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Abstract

This paper presents an improved mathematical model to optimise the size and locations of substations

and the network routing problem. The model was formulated to minimise the total cost of the network

by determining the optima of the substation locations and power, the load transfers between the demand

centers, the feeder routes and the load flow in the network subject to a set of constraints. The computa-

tional results of a devised sample problem indicate that the developed optimisation model and its code are

adequate for computer aided planning of distribution systems.

1. Introduction

The optimal planning of a distribution system is an important to decrease the cost of installation with regard
to construction, materials and equipment of the system. Distribution systems planning is a fairly complex
procedure since a large number of variables are involved and also the mathematical modeling is quite a
difficult task considering many requirements and restrictions imposed by the configuration of the system.

The main planning approaches of the distribution systems consists of the following methods,

i) The alternative policy method which compares a number of alternative policies and selects the best.
ii) The decomposition approach in which a large optimisation problem is divided into several smaller

subproblems and each one is solved separately.

iii) The linear programming and integer programming methods where the constraint conditions are
linearised.

iv) The dynamics programming method.

A significant number of studies have been devoted to the optimisation o distribution systems using
an computational methods. Knight [1] is one of the pioneering researchers who formulated and solved
the optimisation problem of distribution systems using an integer programming technique. A dynamic
programming method was utilised by Oldfield and Lang [2] and later by adams and Laughton [3] to make a
compromise between the difficulties due to the large number of variables, the complexity of the design process,
and the computational advantage to be gained by searching for optimality. Oldfield and Lang have suggested
a two-stage planning method in which the processes of design and optimisation are applied consecutively
rather than simultaneously. The model used by Adams and Laughton includes cost of linearisation of feeder
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copper losses and it determines load transfer schemes and substation installation dates by minimising the
cost of substation transformer losses. Their dynamic-programming technique that uses the branch and bound
algorithm examines all possible combinations of expansion alternatives at each stage of the design. However,
this approach does not necessarily generate the optimal expansion plan since minimising the costs for each
year does not necessarily minimise the present value of all costs throughout the study period.

Crawford and Holt [4] have employed a linear programming approach utilising the transportation
algorithm to optimise substation service areas by minimising the products of demand and the distances from
the substation. This technique minimises distribution feeder losses but it does not necessarily arrive at the
optimal expansion plan since it does not minimise the present value of costs associated with expansion.

The model developed by Masud [5] consists of a zero-one integer programming approach to optimise
substation transformer capacity and a linear programming approach to optimise the load transfers. The
procedure involves first minimising substation transformer capacities for each year and then optimising the
load transfers. However, it does not minimise the present value of the expansion costs.

Gönen and Foote [6] have developed a mathematical model and utilised mixed integer programming
to determine the optimal design of distribution systems. The interesting aspect of their approach is that
they linearized the nonlinear cost curve by using piecewise linear equations at the expense of increasing the
number of variables.

Carson and Cornfield [7, 8] utilised a heuristic approach in which the discrete cost function is converted
into a continuous one. They developed their method to determine the near optimal design of radial networks.

The branch and bound algorithm of the linear programming method have been employed by Hindi
and Brammeller [9,10] to find an optimal solution to the design problem. The model is concerned with the
optimal locations of transformer substation sites and cable routes.

Ponnavaikko and Rao [20] utilised the Quadratic Mixed Integer Programming method. Their model
includes the substation fixed cost, cost of transformation losses and the cost of feeder losses. In this approach,
the problem is solved in two steps, first, using the simplex method and second the quadratic mixed integer
programming algorithm.

Hsu and Chen [21] developed a knowledge-based expert system for distribution system planning.
However, their model has a few drawbacks. The objective function consists only of the cost of feeder
losses without including the significant costs such as investment and losses from the substation transformer.
Moreover, the optimisation model contains only the feeder capacity limit and the transformer capacity limit
without taking other constraints into account.

Jonnavithula and Billinton [23] have formulated the objective function as the sum of outage cost, the
cost of feeder resistive loss the cost of investment and maintenance, without the cost of substation transformer
loss. However, the distribution feeder routing problem has been considered static expansion planning with
a single planning period.

In this study a general mathematical model of the optimal design problem of distribution systems is
formulated and programmed using mixed integer programming. The model was solved using a computer
code developed in Fortran 77. The program was been tested in real systems described in [11,12]. The
developed model can assist the designer to select the optima of,

i) Substation locations,

ii) Substation transformer sizes,

iii) Load transfers between substations and between demand centers,

iv) Feeder routes subject to a set of specified constraints.
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2. Mathematical Model

A distribution system can be modeled effectively as a mixed integer programming problem with the substa-
tions as sources and the loads on the feeders as demands. In this study, the objective function was designed,
as the minimisation of the present value of the capital, i.e., the fixed cost of distribution system installation
and the present value of the variable costs associated with the power losses, subject to restrictions which
relate substation transformer capacities and feeder ratings to system load projections [11,12]. The objective
function was formulated as,

minZ =
NS∑
i=1

aiδi +
NS∑
i=1

ND∑
j=1

bijPij +
NT∑
i=1

ND∑
j=1

cijLijβij +
NT∑
i=1

ND∑
j=1

dijLijPij (1)

where NS , NT and ND denote the integer numbers of potential substation,total nodes and demand nodes,
respectively. The other variables are defined in the nomenclature.

The optimisation problem was subject to the following constraint equations which formulate the
limitations imposed by the network conditions and design variables. The notation of the variables in
equations below are given in the nomenclature .

i) The load demanded by the consumer at each node should be supplied in all conditions. This is
expressed mathematically as,

Ns∑
i=1i6=j

(Pij − Pji) ≥ Ptj j = 1, 2, 3, . . . , ND (2)

ii) The power transmitted through each line should not be above its thermal power capacity, i.e.,

Pij ≤ Pmax
ij βij i = 1, 2, 3, . . .NT , j = 1, 2, 3, . . . , ND (3)

iii) There should not be any exit line from an unselected transformer and the number of line exits
from a selected transformer should not be greater than NF ,

Nd∑
j=1

βij ≤ NF δi (i = 1, 2, . . . , NS) (4)

iv) The maximum number of substations to be installed in a given area is assumed to be Nmax ,

Ns∑
i=1

δi ≤ Nmax (5)

v) The power flow in the lines is unidirectional,

βij + βji ≤ 1 i = 1, 2, . . . , ND (6)

vi) The total power loss in the distribution system should be less than the assumed maximum power
loss of the network,

(A cosϕ+ BPij)100 ≤ ZmaxPtotal cosϕ i = 1, 2, 3, . . . , ND, j = 1, 2, . . . , ND (7)

vii) The constraint of the mathematical programming is specified as,
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ELEKTRİK, VOL.6, NO.1, 1998

Pij ≥ 0 i = 1, 2, 3, . . . , ND, j = 1, 2, . . . , ND (8)

ix) If a distribution substation is to be built at site i then,

δi = 1, otherwise δi = 0

If the line between the nodes i and j is selected then,

βij = 1, otherwise βij = 0 (9)

The optimisation problem consists of minimising the objective function given by equation (1) subject
to inequality constraint equations (2) to (9).

The equations (8) and (9) are called the constraints of canonical programming. Normally, the power
flow in a network should not be negative, i.e., there can not be a flow from the demand node to the supply
node. Equation (8) guarantees this condition. Equation (9) is the constraint imposed by the mixed integer
programming method itself. This equation ensures that the binary integer variables are either zero or one.
The inequalities are converted to equalities by the addition of slack variables which is taken into account
within the computer code.

The power loss computed by the design optimisation program should be within an acceptable limit.
The previous optimisation implementations did not include this constraint which is considered to be a
significant factor in the design of distribution systems. The constraint equation (7) satisfies this condition
and it constitutes a contribution to the mathematical modeling of the optimal design of distribution systems.

In general, the power loss in a feeder is given by,

Pz = 3RhI2 (10)

where Rh and I denote the resistance and current of the feeder, respectively.

The ratio of power loss is given by,

z =
Pz

Ptotal
100 (11)

where Pz denotes the power loss in the feeder.

The power loss of a line as a function of the current of equation (10) is shown in Figure 1. Since linear
programming is used in the mathematical model, it is necessary to assume a linear relationship between unit
power loss and power. To this end, a tangent to the minimum cross section line with maximum slope is
taken into account. This tangent line represents the maximum power loss that may occur in the lines. The
tangent equation is given by,

PZtangent = 0.448S− 13428571.4 (12)

where S denotes the power across the line.
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Figure 1. Power Loss of a feeder at 34.5 kV

3. Formulation of Costs

The objective function was defined as the sum of present value of total annual feeder costs and total annual
substation costs. The formulations of the feeder and substation costs are described.

3.1. Feeder Cost

In general the distribution feeder costs consist of, (a) the cost of investment, (b) the cost of lost energy
due to I2 Rh losses in the feeder and (c) the cost of lost demand (i.e., the cost of lost capacity) due to
I2 Rh losses. The cost of investment is the biggest cost component which includes material and labor costs
involving feeders. Hence, the total cost of a given distribution feeder can be formulated as [11-14],

TAFC = AIC + AEC +ADC (13)

where,
TAFC : total annual feeder cost per unit length
AIC : annual investment cost per unit length
AEC : annual energy cost per unit length
ADC : annual demand cost per unit length.

The annual investment cost (i.e., fixed cost of a given feeder) is the installation cost of the feeder
multiplied by the fixed cost rate of the feeder. This fixed cost rate or the so-called carrying charge rate of
the feeder includes mainly the cost of capital, taxes, insurance, operation and maintenance, depreciation,
and possible others. This can be expressed as,

AIC = ICF i (14)

where the variables are defined in the nomenclature [11-14].

The annual energy cost due to I2Rh losses in the feeders is calculated using the following calculation,

AEC = 3I2RhfEFLLFLS876010−3 (15)
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where fE , FLL and FLS denote energy cost per kWh, load location factor and the loss factor, respectively
[11,12].

The load location factor is a per unit value which is considered to be that point on a feeder having
distributed loading where the total feeder load can be assumed to be concentrated for the purpose of I2Rh

loss calculations.

The loss factor is the ratio of the average power loss over a years period to the peak loss occurring
in that period. This can also be defined as the ratio of the actual total kWh losses to what the kWh losses
would have been if the peak losses had continued throughout the 8760 hours in the year. The loss factor is
the annual power loss divided by the annual peak which approximated by the following equation,

FLS = 0.3FLD + 0.7F 2
LD (16)

where FLD denotes load factor [6].

The annual demand cost maintains an adequate system capacity in order to supply the I2 Rh losses
in the feeder conductors which is expressed as,

ADC = 3I2RhFLLFr{(cGiG) + (cT iT ) + (cS iS)}10−3 (17)

where Fr , cG , cT , cS denote the reserve factor, cost of the generation system, cost of the transmission
system, the substation, respectively [11,12]. The reserve factor is the ratio of total generation capability to
the sum of total load and losses to be supplied.

3.2. Total Annual Equivalent Feeder Cost

For the analyses of conductor use the present value of leveled annual fixed charges on the total line capital
investment plus annual expenses for line losses is considered [13,14].

TAFCPW =
NY E∑
n=1

(
1 +

i

100

)−n
(AIC + AEC +ADC) (18)

A total annual equivalent feeder cost of distribution system with respect to the power flow across a
feeder is shown in Figure 2. The curve is drawn using equation (18). The envelope curve shown in Figure
2 is the one that minimizes the cost. However, since mixed integer programming is a linear programming
method it is necessary to use a linear equation representative of the nonlinear cost curve. This is achieved
by using a tangent line passing through the minimum of the envelope curve. Since the fixed charge approach
was assumed in the mathematical model, the cost per unit line length is approximated by the following line
equation ,

TAFCPWtangent = 3602.4S + 1200735.2 (19)
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Figure 2. Annual Total feeder cost

3.3. Substation Cost

The data required for each substation are its capacity, its location and its fixed and variable costs. The
substation fixed cost includes the cost of transformers and other equipment at the substation and the cost
of construction. The substation variable cost includes the cost of power losses in substation transformers,
annual operating and maintenance costs [11,12].

The total cost of a substations is formulated as,

TASC = AICtr +AV Ctr (20)

where AICtr and AV Ctr denote annual investment cost of the substation and annual variable cost of the
substation.

The annual investment cost of the substation is assumed to be a given percentage of the total cost of
the material expenses required to build up the substation. This is expressed as,

AICtr = ICtri (21)

where ICtr and i denote the investment cost of substation and fixed charge rate, respectively.

To calculate the loss cost of a substation it is necessary to take into account the core and copper
losses. These are formulated, respectively, as,

AV CtrFe = (gaK + 8760fE)P0 (22)

and

AV Ctrcu = (gaK + 8760θfE)Pcun(S/Sn)2 (23)

where the variables are denoted in the notation list. The annual loss cost of the substation is the sum of the
cost of core and copper losses i.e.

AV Ctr = AV CtrFe +AV Ctrcu (24)
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In these calculations it is assumed that the substation is 154 kV/34.5 kV. The cost of a substation as a
function of the load is shown in Figure 3. Using the same approach as that used to derive equation (19), the
linear relation between the substation cost and the load is expressed as,

TASCtangent = 188235.29S+ 6666666667.00 (25)
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Figure 3. Annual Total transformer cost

4. An Applicational Example

To test the solvability of the model a sample problem was devised and solved. Consider the example plan
shown in Figure 4 taken from [20]. However, some data necessary for this study, did not exist in [20]. The
data for this study was collected from various Turkish sources. The problem was to select the optimal 34.5
kV feeder routings and the optimal locations for 154/34.5 kV substations in order to feed the demands at
the 34.5/10 kV substations in the area. The general data and the load data are given in Tables 1 and 2.
The feasible potential sites for locations of the grid substations and feasible routes for the 34.5 kV feeders
are shown in Figure 4. It was assumed that there are two possible locations for the transformers.

Table 1. Data of example network

Cost of energy 2700 (TL/k Wh) Interest rate % 14
Load factor 0.38 Production cost 178 108 (TL/MW)
Power factor 0.9 Distribution substation cost 20 108 (TL/kVA)
Power loss ratio % 16 Production fixed cost rate % 21
Reserve factor 1.15 Transmission fixed cost rate % 18
Nominal voltage 34.5 kV Substation fixed cost rate % 18

Table 2. Load data

Node No Demand (MVA) Node No Demand
(MVA)

3 5 7 3
4 3 8 5
5 4 9 6
6 3
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The studied example was a problem with eight demand locations, two feasible potential sites for
constructing substations and sixteen feasible branch elements. This resulted in a forty variable problem with
fifty two constraints according to the model described in the previous sections. The optimisation computer
was developed according to the cutting plane algorithm which is one of the algorithms of the mixed integer
programming method [11, 12]. The implementation of the optimisation program to the assumed design
example generated the substation 1 with 50 MVA as the optimal solution. The resulting optimal distribution
system is shown in Figure 4. The cost of the network was determined to be 1,61 1010 TL. The power flowing
through each line segment are shown in Table 3. The overall results confirm that the losses in the network
were within the assumed limits while the cost of design was minimised. The traditional manual calculations
of the voltage drops using the resulting design obtained in Figure 4 were found to remain within acceptable
limits. Thus, the mathematical model and the computer code were considered to be satisfactory for computer
aided design of a medium distribution system.

Table 3. Output of the computer program

From To Integer Power flow From Node To Node Integer Power flow
Node Node Variable (MVA) Variable (MVA)

1 9 1 6 1 2 0 0
1 7 1 8 3 2 0 0
7 8 1 5 2 4 0 0
1 5 1 7 2 6 0 0
1 3 1 8 2 5 0 0
3 4 1 3 2 7 0 0
5 6 1 3 4 6 0 0
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Figure 4. Sample System

5. Conclusions

A general mathematical model for the optimisation of distribution systems was improved. The model was
coded using mixed integer programming with has two different algorithms: the branch and bound and the
cutting plane algorithms. To the author’s knowledge the cutting plane algorithm was applied for the first
time in this study for a faster computation [15]. The optimisation program minimized the total cost of
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the distribution system as the objective function by determining the optima of the number, locations and
powers of substation, the routes of the feeders and the power losses within the network subject to a set of
constraints.

In previous studies of design optimisation of distribution systems, the operating cost due to losses of
the transformers was not included in the mathematical models. In this respect the approach used to derive
the cost equation (25) and its inclusion in the optimisation model constituted a contribution to the optimal
design of distribution systems. Furthermore, this formulation makes it possible to obtain the optimal power
of the transformer as an output of the computer code instead of using estimates from engineering practice.
The other contribution was that the constraint of power loss within the network was incorporated in the
mathematical model. This was taken into account with the constraint equation (7).

The overall results confirmed that the losses in the network remained within acceptable limits while
the cost of design was minimised. Hence, the mathematical model and the computer code were found to be
satisfactory for computer aided design of a distribution system according to the results obtained from the
applicational example.

Nomenclature

Z : Objective function,
ai : Present value of fixed costs of substations i,
bij : Present value of variable costs of substation i,
cij : Present value of fixed costs of feeder between nodes i and
j, dij : Present value of variable costs of feeder between nodes i and
j, Pij : Power flow in the branch between nodes i and j,
δi : Binary integer variable which denotes the decision to select or not to select site i,
βij : Binary integer variable which denotes the decision

to select a branch between nodes i and j,
Ptj : Load demand at node j,
NF : Total number of feeders that can emanate from substation,
Pmax : Upper bound of branch flow from node i to j,
Rh : Resistance of conductor,
Cosϕ : Power factor,
ICF : Investment cost o the feeders,
i : Annual fixed charge rate,
fE : Cost of energy
iG : Annual fixed charge rate applicable to generation system,
iT : Annual fixed charge rate applicable to transmission system,
iS : Annual fixed charge rate applicable to substation,
ICF : Investment cost of the feeders,
Sn : Nominal power of transformer,
Lij : Distance between i and j nodes.
NYE : Number of years to be studied
n : nth. year
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P0 : Transformer core losses
θ : Transformer loading factor
Ptotal : Total power of the distribution system
zmax : Ratio of the power loss
A : Fixed part of the power loss tangent equation
B : Variable part of the power loss tangent equation
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