
ELEKTRİK, VOL.6, NO.1, 1998, c©TÜBİTAK EMO

Object-Oriented Computer Simulations of Physical

Systems Using Dual Reciprocity Boundary Element

Methodology

J. Friedrich
Computer Engineering Department

Karadeniz Technical University
61080 Trabzon - TURKEY

Abstract

Models of physical systems are essential in every engineering field. This work deals with computer

simulations of physical systems that can be mathematically modelled by differential equations together with

sufficient boundary conditions. The computer simulations are based on object-oriented technology and the

dual reciprocity boundary element method which is a universal solution scheme for various types of partial

differential equations (e.g. Laplace, Poisson, diffusion, convection-diffusion, and steady Navier-Stokes

equation). This technique fulfills efficiency criteria like precision, robustness, versatility, programmability,

user-friendliness, need of computational time and computer memory to a very high degree. This is

demonstrated by three examples: Laplace’s solution for a potential flow problem, Poisson’s solution for a

torsion problem, and the diffusion solution for cooling a metal piece.

Keywords: computer simulations, physical systems, object-oriented technology, dual reciprocity

boundary element method.

1. Introduction

The methodology used by scientists and engineers in trying to understand physical phenomena has been
theoretical development (analysis) on one hand, and observations in nature or in the laboratory on the
other. Theories without checking them against observations cannot be verified. With the advent of digital
computers, the methods mentioned above have been enriched by rapid and accurate computations. Thus,
three scientific approaches are being used: analysis, laboratory and computational experimentation or
simulation. The role of the latter one has become more and more important because they not only provide
answers to problems for which analytical solutions are not available, but they are in many cases easier to
apply, faster, more precise and less expensive than experiments in laboratories or in nature.

Analysis of physical systems is based on mathematical models whose development usually begins
by setting up the differential equation(s) governing the physical phenomena being investigated. This step
usually involves a number of relationships between the physical variables involved. Generally, the governing
equations consist of continuity, momentum and energy equations which are all determined by considering a
differential element representative for the phenomena to be analyzed and deriving from there mathematical
relations between the differential quantities involved. Following this initial step, the model equation(s)

11



ELEKTRİK, VOL.6, NO.1, 1998

is(are) applied over the domain where the solution is being sought. For finding a unique solution, sufficient
conditions on the boundary of the domain have to be known. Thus, physical systems in this work are defined
as systems with a given domain and boundary whose physical behavior can be mathematically modelled by
differential equations in this domain.

Boundary conditions may be constant or vary in time. The most difficult part is to obtain a unique
solution of the governing equation(s) subject to the given boundary conditions. If such a solution is
obtainable by just analytical means, the model is called an ’analytical model’ and the solution is referred
to as the analytical or exact solution. The nonlinear nature of the considered governing equation(s) or
a complex boundary geometry of the domain often precludes analytical solutions and numerical solution
methods become the only feasible tools for obtaining results of some acceptable degree of accuracy and
detail. At the heart of the numerical experimentation and computer simulations of physical systems lies the
numerical model. It should fulfill efficiency criteria like precision, robustness, versatility, programmability,
user-friendliness, need of computational time and computer memory as much as possible.

Once the computer code for a numerical model has been developed, debugged and calibrated (or
benchmarked), it may be employed repeatedly to obtain solutions for different data input sets. In contrast to
laboratory experimentation involving physical models, the alteration of boundary conditions and calibration
of various parameters can be carried out in a much shorter time with much less cost and effort. Further,
computational experimentation does not suffer from unclean data of real observations in nature or in a
laboratory, allowing to remove or separate certain effects e.g. friction. Computer simulations also permit to
change the governing equation(s) and parameter values so that alternative models and their solutions can
be tested. Moreover, they allow to estimate the behavior of a physical system in the future and in the past
by forward and backward time integration schemes applied to the governing equation(s).

The numerical model used in this work is based on the dual reciprocity boundary element method, a
newly derived scheme for solving numerically a variety of partial differential equations without changing the
overall solution algorithm. It was implemented by object-oriented techniques which are introduced in the
next section before describing the numerical model.

2. Object-Oriented Technology

Object-oriented technology (OOT) is a method that seeks to mimic the way humans form models of the
world. To cope with coplexities of life, human beings have evolved a wonderful capacity to generalize, classify
and generate abstractions. Almost every noun in human vocabulary represents a class of objects sharing
some set of attributes or behavioral traits. OOT exploits this natural tendency humans have to classify and
abstract things. For example, the object-oriented programming language C/C + + was originally called
’C with Classes’. OOT is implemented by object-oriented programming, which can be characterized by
supporting and enforcing the use of the OO key concepts encapsulation, inheritance, polymorphism, and
dynamic (or late binding) summarized in the following table together with other key OO terms (McMonnies
and McSporran 1995).

Encapsulation greatly facilitates the usage of complex data structures to model a group- or semigroup
structure, thus allowing to collect information of different types that belong together naturally into one class
as a single unit, e.g. data of a boundary element node containing its number, coordinates, type and value
of boundary condition. Therefore, encapsulation increases the readability and maintainability of the model
and code. Further, encapsulation sets a boundary between a class and the rest of the program, protecting
its contents from unwanted side effects and thereby making classes more robust.

12



FRIEDRICH: Object-Oriented Computer Simulations ...,

Table 1. List of important object-oriented terms

Object A data structure that incorporates type-specific methods for self-management
Class A template for objects. A class definition is the means by which

objects are designed.
Member A variable or method (function) within an object
Instance An object of a particular class
Encapsulation The binding of data structures and methods into a class of objects
Inheritance Means that derived classes inherit the variables and methods from

their base classes, while possibly redefining or adding new variables
and methods. This creates a hierarchy of ancestor classes.

Polymorphism The ability of classes in a hierarchy to share names for methods that behave
appropriately to the particular class for which they were designed

Late binding The binding of virtual methods to an object when it is created during run-time
Constructor/Destructor Methods to create / eliminate objects

It is also very beneficial to use existing classes when defining new classes. This can be achieved
by composition, or by extension of already defined classes using the concept of inheritance. The main
purpose of inheritance is to allow sharing of attributes and methods among classes according to a hierarchical
relationship. From one class, any desired number of class objects can be initialized and used, a process similar
to the casting of pieces from a single mould. Each of these copies is autonomous, doing its job on its own, but
if it needs some code or data from another class object, the concept of inheritance allows them to share it.
Inheritance is of crucial importance for the realization of tree-structured dependencies between class objects.
The ability to transfer common attributes and methods of several classes to a base class and to inherit them
from there can greatly reduce repetition within a model and/or program and is one major benefit of the OO
approach (Pohl 1993).

Sometimes, a set of class objects may share a routine, but it can only be defined at a specific program
level or stage. Thus, this routine can be initialized as a virtual method (function), but later defined at
run-time when it is required. This is part of the polymorphism concept which makes it possible to adopt
an initialized function to the needs of an object class in the same inheritance tree by adding new features
or overwriting existing ones. This process is also called dynamic (or late) binding, which makes the object-
oriented method so flexible and efficient.

All four concepts (encapsulation, inheritance, polymorphism, dynamic binding) are the foundation of
the OOT, which is a new way of looking at, analyzing, designing, and implementing software, concentrating
on the underlying real-world concepts and principles of a system, rather than processing or implementation
details. Thus, there is a general trend in software development away from programming language issues
towards the fundamentals and rules within the application domain, which includes the identification and
organization of system components and concepts, their behavior and relations. This is of great importance for
reducing the software mountain because general concepts enjoy a longer life span than some implementation
details.

In conclusion, OOT is conceptual process independent from a programming language until the last
stages (Rumbaugh et al. 1991). It is a fundamental new way of thinking about software and not a
programming technique. Its greatest advantages originate from supporting client/users and designers to
get a better and more complete picture of a problem domain and communicate it more clearly to each other.
It serves as a more efficient platform for all parts of the software life cycle including concepts, specifications,
analysis, design, implementation, testing, documentation, interfacing, and maintenance.

13



ELEKTRİK, VOL.6, NO.1, 1998

3. The Dual Reciprocity Boundary Element Method

Since its beginnings in the 1960’s, the boundary element method (BEM) has become a well-established
numerical technique which provides an efficient alternative to finite difference and finite element methods for
solving a variety of engineering problems (Brebbia 1978, Banerjee 1994). One main restriction of the classical
BEM has been the requirement for a fundamental solution to the original partial differential equation in
order to obtain an equivalent boundary integral equation. Another has been that non-homogeneous parts in
the governing equations are incorporated by means of domain integrals so that the BEM looses its original
attraction of a ’boundary-only’ method. The dual reciprocity method (DRM) appears to be a solution to
the mentioned difficulties of the classical BEM (Partridge et al. 1992, Power and Partridge 1994, Power and
Wrobel 1995). The DRM uses a fundamental solution to a simpler governing equation and takes into account
the remaining non-homogeneous terms in the original equation by applying reciprocity principles and certain
approximating functions. Its simplicity allows for implementation of numerical solutions for Laplace, Poisson,
convection, convection-diffusion, and steady Navier-Stokes problems for moderate Reynolds numbers without
changing the basic solution procedure.

The DRM can be characterized as a specialization of the BEM formulation where domain integrals
are eliminated by introducing a superposition of localized particular solutions, which at the same time
approximate the fundamental solution of the considered governing equation (Partridge et al. 1992). Take,
for example, the 2D Poisson equation for an unknown function u = u(x, y) in a closed domain or volume V
(Fig. 1).

∆u =
∂2u

∂x2
+
∂2u

∂y2
= b, (1)

where b = b(x, y) is a function of position (x, y) that needs to be given together with enough conditions on
the boundary S = S1 + S2 to be able to solve for u (n is the unit outward normal to S ):

u = u on S1, q = ∂u/∂n = q on S2. (2)

The superposition used in the DRM consists of a solution to Laplace’s equation plus a series of
particular solutions uPj in field points P so that

b =
N+L∑
j=1

αj∆uPj , (3)

where N is the total number of boundary nodes after the discretization, L the number of field points and
αj a set of initially unknown coefficients. Substituting Eq.(3) into (1) gives

∆u =
N+L∑
j=1

αj∆uPj . (4)

Further, for deriving the DRM integral equation, a weighted residual technique is applied whereby by
differences to the correct solution of the governing equation and the boundary conditions are minimized
over the considered volume and its boundary (see Partridge et al. 1992). Using this approach, Eq.(4) is
multiplied by the fundamental solution of the Laplace equation u∗ and integration over the domain produces∫

V

∆u u∗dV =
N+L∑
j=1

αj

∫
V

∆uPj u
∗dV. (5)

14



FRIEDRICH: Object-Oriented Computer Simulations ...,

Normal n Area outside of V

Surface S

Linear Boundary Element

xn+1, yn+1

ln

xn, yn

Normal n

Boundary Node

Volume VVolume V

Area inside of V

Figure 1. Definition sketch of a single bounded volume Figure 2. Boundary discretization with linear boundary

elements [nx = (yn+1−yn)/`n, ny = −(xn+1−xn)/`n] .

Integrating by parts the Laplacian terms in Eq. (5) results in an integral equation for each source
node i

ciui +
∫
S

q∗u dS −
∫
S

u∗qdS =
N+L∑
j=1

αj

(
ciu

P
ij +

∫
S

q∗uPj dS =
∫
S

u∗qPj dS

)
, (6)

where the term qPj represents the normal derivation of uPj defined by

qPj =
∂uPj
∂n

=
∂uPj
∂x

∂x

∂n
+
∂uPj
∂y

∂y

∂n
. (7)

From this procedure the technique received its name dual reciprocity method: reciprocity has been applied
to both sides of Eq.(5) to take all terms to the boundary. Thus, all domain integrals in Eq.(5) have been
replaced by boundary integrals in Eq.(6). The term ci is equal to the internal angle at node i divided by
2π , thus, for example, it has the value 0.5 for a node on a smooth boundary. After discretizing the boundary
and replacing the boundary integrals by summations over N boundary elements, e.g. by linear boundary
elements with a length `n (Brebbia 1978), the boundary integrals in Eq.(6) are replaced by finite sums over
all boundary elements En, n = {1, 2, . . . , N} , (Fig. 2).

Thus, Eq.(6) changes to

ciui +
N∑
k=1

∫
Sk

q∗udS −
N∑
k=1

∫
Sk

u∗qdS

=
N+L∑
j+1

αj

(
ciu

P
ij +

N∑
k=1

∫
Sk

q∗uPj dS −
N∑
k=1

∫
Sk

u∗qPj dS

)
. (8)

The evaluation of the boundary integrals on the left-hand side in form of

N∑
k=1

∫
Sk

q∗udS =
N∑
k=1

Hikuk,

N∑
k=1

∫
Sk

u∗qdS =
N∑
k=1

Gikqk, (9)

where k is the index for a boundary node used as field point, is well described in literature, for example in
Brebbia (1984) for linear elements. These expressions are also applied to the right-hand side of Eq.(8) in

15



ELEKTRİK, VOL.6, NO.1, 1998

order to increase the method’s efficiency, although this incorporates an error, but it has been shown to be
small compared to the gained advantage. After inserting Eq.(9) on both sides of Eq.(8) one gets

ciui +
N∑
k=1

Hikuk −
N∑
k=1

Gikqk =
N+L∑
j=1

αj

(
ciu

P
ij +

N∑
k=1

Hiku
P
kj −

N∑
k=1

Gikq
P
kj

)
, (10)

or shorter in matrix notation

Hu−Gq =
N+L∑
j=1

αj
(
HuPj −GqPj

)
. (11)

where the terms ci in Eq.(10) have been shifted to the principal diagonal of H in Eq.(11). If each of the
vectors uPj and qPj are considered to be one column of the matrices UP and QP respectively, Eq.(11) may
be written without summation as

Hu−Gq = (HUP −GQP )α. (12)

This equation is the starting point of the DRM solution. To evaluate the vector α one has to go back to
Eq.(3) in the form of

b =
N+L∑
j=1

αj∆uPj =
N+L∑
j=1

αjfj, (13)

where the series of particular solutions is replaced by a set of approximating functions fj , which can be
transferred to a matrix F that easily allows to compute α by using the known function b as follows:

b = Fα⇒ α = F−1b. (14)

The best results gained so far have been made with functions of type

fj = 1 + rj + r2
j + · · ·+ rmj , (15)

where rj is the distance between a source and field point. The corresponding Laplacian function and its
gradient are

uPj =
r2
j

4
+
r3
j

9
+ · · ·+

rm+2
j

(m+ 2)2
, (16)

qPj =
(
∂rj
∂x

∂x

∂n
+
∂rj
∂y

∂y

∂n

)(
1
2

+
rj
3

+ · · ·+
rmj

(m+ 2)

)
. (17)

Now one is able to solve Eq.(12) by reducing it to the form

Ax = y, (18)

which consists of N equations for N unknowns, either potentials or gradients, but at least one potential
value must be given to scale the problem. Then, potentials and gradients for field points can be computed
from Eq.(10) with ci = 1. An alternative to compute the gradients, which is valid for any governing equation,
is to take advantage of Eq.(14) applied to the problem variable u such that

u = Fβ ⇒ β = F−1u. (19)

The partial derivatives of the left-hand equation are

∂u

∂x
=
∂F

∂x
β,

∂u

∂y
=
∂F

∂y
β. (20)

16



FRIEDRICH: Object-Oriented Computer Simulations ...,

By inserting the right-hand equation of (19) into (20), one gets as final result

∂u

∂x
=
∂F

∂x
F−1u, β,

∂u

∂y
=
∂F

∂y
F−1u, (21)

for the wanted gradients of u . The analog integral equation to (12) for the general Poisson equation

∆u =
(
a
∂u

∂x
+ b

∂u

∂y

)
(cxm + dyn) + e, (22)

where a, b, c, d, e,m and n are known constant coefficients, is given by

Hu−Gq = S

[(
a
∂F

∂x
+ b

∂F

∂y

)
(cxm + dyn)F−1u+ e

]
(23)

with
S = (HUP −GQP )F−1. (24)

The derivation of DRM integral equations for time-dependent problems is done in a similar way as for the
Poisson equation. Considering e.g. the diffusion equation

∆u =
1
K

∂u

∂t
(25)

as the simplest time-dependent case with K as material constant, a comparison of Eq.(25) with Eq.(1)
immediately shows that Eq.(3) needs to be replaced by

1
K

∂u

∂t
=

1
K
u̇ =

N+L∑
j=1

αjfj, (26)

so that Eqs.(12), (23) analogously change to

Hu−Gq = − 1
K
Su̇, (27)

which allows a direct implementation of a time-marching scheme. For example, a two-level time integration
formula reads

S
u(tn+1)− u(tn)

tn+1 − tn
+ H

u(tn+1) − u(tn)
2

= G
g(tn+1) + q(tn)

2
(28)

or better sorted
(2S + H∆t)u(tn+1)−G∆tq(tn+1) = (2S −H∆t)u(tn) + G∆tq(tn) (29)

which can be integrated, if enough starting values u(t0), q(t0) are given. In the same manner, using the
fundamental solution to Laplace’s equation, the transient convection-diffusion equation

D∇2u = vx
∂u

∂x
+ vy

∂u

∂y
−Ku +

∂u

∂t
(30)

can be treated, where D is the dispersion coefficient, vx and vy the components of a velocity field, and K

the reaction coefficient. This procedure and applying Eqs.(19)-(21) gives a matrix equation of the form

Hu−Gq = S

[(
vx
D

∂F

∂x
+
vy
D

∂F

∂y

)
F−1u− K

D
u+

1
D
u̇

]
. (31)

Because all DRM integral equations (12), (23), (27), and (31) have the same structure, a numerical scheme
can be easily designed and implemented in one single computer code. This was realized by the ’Object-
oriented Boundary Element Program (OBEP) 1.0’ for WindowsTM (Friedrich 1995). The program offers
a visual interactive user interface which allows simple and fast pre-processing, computations, and post-
processing to solve the considered problems.

17



ELEKTRİK, VOL.6, NO.1, 1998

4. Examples

4.1. Uniform Potential Flow Through two Parallel Walls

The first example deals with uniform potential flow through two parallel and horizontal walls (no flux
condition at top and bottom boundary), and a potential difference of +1.0 between the left and right
boundary. Every side of the considered square has a length of 1.0 (Fig.3). The boundary discretization uses
four corner points with (x, y) coordinates P1(x, y) = (0, 0), P2(x, y) = (1, 0), P3(x, y) = (1, 1), P4(x, y) =
(0, 1). The correct solution for internal potentials and gradient (flux) values is given by

u(x, y) = 1− x, qx(x, y) =
∂u(x, y)
∂x

= 1, qy(x, y) =
∂u(x, y)
∂y

= 0. (32)

P1

Poten -

tial =

u = 1

P4
Flux = q =0 P3

Length = ln =1

y

x

P2

Poten -

tial =

u = 0

Flux = q = 0

Figure 3. Potential flow in a square with four corner points

The potentials linearly decrease from one to zero when moving from the left to the right boundary
whereas the gradient are constant everywhere in the volume, resulting in a uniform flow to the right. Using
OBEP the results shown in Fig. 4a+b were obtained.

As can be seen from Fig. 4a, the OBEP results for the potentials fit the correct solution according to
the left-hand side of Eq. (32) quite well with relative errors of approx. 1 %. The gradient results have also
the same relative accuracy of about 1 % in the mid-region of the volume, which increases for field points
closer to the boundary (Fig. 4b) because of the simplification made to evaluate Eq. (8) and the applied
numerical integration scheme (4-point Gaussian quadrature formula) for computing the integrals in Eq. (9).
These results also illustrate the known fact that gradients react more sensible to singularities than potentials
because their order is larger by a factor of (1/r) due to their definition.

4.2. Warping Function of an Elliptical Cross-Section

The second example considers a torsion problem for an elliptical cross-section x2/a2 + y2/b2 = 1 with a
semimajor and -minor axis of a = 2 and b = 1. The governing Poisson equation is defined by

∆u =
∂2u

∂x2
+
∂2u

∂y2
= −2, (33)

18



FRIEDRICH: Object-Oriented Computer Simulations ...,

where u = u(x, y) is the torsion function to be determined (Partridge et al. 1992). As boundary conditions
the torsion is taken to be zero on the whole boundary of the cross-section

u = 0. (34)

The correct solution for a shear modulus µ = 1 and a twist angle φ = 1 is given by

u(x, y) = −4
5

(
x2

a2
+
y2

b2
− 1
)
, (35)

and the normal derivatives on the elliptical cross-sectionen by

q(x, y) = −1
5

(x2 + 8y2). (36)

The DRM solution for this torsion problem with OBEP brought forth the following results as shown in
Figure 5a+b.

These results confirm the findings of the first example; the DRM technique is able to produce results
with a relative error of about 1 % for both potentials and gradients, if the latter ones are located in the
mid-region of the considered problem domain.

Figure 4a. Boundary and 3D plot of potentials Figure 4b. 2D vector plot of gradients

4.3. Diffusion Problem for Cooling a Metal Piece

The last example is about the cooling process of a quadratic metal piece with a material constant of K = 1.25
and a side length of 1 = 3.0 with coordinates (xmin = ymin = 0.0), (xmax = ymax = 3.0), that is cooled from
a starting temperature T0 = 30◦C down to T (∆t) = 0.◦C after a time period ∆t . The analytical solution
of this problem for a field point P at a position (x, y) is given with Kx = Ky = K and 1x = 1y = 1 by
(Partridge et al. 1992)

T (∆t) =
∞∑
n=1

∞∑
m=1

4T0

nmπ2
[(−1)n − 1][(−1)m − 1] ∗

sin
nπx

`x
sin

mπy

`y
exp

[
−∆t

(
Kxn

2π2

`2x
+
Kym

2π2

`2y

)]
. (37)

19



ELEKTRİK, VOL.6, NO.1, 1998

The analytical temperature gradients can be simply obtained by building the x and y derivatives of the
sine terms in Eq. (37). The DRM solution of this diffusion problem governed by Eq. (25) with OBEP gave
the following results as they are displayed in Fig. 6a+b after an integration time of ∆t = 0.150s .

Figure 5a. Boundary and 3D plot of potentials Figure 5b. 2D vector plot of gradients

Figure 6a. Boundary and 3D plot of potentials Figure 6b. 2D vector plot of gradients

As can be seen from these figures, the temperature distribution is symmetrical and the highest
temperature is located at the center of the quadratic metal piece after the cooling started. Towards the
boundary the temperature is declining where it becomes zero according to the boundary condition T = 0.◦C .
With a longer integration time the temperature constantly decreases and reaches zero after about ∆t = 30.
sec everywhere in the considered volume. This can be watched in movie style as OBEP prints new plots of
both potentials and gradients at each time step on the screen. In this case, the computer simulation of the
underlying physical system becomes much more realistic than it was the case for the two static examples
solved before. Again the relative errors of temperature values and their gradients are about 1% in this
application.

20



FRIEDRICH: Object-Oriented Computer Simulations ...,

5. Conclusions

The aim of this paper was to create computer simulations of physical systems whose governing equation(s)
need to be known together with sufficient information about boundary and geometrical conditions. The
goal was realized by applying object-oriented technology and the dual reciprocity boundary element method
which allows to integrate various types of partial differential equations by one solution procedure without
major changes. The approach was demonstrated by three examples: Laplace’s solution for a potential flow
problem, Poisson’s solution for a torsion problem, and the diffusion solution for cooling a metal piece. For
time-dependent problems the advantages of the introduced method become much clearer; a user can observe
onscreen how problem variables (e.g. potentials and gradients) are changing in time. By altering relevant
system parameters a user can visually see the effects of such changes in the physical system. This is also
very beneficial for solving inverse problems or optimizing designs by visual interaction when no mathematical
approach exists to find directly such a solution or optimum.

References

[1] Benerjee, P.K. (1994) The Boundary Element Method in Engineering, McGraw-Hill, New York.

[2] Brebbia, C.A. (1978) The Boundary Element Method for Engineers, Pentech Press, London.

[3] Brebbia, C.A. (1984) Boundary Element Techniques, Springer Verlag, Berlin.

[4] Brebbia, C.A. und J. Dominguez (1989) Boundary Elements: An Introductory Course, McGraw-Hill, New York.

[5] Friedrich, J. (1995) The Advantages of Object-Oriented Modelling for BEM Coding demonstrated for 2D

Laplace, Poisson, and Diffusion Problems using Dual Reciprocity Methodology, Proc. 10th Int. Conf. on

Boundary Element Technology (BETECH 95), Comp. Mech. Publ. Southampton pp.229-236.

[6] McMonnies, A. and W.S. McSporran (1995) Developing Object-Oriented Data Structures Using C++, McGraw-

Hill, New York.

[7] Partridge, P.W., C.A. Brebbia and L.C. Wrobel (1992) The Dual Reciprocity Boundary Element Method,

Elsevier Science Publ. London.

[8] Pohl, I. (1993) Object-Oriented Programming Using C++, Benjamin Cummings Redwood City California.

[9] Power, H. and P.W. Partridge (1994) The Use of Stokes’ Fundamental Solution for the Boundary Only Element

Formulation of the Three-Dimensional Navier-Stokes Equations for Moderate Reynolds Numbers, Int. Journal

for Numerical Methods in Engineering, Vol.37, pp.1825-1840.

[10] Power, H. and L.C. Wrobel (1995) Boundary Integral Methods in Fluid Mechanics, Computational Mechanics

Publ. Southampton

[11] Rumbaugh, J.M. Blaha, W. Premerlani, F. Eddy and W. Lorensen (1991) Object-Oriented Modeling and

Design, Prentice Hall Englewood Cliffs, New Jersey.

21


