs can be more challenging compared to other types of robots,
considering the dynamic environmental conditions. Therefore, an intelligent route control mechanism for a
coordinated and communicating collective UAV swarm will provide significant advantages in many applications,
mainly in numerous civilian, commercial, and military areas.
In recent years, swarm UAV studies have gained momentum thanks to distributed control methods that make
it easier for multirobot systems to adapt to real-time applications [9]. The robots working in a swarm must
have consensus on a piece of information to act cooperatively. In addition, this information should be shared
with all members over the network topology. For this shared information to form the final herd decision,
consensus-based algorithms have been developed based on distributed control methods [10]. In consensus-based
applications, where it is assumed that each robot communicates with only robots in its immediate neighborhood,
a communication topology is created between close swarm members. This formation network is a system in which
continuous communication is maintained throughout the movement [11]. Data about obstacles are collected from
each swarm member, a decision mechanism is formed, and nonlinear optimization methods can determine the
optimum unobstructed route [10, 11]. Although geometric and optimization-based applications are adapted to
consensus-based algorithms [10–12], formation disruptions due to changes in the number of swarm members and
communication gaps are not considered. This should not be ignored as it is a problem that may be encountered
in real-time applications.
Swarm robotic behaviors based on collective mechanisms and consensus are similar to social behaviors occurring
spontaneously and not in a specific order [3]. Therefore, the ability of the system to work despite the failure
of some members [13], the ability to adapt the internal parameters of the swarm members to the environment
against dynamic environmental changes [14], and the ability of the swarm to work with different numbers of
submembers of its system [15] are the features expected from robotic systems in swarms. Although various
studies have been conducted in the literature on topics relevant to swarming UAVs, such as aggregation [16],
formation [17, 18], tracking [19], surveillance [20], and foraging [21], there are still problems due to real-time
application constraints and system design without robustness and flexibility [22]. This highlights the need to
use an intelligent control system for movement in a swarm.
Considering all these points, in this study, scattered UAVs in the environment were brought together according
to specific formation shapes. A path-planning algorithm was then developed to reach the target without
hitting the UAVs in the swarm or obstacles in the environment. This work stands out because robustness and
flexibility capabilities, which are essential for the swarm topology and were not considered in previous studies
[17–21, 25, 28, 29], are provided to the swarm system with a consensus-based virtual leader algorithm. In
addition, using only the location vector makes this application easily adaptable to many systems.
The contributions of this work are as follows:
• Robust swarm topology is provided, whereby, if for some reason members fail or lose communication during
flight, the remaining swarm members perform the minimum completion of the mission description.
• Flexible swarm topology is provided, whereby swarm members can update their internal parameters to form
new flight formations in response to a swarm flight formation that is disrupted for any reason.
In Section 2 of this paper, related studies are presented. Section 3 details the methodology, the problem
formulation, the model framework, and the algorithms. Simulations and results supporting the proposed
algorithms are described in Section 4 and the results are interpreted. Finally, Section 5 emphasizes the
conclusions, the importance of the study, and areas for improvement.
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2. Related works
UAVs can be used widely thanks to their vertical take-off and maneuvering capabilities. However, studies and
improvements for swarm applications are still in progress. Studies are being carried out on subtopics such
as aggregation, flight formation control [16–18], object and target tracking, surveillance, and monitoring for
swarm UAVs [19–22]. Formation control, which is one of the leading swarm applications, is a problem that must
be overcome, especially in cargo delivery, traffic monitoring, and highway or bridge inspection applications
encountered in urban environments [9]. In studies conducted on specific tasks [10, 11, 17, 22, 23], it has been
suggested that formation be provided by a displacement-based consensus algorithm processing the location
data. Petit performed formation protection modeling for flocking quadcopters under the name of cooperative
control systems [23]. First, a traditional consensus algorithm was used to create a formation among quadcopters
[17]. In this way, a swarm with a specific formation shape could acquire a standard view of its environment.
Feedback consisting of data related to the maximum dimensions of the formation shape was then given to this
formation control system [23]. In simulations performed within the scope of that study, formation controls
with and without feedback were compared. It was demonstrated that the formation shape was preserved more
efficiently with the proposed feedback control [23]. An important limitation in these cases is that each member’s
proposed algorithm [18] requires a global position measurement system. Therefore, while it is more efficient in
indoor environments, the situation becomes more difficult in outdoor environments. Additionally, it is assumed
that there is no data loss [23]. Here, it is understood that the formation shape can be arranged before starting
the movement. However, since complications that may occur during movement are ignored, it is vulnerable to
malfunctions and communication breakdowns. As can be seen from this situation, robust and flexible structures
[22] should be developed for more productive swarm systems.
Besides specific tasks, applications that involve many subtasks, such as gathering, formation control, and target
attainment, in which the movements of a swarm are thoroughly planned, have become popular lately. In
these practices, sometimes a leader is selected from the swarm and all system dynamics are shaped according
to this leader. In another study with a consensus-based algorithm [28], which included leader tracking, the
swarm gathered at a specific point from the determined formation shape, which was formed by a distributed
directed graph. It then performed the flight in this formation and followed the appropriate trajectory to
reach the target without swarm members hitting obstacles or each other with a foraging algorithm [28].
However, leader tracking was inefficient for large-scale applications, being similar to a centralized herd system.
Therefore, area coverage with maximum efficiency is an increasingly important problem in target-oriented
studies with swarm UAVs. In particular, it can cause failure in the tracking missions of spy UAVs. To overcome
this problem and to measure the changing dynamics of UAVs during autonomous movement, a consensus-
based algorithm including asymptotically stable but nonlinear control laws (Lyapunov’s direct method and the
modified invariance principle) was proposed in another study [29]. In this way, the formation area formed by
fixed-wing aircraft adopting decentralized aircraft–aircraft interaction architecture was preserved [29]. At the
same time, the communication topology was maintained under consensus architecture, and malfunctions and
communication breakdowns of the fixed-wing leader UAV or other follower UAVs were ignored. Such a situation
is vulnerable to coordination problems related to the leader [29].
Moreover, when it comes to saving time and energy during the target-oriented movement of UAV swarms, their
formation patterns should be broken down and reconstructed. The Lyapunov theory and linear matrix inequality
(LMI) method have been proposed against the distributed cooperative control problem for the reconfiguration of
the formation of a system with a consensus communication topology [30]. However, the effect of swarm capacity
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on the system was neglected. The size of the swarm is another problem. Controlling swarms of large numbers of
UAVs with basic consensus algorithms can be challenging. In a study addressing such a problem [31], a potential
function-based multilayer consensus control structure was proposed. Thanks to the multilayer graph structure,
the UAVs were randomly distributed over a fixed working area and moved toward the determined formation
when the forces between the layers were at the same level [31]. Otherwise, the UAVs formed the first layer of
the topology within a series of subgroups, and then the neighboring UAVs within the group were determined
according to the targeted formation [31]. These neighboring UAVs formed the bottom-layer topologies. Until
the swarm reached the desired formation, efforts were made to include the lower layers in the upper layers
by updating their positions [31]. Although the proposed practice showed positive results for large-scale swarm
formation, the loss of members due to collision, which is especially common in large swarms, was not considered.
In large-scale swarm structures, loss of members due to communication breakdown is common, and the swarm
must be robust enough to continue to maintain formation control.
One of the main problems of swarm robots in a dynamic environment is to update the system parameters flexibly
to be compatible with the external environment. The control parameters of a swarm system are susceptible to
changes in the number of swarm members and the size of the environment. To solve such problems, the improved
consensus algorithm (ICA) was applied for formation state control and configuration control of UAVs using the
minimum tuning strategy, and the ICA-particle swarm optimization (PSO) and model predictive control (MPC)-
PSO algorithms were used to deal with static and dynamic obstacles [32]. Although the proposed algorithm
was flexible enough to switch to different flight formations according to different initial states depending on the
obstacles in the environment, it was weak against the member losses that may occur during flight [32]. This
situation was ignored.
When the studies mentioned above are examined, it is an essential problem that the swarm be robust against
loss of members during movement and be flexible enough to remodel its flight formation in ordinary situations
such as loss of communication. In the present study, UAVs scattered throughout an environment are gathered
at the same altitude according to specific formation shapes. Next, a path-planning algorithm is proposed to
prevent swarm members from hitting each other or surrounding obstacles. The feature that makes this study
stand out compared to similar studies [22–28] is that, thanks to the virtual leader-based algorithm, the system is
robust enough to protect its formation against the failures that may occur among members and flexible enough
to create new formations according to the changes in the number of swarm members.

3. Methodology

3.1. Swarm topology

The communication topology of UAVs in swarms can be created using a directed graph, where instant location
data can be processed and information can be easily shared. In this application, the swarm communication
based on location data is expressed with the distributed directed graph (DDG) [33] structure Gi = (Mi, Eij) .
Here, Mi denotes the node set (the members of the swarm), while Eij denotes the set of edges, which is the
distance d between members i and neighboring j . A DDG is a structure in which each member can directly
communicate with other members of its subset. The most important reason this is preferred is that there is
holistic communication between the members, and it can make the system control more efficient by providing
an information flow to the communication topology of each member. The basic DDG structure in question is
shown in Figure 1.
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Figure 1. Distributed directed graph (DDG).

Position, velocity, and acceleration dynamics can be used in the dynamic modeling of swarm UAVs. Since
the dynamic structures of UAVs are expressed with complex and lengthy mathematical models, a discrete-time
single-integrator model [34], namely the position-dependent dynamic modeling given in Eq. (1), is taken into
account to control the system in its simplest form within the scope of this application.

x1(t+ 1) = xi(t) + ui(t), i ∈ M,M = {1, 2, 3, ..m} (1)

Here, the position of the ith UAV in 3D space at time t is xi(t) and the control input is ui(t) . The next
position of the ith UAV is xi(t + 1) . The M (members) cluster expresses the size of the UAV swarm in the
environment. Each swarm member is assumed to have a spherical sensor field with radius εr to avoid collisions
with other swarm members or obstacles.

3.2. Consensus-based virtual leader tracking algorithm (CBVLTA)

3.2.1. Discrete-time consensus algorithm

In consensus-based swarm systems, the discrete-time single-integrator model in Eq. (1) shares data in discrete
packets [34]. Thus, updating the collaborative knowledge can be done as shown in Eq. (2) [11].

Ci(t+ 1) =
∑
i∈Mi

dijCi(t) (2)

Here, dij is an element of the row stochastic matrix D . If information flows from i to j , dij > 0 .
Otherwise, dij = 0 , meaning that there is no information flow. In the case of dij > 0 , where the information
flow is maintained, the updated consensus data constitute the weighted average of the current state of the
member itself and the members in its neighborhood Mi . In this case, Ci(t+ 1) can be expressed as in Eq. (3)
[11].

Ci(t+ 1) = D × Ci(t) (3)
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The row stochastic matrix D has an eigenvector 1m equal to 1 in all cases [35, 36]. This matrix has
an eigenvalue of 1 when associated with the DDG structure G . All remaining eigenvalues are within the unit
circle. As expected, when t approaches ∞ , C(t) converges to D × C(0) , where D = 1mµT and µ is the left
unit eigenvector of D [35]. As a result, it is seen that each Ci(t) value tends to a common value given by∑m

i=1 µiCi(0) and the system reaches consensus [35].

3.2.2. Gathering and formation control algorithm

The information data that the swarm members share within the proposed topology constitute the Euclidean
distance between them. Swarm members gather according to geometric formation connections or pile up in a
cluster at particular points that define the formation connection. The points where the swarm will gather are
kept in the D matrix associated with the graph theory. This matrix is created as a distance matrix (square
matrix) with 0 diagonals and is constantly updated to maintain the proposed formation shape. In this case,
dij is the expected formation distance between member i and its neighborhood j , as given in Eq. (4) [28].

dij = ∥xi − xj∥ (4)

For the swarm members to react more quickly to the environmental conditions and to adapt to the swarm
control in a shorter time, the members gather at a fixed altitude, and this altitude is tried to be maintained
in each subsequent movement update. This can provide the fastest and easiest path for the swarm system.
First, a set of leaders and followers is generated. With l(t) being the leader, the follower set is determined as
Mf (t) = M(t) − l(t) . The average distance zia of each UAV to the follower on the z-axis is calculated with
Eq. (5) [35]. The calculated values are subtracted from the instantaneous positions of the UAVs, and their new
positions on the z-axis are found with Eq. (6). When the obtained position coincides with the leader UAV’s
target position, as expressed in Eq. (7), all the swarm members will be gathered at a certain altitude. Here,
the set Ni(t) consists of members located in the neighborhood of member i at time t .

zia(t) =

∑|Ni(t)|
j=1 [zi(t)− zj(t)]

|Ni(t)
, i ∈ Mf (t) (5)

zi(t+ 1) = zi(t)− zia(t), i ∈ Mf (t) (6)

zi(t+ 1) = z∗i (t+ 1), i = l(t) (7)

After maintaining a fixed altitude between the swarm members, a formation connection is formed on
the x–y plane, adapted to a specific geometric shape. Target and obstacle sets are created so that the swarm
members can maintain their formation distance while moving. The target set consists of directional magnitudes
depending on the formation distance added to the instantaneous position of the members so that the distance
between each member remains constant. When the elements of target set Tij(t) , given in Eq. (8), are collected
in a cluster, then the target set assigned in Eq. (9) is expressed as Ti(t) [28].

Tij(t) = {xj(t) + dij
xi(t)− xj(t)

∥xi(t)− xj(t)∥
}, i ∈ Mf (t) ∧ i ̸= j (8)
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Ti(t) =
∪

j∈N−{i}

Tij(t) (9)

Collision between members is also prevented when each swarm member accepts the location of other
members as an obstacle. The obstacle set Oi(t) , which consists of the instantaneous positions of the swarm
members in formation, is formed as in Eqs. (10) and (11) [28].

Oij(t) = xj(t), i ∈ Mf (t) ∧ i ̸= j (10)

Oi(t) =
∪

j∈N−{i}

Oij(t) (11)

To maintain the formation distance of the swarm members, instant push-and-pull forces are applied
according to their instantaneous positions. Suppose the close distance d between the members is greater than
or equal to the desired formation distance εr . In that case, this distance is included in the target set and the pull
function is applied between the members. Within the scope of this application, since the altitude is constant in
the z -axis, the potential pull function can be written as in Eq. (13) when the instantaneous elements in target
set Ti(t) are defined as in Eq. (12) [28].

Tij(t) =

[
T1j(t)
T2j(t)

]
(12)

Fij(t)
T =

{
x1i(t)x2i(t)− x1i(t)T2j(t) + x1i(t)− T1j(t)

x2i(t)− T2j(t)

}
, i ∈ Mf (t) ∧ i ̸= j (13)

If swarm member i has reached the target point, xi(t) = Tij(t) , and so FT
ij (xi(t)) = 0 . This indicates

that the pull force is 0 and the formation is completed. If the instant distance d between the members is less
than the desired εr , the members are too close to each other and in a position to create an obstacle. In this
case, the instantaneous distance between the members is in the obstacle set and the push function is applied
between the members. The potential push function can then be written as in Eq. (14) when the instantaneous
elements in the obstacle set Oi(t) are defined as in Eq. (15) [28].

Oij(t) =

[
O1j(t)
O2j(t)

]
(14)

Fij(t)
O =

{
x1i(t)x2i(t)− x1i(t)O2j(t) + x1i(t)−O1j(t)

x2i(t)−O2j(t)

}
, i ∈ Mf (t) ∧ i ̸= j (15)

Within the scope of this application, the time-dependent Newton iteration method [28] is used to update
the instantaneous member positions specified in the potential push-and-pull functions.
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3.2.3. Time-dependent Newton iteration method

The stable formation is formed by setting the push-and-pull functions FT
ij (xi(t)) and FO

ij (xi(t)) among the
swarm members to 0 . Thus, the dynamic modeling equation xi(t + 1) = xi(t) is achieved. Therefore, the
control input ui(t) of the discrete-time single-integrator model given in Eq. (1) should be minimized depending
on the push-and-pull functions. The model defined within the scope of this application is as in Eq. (16) [28].

xi(t+ 1) = xi(t) + λ(∆xpull(t) + ∆xpush(t)), i ∈ Mf (t) (16)

Here, ∆xpull(t) is the step vector generated by the potential pull function, while ∆xpush(t) is the step
vector generated by the potential push function. λ is a step coefficient. The equations for the pull step vector
and the push step vector are given in Eqs. (17), (18), (19), (20), and (21) [28].

∆xpull(t) =
∑

j∈{N−{i}}

Aij(t)

∥Aij(t)∥
(17)

Aij(t) = −[∇FT
ij (xi(t))]

−1 · FT
ij (xi(t) (18)

∆xpush(t) =
∑

j∈{N−{i}}

R∗
ij(t) (19)

R∗
ij(t) = { Rij(t)

[1 + (
∥Rij(t)∥

Cr
)µ · ∥Rij(t)∥3]

− εr
[(1 + ( εr

Cr
)µ) · (εr)3]

}, dij ≤ εr (20)

Rij(t) = +[∇FO
ij (xi(t))]

−1 · FO
ij (xi(t) (21)

In the equations above, Cr and µ are the push coefficients. These coefficients can be selected according
to the sensitivity of the environment in which the swarm is located. εr is the desired formation distance between
the previously mentioned members. In addition, the step coefficient λ given in Eq. (16) can be defined as an
adaptive step size λi(t) to minimize the formation error. The formation error ϕi(t) is defined as in Eq. (22)
[28].

ϕi(t) =

∑
j∈Ni(t)

∥dij − [xi(t)− xj(t)]∥
|Ni(t)|

(22)

From this point of view, the difference between two consecutive formation errors can be defined as Si(t)

as in Eq. (23) [28].

Si(t) = ϕi(t)− ϕi(t− 1) (23)

The adaptive step size λi(t) was created using this error variation as in Eq. (24) [28].

λi(t) = ρ · eSi(t), i ∈ Mf (24)
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3.2.4. Virtual leader tracking algorithm
After the formation, the members of the swarm should be able to move without hitting the obstacles in the
environment while moving toward a specific target. The leader tracking method was applied in a previous study
using these algorithms. With this method, the potential attraction function of the leader is adjusted to coincide
with the targeted destination, as expressed in Eq. (25) [28]. Thus, trajectory tracking is performed depending
on the leader.

Tij(t) = {x∗
i (t)}, i = l(t) (25)

For obstacle avoidance, all obstacles are defined as obstacles associated with the push function, as given
in Eq. (26) [28].

Oij(t) = Onofly(t), i = l(t) (26)

Many robotic systems used in swarms may be subject to internal or external interventions during real-
time applications. Therefore, the swarm should be able to show robustness [14] and flexibility [15] against such
situations. However, the leader’s follow-up [22, 28, 35] ignores the deterioration of the formation and the losses
in flight dynamics when an obstacle is encountered. We recommend the consensus-based virtual leader tracking
algorithm (CBVLTA) to bring these skills to the UAV swarm system. A formation protection algorithm is
applied for the virtual leader and all swarm members. Each swarm member rechecks the formation distance
after updating the position, and the formation error is calculated continuously. Thanks to this algorithm, the
swarm system can successfully fulfill its intended task by updating its internal parameters despite communication
breakdown or malfunctions among the members. The graph structure developed based on the virtual leader
can be defined as GV L = (N,E) ∪ {VL} . Graph structures of the created virtual leader tracking-based swarm
topology are shown in Figure 2.
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Figure 2. Virtual leader-based DDG.

To follow the virtual leader, the potential pull force is rearranged to be i = VL(t) , as given in Eq. (27).

FT
Lj(VL(t)) =

{
V1L(t)V2L(t)− V1L(t)T2j(t) + V1L(t)− T1j(t)

V2L(t)− T2j(t)

}
, i = VL(t) ∧ i ∈ N (27)
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The flowchart created from the algorithms given in the methodology section throughout the swarm
movement is shown in Figure 3.
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Figure 3. Flowchart of consensus-based virtual leader tracking algorithm (CBVLTA).

4. Simulation and results
Within the scope of this application, we compare the consensus-based leader tracking algorithm and the
CBVLTA. The algorithms proposed in this study are modeled in the MATLAB simulation environment.
For applicability and ease of observation, we make a set of assumptions as follows:
• UAVs are processed as point data. εr , defined as the safe or formation distance, is also accepted as the sensor
radius.
• During the simulations, it is assumed that the locations of the UAVs, obstacles, and target points are known
in advance. The locations of the swarm member UAVs can be obtained from GPS and IMU sensors, which are
widely used in UAV applications. Obstacle locations can be detected from the infrared, ultrasonic, radar, or
LiDAR sensors on the UAVs, depending on their current locations.
• Every quadrotor must have a connection with each other in the network, which must be a bidirectional
connection between the quadrotors.
In the first algorithm, it is possible to detect a specific target or to attack that target by following the leader
in an environment with and without obstacles like in other works [28, 35]. In the applications made with
leader tracking, the same altitude aggregation algorithm was applied first by using the location data of 3
UAVs randomly distributed in the environment. Afterward, a triangle formation was formed between swarm
members coming to the concentric altitude. After establishing the formation connection, a specific target was
reached by following the predetermined leader UAV. After achieving the target, the triangle formation started
again. The algorithms applied in previous studies [28, 35] gave outstanding results against small and scattered
environmental obstacles. However, when enormous obstacles cover the environment, it is difficult for the swarm
to determine how to reach the target. For this reason, the algorithms used in previous studies [28, 35] were
further developed and their behavior against enormous obstacles was tested. Moreover, the extended algorithm
was applied for formation protection and field scanning by keeping the constant formation shape in the presence
of obstacles. With the second algorithm, simulations were made using the virtual leader tracking algorithm and
results were compared with those of the previous algorithm. Finally, the robustness and flexibility solutions
that the proposed virtual leader-based algorithm brings to the swarm system were determined. The parameter
values used during the simulations conducted with the MATLAB program are given in Table 1.
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Table 1. Simulation parameters.

Parameters Values
λ (step coefficient) 0.1
Cr (push function coefficient) 0.1
µ (push function coefficient) 1
εr (formation distance) 1.5

4.1. Leader tracking and formation control simulations

The leader tracking method connects the entire communication topology to the leader UAV. This is efficient for
narrow spaces and target-oriented applications. However, in some applications with swarm UAVs, it is crucial
to scan the area by maintaining the flight form besides reaching the target point. Providing formation control
using common data between swarm members during the flight provides movement and control capability in
more areas. The simulations of triangular formation control carried out within the scope of this application are
given in Figure 4. Here, as in the leader tracking application, the same altitude and triangular formation were
created among the randomly distributed UAVs. In the figures, the black dots are the positions where the swarm
members are randomly distributed at the beginning of the simulation. The yellow dot is the position of the
leader UAV. First, UAVs at different altitudes are positioned at the same altitude, as in Figure 4a. The flight
formation is then created according to the number of UAVs in the environment with the proposed formation
algorithm as in Figure 4b. Here, the green circles represent the members, the yellow circle represents the leader
UAV, and the dashes represent the trajectories. The swarm with the location-based topology is able to reach
the target point, as seen in Figure 4c. Afterward, the target point is reached by preserving the formation shape
during the swarm movement as given in Figure 4d.

Swarm members share location data during the movement toward the target point. In addition, this is
a swarm topology that is more resistant to external effects, as the leader does not need to be a pioneer, as
in leader follow-up. Therefore, swarm applications such as field scanning or target tracking can be performed
with this formation control algorithm. However, failures and losses among swarm members, frequently seen in
real-time applications, have been ignored. In particular, the slightest malfunction or communication gap that
may occur in the leader UAV can put the entire system in a difficult situation. Therefore, a virtual leader-based
consensus algorithm has been developed to prevent these problems.

4.2. Virtual leader tracking and formation control simulations

UAVs in swarm duty should be capable of performing the desired task even if malfunctions occur due to
technical or external causes. Swarm members should also be able to update their internal parameters against
dynamic environmental changes. We propose a virtual leader tracking algorithm to solve these problems. The
proposed algorithm is able to regulate the internal parameters against external influences by preserving the
flight formation despite the swarm members’ failures and ensuring the swarm’s task completion. When there
is a communication gap affecting more than one swarm member, the remaining members can act on the task
definition by creating a new formation without being affected. Therefore, it can be said that the proposed
DDG-based consensus structure, including a virtual leader, has Byzantine fault tolerance. Additionally, the
swarm performs the determined formation flight within the error range of 2% throughout its movement. When
the error rate increases to 2% or above, the error is reduced by applying push-and-pull functions. The next
location update step starts when it drops below 2% . After the number and location information of the UAVs
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in the environment is obtained, the virtual leader is added to the swarm and the formation shape is created.
Follower UAVs take their positions according to the position of the virtual leader within the variable graph
structure. Formation shapes of graph structures made according to the virtual leader-based swarm topology
are given in Figure 2. Here, the DDG structure is reshaped according to the virtual leader’s position to reduce
the geometric calculation density. For the swarm with 3 UAVs, the virtual leader is assigned to the center of
the triangle formation. Similarly, a virtual leader is assigned to the center for the herd consisting of 4 UAVs.
A swarm topology with 5 or more members is arranged according to whether the elements are odd or even
in number. The virtual leader is assigned to the top to form the double-sided polygon if odd. If it is even,
it is assigned to the center of the resulting double-sided polygon. The simulation based on the virtual leader
tracking algorithm is presented in Figure 5.
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Figure 4. Leader tracking target detection and formation control in a 3D obstacle environment.
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Figure 5. Virtual leader tracking target detection and formation control in a 3D obstacle environment.

In the first application shown in Figure 5a, 3 drones were downed and the swarm updated its internal
parameters against this dynamic change and formed a new triangle formation. In the second application,
2 drones were downed and the swarm switched to a virtual leader-centered triangle formation, as seen in
Figure 5b. A simulation picture including all steps is also given in Figure 5c. In the simulations, thanks to
the algorithm based on the virtual leader, the remaining swarm members created a new formation to follow
the virtual leader. With the new swarm formation, the target point was reached without breaking the swarm’s
connection or hitting an obstacle. Thus, a more robust and flexible swarm algorithm was created.

4.3. Performance criteria
The performances of the virtual leader and leader-following algorithms according to the time in which they
reached the target point, the number of iterations, the length of the route, and the size of the swarm are given
in Table 2 according to the simulation results.
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Table 2. Simulation performances.

Formation Parameters 3 UAVs 6 UAVs 3 down 6 UAVs 2 down
Gathering formation Time (s) 48 56 58

Iteration 83 102 105
Trajectory 1 (unit) 1.50 1.30 4.10
Trajectory 2 4.80 7.90 5.20
Trajectory 3 4.10 8.50 10.5
Trajectory 4 None 8.00 10.1
Trajectory 5 None 5.40 6.20
Trajectory 6 None 6.00 6.10

Flight formation Time (min) 11 17 19
Iteration 1230 1866 2055
Trajectory 1 (unit) 15.3 20.6 21.2
Trajectory 2 10.5 19.8 20.8
Trajectory 3 13.2 21.0 18.7
Trajectory 4 None 8.70 10.2
Trajectory 5 None 8.20 21.1
Trajectory 6 None 8.50 9.70

First of all, when the performance values of the randomly dispersed UAVs during the gathering formation
are examined, it is seen that the swarm size is directly proportional to the flight time and the number of
iterations. The trajectories of the randomly distributed swarm members are quickly collected at the same
altitude, thanks to the formulas given in Eqs. (5), (6), and (7). The flight formation shape is then taken with
the push-and-pull functions applied. Therefore, the difference in gathering formation time between applications
is relatively small. The times recorded for the flight formations until reaching the target point are similarly
proportional to swarm size. Moreover, it can be said that this is inversely proportional to the number of
members that collide with obstacles or each other or lose communication in virtual leader-based applications.
It can be said that the target is reached in a shorter time by creating a more straightforward trajectory in
the leader-following application. However, it is vulnerable to failures or communication breaks in the swarm
system. The only condition for the remaining members to be able to reform is that the leader UAV should not
experience any problems. Therefore, some tolerance for flight formation time can be shown for a more efficient,
robust, and flexible swarm system.

5. Conclusion
UAVs are technological tools in demand in many areas today, and it is crucial to deploy them in flocks. However,
it can be challenging to use them in a swarm due to the dynamic structure. In particular, malfunctions in
swarm members and sudden changes due to external factors can cause significant problems. In this study, a
gathering algorithm has been applied for UAVs distributed inside or outside the environment of interest. A
path-planning algorithm has been developed based on virtual leader tracking that can reach the target without
interruption in communication or collisions involving the swarm member UAVs or obstacles in the environment.
A communication topology was created by providing consensus-based formation control among the swarm
members during their flight. Here, swarm members share their instant locations. It is straightforward to
implement as only location information is processed.
In the simulations, it was seen that the swarm system protects its internal parameters against external influences
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by using the virtual leader algorithm and it completes the task despite the failure of its members. Therefore,
thanks to the intelligent path control developed for UAVs, efficient results were obtained against swarm problems.
In addition, system performance can be measured by testing on real-time applications. On the other hand, it
has limited efficiency in terms of time and cost for swarm systems with dozens or even hundreds of UAVs. A
linearized dynamic model in which only position data are processed may be insufficient. In order to overcome
this problem in the future, the main swarm should be divided into subswarms, and potential dynamics such as
velocity acceleration may also need to be included in the system. The system can perform the expected task
by creating a hierarchical swarm structure. Another limitation of the application is that there are too many
alternative routes to reach the target point due to increases in map size. For this problem, the optimum route
can be determined by developing an offline path-planning algorithm before the flight.
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