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Abstract

In this work, the performance improvement due to prefiltering of inputs in model-based frequency

estimators is investigated based on simulation experiments. Initial estimates on the tone frequency

locations, which are obtained via DFT peak picking type preanalysis, are used to design a prefilter to

remove noise and interference. The simulations indicate that prefiltering can improve the accuracy of

Pisarenko and AR frequency estimators and MUSIC and KT frequency estimators with low subspace

order significantly. The SNR thresholds of model-based frequency estimators are lowered by prefiltering.

Additionally, interesting trade-offs between prefiltering gain and the gain due to subspace noise filtering

have been investigated.

Keywords: Frequency estimation, parametric estimation, model-based estimation.

1. Introduction

The problem of frequency estimation of tone type signals in the presence of additive noise given a short
record of observations is still a current problem in the theory and application of digital signal processing.
This problem has been studied extensively and its applications are found in a variety of fields such as
geophysics, radar, sonar, astronomy, etc. [1, 2]. When the available data record has limited number of
samples, model-based spectral estimation techniques show in general superior performance. Several such
methods and their performance are well documented in the literature.

However there are applications where the approximate locations of the tone frequencies are known a
priori as in the case of multifrequency signalling or can be estimated using a preliminary analysis, e.g., via
locating peaks in the DFT (Discrete Fourier Transform) spectrum [3, 4]. In these instances it is conjectured
that prefiltering the input signal with band-pass filters at and around the spectral peaks corresponding to
the presumed tone frequencies will improve the estimation performance.
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Thus in this work, we investigate the effect of prefiltering on the tone frequency estimation perfor-
mance. In this respect several estimators will be considered for the tone frequency estimation problem,
namely, MUltiple SIgnal Classification (MUSIC) , Kumaresan-Tufts (KT) and Yule-Walker (YW) methods.
The signal model assumed consists of multiple real sinusoids

sn =
K∑
k=1

Aksin(ωkn+ θk) (1)

observed in additive white Gaussian noise (AWGN)

xn = sn + en n = 1, · · · , N (2)

where Ak denotes the real amplitude, ωk is the frequency, θk is the phase of the k’th real sinusoid K denotes
the number of sinusoids en is a sequence of white Gaussian random variables with zero mean and variance
σ2 .

The prefilter will typically be a band-pass filter, centered on the hypothesized/estimated tone fre-
quency locations. The band-pass filter will eliminate not only the out-of-band noise, but also mitigate the
interference effects. The impulse response of the prefilter which is centered around ω̂1 , is even and can be
given as:

hn = gn,p
sin(0.5Bn)

πn
cos(ω̂1n) (3)

where gn,p denotes some window function which is nonzero in the interval −p ≤ n ≤ p for some integer p ,
B is the bandwidth of the prefilter and ω̂1 is the frequency estimate which is obtained via a preliminary
analysis on the data, for one of the tones. In summary, the proposed tone frequency estimation scheme
consists of the following steps:

• Obtain an initial estimate of the location of the tone frequency (or frequencies).

• Use a model-based tone frequency estimator after prefiltering the out-of-band components with an
appropriately centered bandpass filter(s).

The performance of various frequency estimators are compared against the Cramèr-Rao Bounds
(CRB). The exact CRBs for line spectra are found generating the Fisher information matrix J , whose
(i,j)’th element is given by [8]:

Ji,j =
1
σ2

N∑
n=1

[
∂sn
∂ηi

∂sn
∂ηj

]
(4)

where ηi denotes the i’th element of the 1 × 3K dimensional parameter vector η which is constituted by
the unknown parameters of the K sinusoids as:

η = [A1, · · · , AK, ω1, · · · , ωK, θ1, · · · , θK ]T . (5)

The CRB of the variance of the i’th element of η is given by:

var(ηi) ≥ J−1
ii (6)

where J−1
ii is the i’th element on the diagonal of the inverse of the Fisher information matrix.

As a result of prefiltering, the contaminating noise becomes colored. The case of CRBs in the presence
of colored noise has also been recently investigated [9]. However our case is not compatible with the results
in [9] since our filter parameters depend upon the cisoid parameters while the analysis in [9] assumes that
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the filter coefficients are strictly independent of the cisoid parameters we want to estimate. Notice that the
filter coefficients in Eq.( 3) depend upon the tone frequency estimate ω̂ . Furthermore the cisoid signals
themselves can be affected by the prefiltering stage as a result of the filter(s) being wrongly centered in
the precense of noise. Therefore the effects of prefiltering on cisoid parameter estimation will have to be
investigated based on extensive simulation studies.

The outline of the paper is as follows. In Section 2. the tone frequency estimators, that is MUSIC,
KT and Yule-Walker frequency estimators as used in simulations, are briefly discussed. For the case K = 1,
the single tone versions of the mentioned estimators are utilized. Different estimates of the autocorrelation
(AC) matrix used in the above algoritms are also considered. Section 3. contains details of the performed
simulation experiments.

2. The Tone Frequency Estimators

For the various estimates of the AC-matrix consider the following organizations of the data:

Lm =


x1 · · · 0 0
...

. . . . . .
...

xm−1 · · · x1 0


(m−1)×m

Tm =


xm · · · · · · x1

xm+1 · · · · · · x2

...
...

xN · · · · · · xN−m+1


(N−m+1)×m

(7)

Um =


0 xN · · · xN−m+2

...
. . . . . .

...
0 · · · 0 xN


(m−1)×m

Xm =

 Lm

Tm

Um


(N+m−1)×m

(8)

The dimension m of the above matrices should be chosen as N
2 approximately, in an effort to maximize

both m and (N −m) at the same time where m determines the subspace order and (N −m) represents
the index for averaging the statistics of the data. The Least Squares Linear Prediction (LSLP) estimator is
based on the equation:

Rm


1
a1

...
am−1

 =


ρm−1

0
...
0

 (9)

where am−1 = [a1 · · ·am−1]T is the autoregressive (AR) parameter vector of order (m− 1) and ρm−1 is the
corresponding prediction error power. In Eq. (9) Rm is estimated as:

Rm = X†mXm =


rm(0, 0) · · · rm(0, m− 1)
...

...
rm(m− 1, 0) · · · rm(m− 1, m− 1)

 (10)
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where (·)† denotes conjugate transpose operation. This method is referred to as the autocorrelation or
window method of LSLP-analysis. It can be shown that:

ř(i− j) =
rm(i, j)
N

(11)

is a biased sample estimate of the autocorrelation terms. Recall that the autocorrelation method of the LSLP
analysis is equivalent to the Yule-Walker method in the AR-parameter estimation.

2.1. The Case of Multiple Real Tones

2.1.1. MUSIC Frequency Estimator

To obtain the MUSIC frequency estimator first the following sample estimate of the autocorrelation matrix
is built:

R̂m =
1

N −m+ 1
T †mTm . (12)

This matrix is decomposed into its eigenvectors as:

R̂m =
2K∑
i=1

λiviv
†
i +

m∑
i=2K+1

σ2
ωviv

†
i (13)

where σ2
ω is the noise variance, the set {vi, i = 1, 2, ..., 2K} are the m-dimensional principal eigenvectors

which span the signal subspace, {λi, i = 1, 2, ..., 2K} are the corresponding ordered eigenvalues corresponding
to vi such that λi > λi+1 and {vi, i = 2K + 1, ..., m} are the noise subspace eigenvectors which are
orthogonal to principal eigenvectors. The MUSIC power spectrum is given as:

PMUSIC(f) =
1∑m

k=2K+1 |s†(f)vk|2
(14)

where s†(f) is the complex sinusoidal vector:

s†(f) = [1 e−j2πf · · · e−j2π(m−1)f ]. (15)

The estimated tone frequency (or frequencies) is (are) found picking the K peak-pairs of this power spectrum
which correspond to K real tones. The dimension m of the sample estimate of the autocorrelation matrix
is used as a suffix in the name of the estimator, such that “MUSIC-m”.

2.1.2. Kumaresan-Tufts (KT) Method

KT method is an extention of LSLP method. For this method the following data matrix and vector are
generated:

T
′

m =


xm · · · · · · x1

xm+1 · · · · · · x2

...
...

xN−1 · · · · · · xN−m

 xm+1 =


xm+1

xm+2

...
xN

 . (16)

Then the AR parameter vector am = [a1 · · ·am]T will be found as:

am = −(T
′

m)#xm+1 (17)
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where

(T
′

m)# =
2K∑
i=1

1
λi

ukv
†
k

denotes the Moore-Penrose pseudo-inverse of T
′

m . Here {uk} and {vk} are the left and right singular vectors
of T

′

m . The frequency estimates are found as the roots of the polynomial:

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ amz
−m . (18)

The number of rows of the data matrix Tm which is given by m is used as a suffix in the name of the
estimator, such that “KT-m”.

2.2. The Case of a Single Real Tone

The special form of the MUSIC estimator, when the autocorrelation method is used as in Eq. (11) and when
the noise subspace is one dimensional, that is when m− 2K = 1, is called the Pisarenko estimator. In the
case of a real single tone K = 1, and the 3 by 3 AC-matrix, is constructed using biased autocorrelation
coefficients as:

R̂3 =
1
N
X†3X3 (19)

where X3 is defined as in Eq. (8). Then since R̂3 is Toeplitz, the following explicit formula can be used to
obtain Pisarenko frequency estimate (PISFE) [5]:

ω̂PISFE = arccos
γ

2

γ =
ř(2) +

√
ř2(2) + 8ř2(1)
2ř(1)

. (20)

We call the ordinary MUSIC frequency estimator when K = 1 and m = 3 as MUSIC-3. Then one
uses non-windowed or covariance method for AC-matrix estimation and substituting 3 for m in Eq. (12)
R̂3 can be found as:

R̂3 =
1

N − 3 + 1
T †3 T3 (21)

If an estimation formula as in Eq. (21) is used, then the AC-matrix is not any more Toeplitz and the
frequency is estimated via an eigenanalysis as in Eq. (14).

In addition, for the single tone case only, we used a second estimator, namely, the autoregressive
frequency estimate (ARFE), which is obtained by solving for the angle of the root of the second order AR
polynomial (with coefficients a1 and a2 ) using the Yule-Walker method. The ARFE is given by [6]:

ω̂ARFE = arctan
−
√

4a2 − a2
1

a1
. (22)

3. Simulation Results

In the extensive simulation experiments, the sample size is taken as 30 points and 64 points, in the single and
double tone cases, respectively. The variance estimates are obtained by averaging 100 realizations. The center
frequencies of the prefilters are estimated via DFT spectrum peak picking. The prefilter impulse response
is given by Eq. (3). In the single and double tone cases, the rectangular window and the minimum 3-term
Blackman-Harris window with 67 dB sidelobe reduction are used, respectively. The effective bandwidth
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of the prefilter is 0.14 for the single tone case and 0.33 for the double tone case and SNR is 5 dB, unless
otherwise specified. Finally the local SNR for the k ’th sinusoid is defined as

SNRk = 10 log10

A2
k

σ2
. (23)

3.1. The Case of a Single Real Tone

3.1.1. Frequency Dependence of Prefiltering Gain

In Figure 1 the sample variances of MUSIC frequency estimator of 3rd order (MUSIC-3), KT frequency
estimator of 3rd order (KT-3), PISFE and ARFE with and without prefiltering for a single tone in AWGN
problem are plotted against the tone frequency. The Cramèr-Rao Bound (CRB), which is the lowest possible
error for an unbiased estimator, is also shown in the subplots. It can be observed that the prefiltering makes
the frequency estimator MUSIC-3 and KT-3 nearly attain CRB, with a 13 dB reduction in variance on the
average (refer to Figure 2 To show the improvement of the prefiltering method the sample variance of the
utilized DFT peak picking results is also shown in the first subplot. PISFE and ARFE also attain significant
variance reductions when the prefiltering method is utilized as shown in Figure 1 For the simulation of
PISFE and ARFE in Figure ?? no data windowing and no prefilter windowing were used as also in the cases
of MUSIC and KT frequency estimators. But at high SNR’s PISFE and ARFE type frequency estimators
suffer from scalloping loss which is defined to be the loss in the processing gain for a tone of frequency
midway between two DFT bins [10]. So data and prefilter windowing will be required. This windowing in
turn degrades the performance improvement of prefiltering and makes the lowest attainable sample variance
equal to the sample variance of the utilized prior frequency estimate. So prefiltering method is not advisable
for PISFE and ARFE, on the other hand it is advisable for the estimators such as MUSIC or KT of low
order.

3.1.2. SNR and Subspace Order Dependence of Prefiltering Gain

In Figure 2, the improvement in sample variance due to prefiltering is shown as a function of SNR for the
estimators MUSIC and KT. The curves represent the average gain in the Mean Square Error (MSE) on
the whole frequency range. It can be argued that a prefilter, determined by DFT peak picking method,
becomes useful when the SNR is greater than or equal to 0 dB. The lack of gain with prefiltering below 0
dB is mostly due to uncertainties in tone location estimation, i.e., as in the DFT peak picking procedure.
The improvements attain their highest value, which is approximately 14 dB both for MUSIC-3 and KT-
3, when SNR ≈ 4dB . The improvement for high SNR’s is more than 6 dB for MUSIC-3, while it is 2
dB for prefiltered KT-3. Though prefiltering seems to contribute more to MUSIC-3 than to KT-3, their
performances become equal only after the prefiltering, as the MUSIC-3 starts from a more disadvantaged
level, in other words without prefiltering the variance of KT-3 estimate is smaller than the variance of MUSIC-
3 estimate . When the order of these estimators is larger, the prefiltering does not yield any improvements.
This fact is demonstrated in the prefiltering gain curves for MUSIC-6 and KT-6. Obviously an effective noise
filtering has been realized via the subspace method, and there is no room left for prefiltering improvements.

3.1.3. Comparison of Subspace Filtering and Prefiltering Gains

To clarify the lack of variance improvement when the subspace order is high, it is useful to compare the
variance reduction of subspace filtering and prefiltering. The role of prefiltering in subspace related methods
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is to recuperate the loss of performance when a lower subspace dimensionality is used up to the level when
the optimum dimensionality is chosen. To illustrate this point, in Figure 3 two gain curves are plotted as a
function of SNR. The two gain items in this figure are as follows:

1. Subspace filtering gain is measured by finding the difference of sample variances of the MUSIC algorithm
with orders 6 and 3.

2. Prefiltering gain is measured by finding the difference of sample variances of the MUSIC-3 with
prefiltering and without any prefiltering.
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Figure 1. Variances of MUSIC-3, KT-3, PISFE and ARFE frequency estimators before and after prefiltering

versus normalized frequency (SNR=5 dB, sample size=30, effective bandwidth of the prefilter=0.14, average of 100

simulation runs)

A third curve representing the Gain of Maximum Likelihood Estimate (MLE) which is the difference
of the variance of MLE and the sample variance of MUSIC-3 without prefiltering is also plotted in this figure
in order to show the performance of estimators after subspace filtering or prefiltering w.r.t. CRB. According
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to the simulation results which are shown in Figure 3, the subspace filtering gain and prefiltering gain show
the same behaviour when the SNR is increasing. Either subspace filtering or prefiltering method make the
model-based estimators nearly attain the CRB. The results for KT frequency estimator are similar to the
results for MUSIC frequency estimator [7].
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Figure 2. Improvements in sample variances of MUSIC and KT frequency estimators averaged over the whole

frequency range versus SNR (sample size=30, effective bandwidth of the prefilter=0.14, average of 100 simulation

runs)

3.1.4. Dependence Of Prefiltering Gain Upon Prefilter Bandwidth

The less the uncertainty about the location of tone frequencies, the narrower a band-pass filter can be
afforded. In Figure 4, the variance reduction gain of the prefiltering method is plotted as a function of
the bandwidth parameter B of the prefilter. As the effective bandwidth of the prefilter increases the noise
rejection capability of the prefilter decreases, which in turn results in a loss of gain. On the other hand when
we continue decreasing B even after the prefilter length dependent minimum effective bandwidth is reached,
the prefiltering gain does not increase any more. As can be seen in Figure 4 for the dimensions of data we
analyzed the bandwidth parameter B of the prefilter need not be less than approximately 0.1.

3.2. The Case of Two Real Tones

In these simulations we kept one tone frequency fixed at ω1 = π/2, while the other tone frequency changed
from ω2 = 0 to ω2 = π . The gain results are given in terms of SNR and the sample variances are plotted
against the frequency difference parameter ∆ω = ω2 − ω1 .

3.2.1. Frequency Dependence of Prefiltering Gain

In Figure 5, the sample variances of the fixed tone and varying tone frequency estimates with and without
prefiltering are plotted against ∆ω for the 5’th order KT and MUSIC frequency estimators. The prefilter
now has two pass-bands centered around the two estimated tone frequencies. Like the single tone case, it can
be seen that prefiltering method offers a gain of about 10 dB for a wide range of ∆ω ’s. The gain disappears
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however when ∆ω gets too small, obviously, as the two spectral peaks alias to each other due to filter main
lobe. As it is shown in the figure, the results for the shifting tone are similar to the results of the fixed tone.
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Figure 3. Comparison of the gains achieved with sub-

space filtering (MUSIC-6) and with prefiltering (MUSIC-

3) both w.r.t. MUSIC-3 without prefiltering (sample

size=30, effective bandwidth of the prefilter=0.14, av-

erage of 100 simulation runs)

Figure 4. Drop in sample variances of MUSIC-3 and

KT-3 averaged over the whole frequency range versus

bandwidth parameter B of the prefilter (SNR=5dB, sam-

ple size=30, 15 tap prefilter, average of 100 simulation

runs)

3.2.2. SNR and Subspace Order Dependence of Prefiltering Gain

In Figure 6 the improvement in sample variance due to prefiltering is shown as a function of SNR for the
estimators MUSIC and KT. The curves represent the average gain in the Mean Square Error (MSE) on the
whole frequency range for the fixed tone. Again the results for the shifting tone are similar to the results of
the fixed tone. The improvements attain their highest value , which is more than 20 dB both for MUSIC-5
and KT-5, when SNR ≈ 0 dB . The improvement for high SNR’s is around 5 dB for MUSIC-5, while it
disappears for prefiltered KT-5. As it is in the one tone case, the difference of these gains is deceiving since
the performances of MUSIC-5 and KT-5 become equal only after the prefiltering, as MUSIC-5 starts from a
more disadvantaged level. When the subspace order is 10, no prefiltering gain is observed for the estimators
excluding the SNR range between -5 dB and 0 dB. The prefiltering gain peaks for the mentioned estimators
at these SNR values are due to the effect of prefiltering on these estimators to lower their SNR thresholds at
which those estimators become effective.

3.2.3. Comparison of Subspace Filtering and Prefiltering Gains

We have also compared subspace and prefiltering gains for the case of two real tones. In Figure 7 again
three gain curves are plotted as a function of SNR. As in Figure 6, the curves represent the average gain in
the Mean Square Error (MSE) on the whole frequency range for the fixed tone. As it is in the single tone
case, the curves represent subspace, prefiltering and MLE gains for MUSIC frequency estimator for the fixed
and varying frequency tones. The higher subspace order is 10 and the lower one is 5 in this case. Again
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the pass-bands of the prefilters are determined via DFT peak picking. According to the plotted simulation
results the subspace filtering gain is now approximately 4 dB higher than the prefiltering gain. But both
gains show again the same behaviour when the SNR is increasing. The results obtained with KT frequency
estimator are similar to the results obtained with MUSIC.
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Figure 5. Variances of the two tone frequencies for MUSIC-5 and KT-5 before and after prefiltering versus normal-

ized frequency difference (SNR=5 dB, sample size=64, effective bandwidth of each pass-band of the prefilter=0.33,

average of 100 simulation runs)

32



ALTINKAYA, SANKUR, ANARIM: Performance of Prefiltered Model-Based Frequency Estimators...

-5

0

5

10

15

20

25

-10 -5 0 5 10 15 20 25 30 35 40

M
S

E
 G

ai
n

 (
d

B
)

SNR (dB)

a

b

MUSIC fixed frequency tone (ω1 = π
2

)

-5

0

5

10

15

20

25

-10 -5 0 5 10 15 20 25 30 35 40
M

S
E

 G
ai

n
 (

d
B

)

SNR (dB)

a

b

KT fixed frequency tone (ω1 = π
2

)
a: order = 5

b: order = 10

Figure 6. Improvements in sample variances of the fixed frequency tone in the two tones case for MUSIC and KT

frequency estimators averaged over the whole frequency range versus SNR (sample size=64, effective bandwidth of

each pass-band of the prefilter=0.33, average of 100 simulation runs)
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Figure 7. Comparison of the gains achieved with subspace filtering (MUSIC-10) and with prefiltering (MUSIC-

5) both w.r.t. MUSIC-5 without prefiltering in the two tones case (sample size=64, effective bandwidth of each

pass-band of the prefilter=0.33, average of 100 simulation runs)

4. Conclusions

In view of the above simulation results one can conclude that:
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ELEKTRİK, VOL.6, NO.1, 1998

• The fact that with prefiltering sample variances which are smaller than the sample variances of utilized
prior frequency estimates can be obtained, validates the usefulness of prefiltering (refer to Figure 1).

• Prefiltering can improve the performances of model-based frequency estimators. This improvement is
higher for the initially disadvantaged estimators such as MUSIC-3 and KT-3 in the single tone case or
MUSIC-5 and KT-5 in the two tones case.

• For PISFE and ARFE type frequency estimators which use autocorrelation lag estimates in the
frequency estimation, prefiltering method is not advisable. The scalloping loss which becomes more
effective as the SNR increases, necessitates data and prefilter windowing for these estimators. So the
sample variance of these estimators do not become lower than the variance of prior frequency estimates.

• Using a coarse (low resolution) frequency estimator such as DFT peak picking procedure, the SNR
thresholds of model-based frequency estimators can be lowered since DFT peak picking frequency
estimation has lower SNR threshold than the model-based frequency estimators.

• Prefiltering gain and Subspace gain exhibit similar SNR trends and these gains can be improved nearly
until the CRB is reached.

• Since prefiltering method with low subspace order can be used as a substitute for high subspace
order for model-based frequency estimators, prefiltering method may be preferred where increasing the
subspace order may not be wanted as in the case of array processing where it necessitates the number
of transducers to be increased.
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