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Abstract

Extracting surface orientation and surface depth from one or more images is one of the classic

problems in computer vision. Shape-from-shading (SFS) deals with the recovery of 3-D shape from a

single shaded image. The shape is recovered by minimizing an energy functional involving constraints

such as smoothness. In this constrained problem, although the smoothness constraint helps to stabilize

the minimization process, it pushes the reconstruction toward a smooth surface. In this paper, we present a

new adaptive shape-from-shading method which reduces this oversmoothing by controlling the smoothness

spatially over the image space. In order to improve the quality of the reconstruction, we also integrated

this adaptive SFS algorithm and photometric stereo technique to recover shape by using more than one

input image. The new algorithm is robust, data driven and updates both the gradient field and height

map simultaneously. A hierarchical implementation of the algorithm is presented. Typical SFS and

photometric stereo results are given to illustrate the usefulness of our approach.

Index Terms – Computer vision, regularization, surface reconstruction, shape from shading

1. Introduction

Shape-from-shading (SFS) [1] is one of the classic research problems in computer vision. SFS deals with
the recovery of surface orientation and surface shape (height) from the gradual variation of shading in the
image. SFS is implemented by first modeling the image brightness as a function of surface geometry and
then reconstructing a surface which, under the given imaging model, generates an image close to the input
image. This field was formally introduced by Horn [2, 3] and there have been many significant improvements
in both theoretical and practical aspects of the problem.

Shape-from-photometric-stereo [4] is another method for shape recovery in computer vision. The
difference between shape-from-photometric-stereo and SFS is in the number of input images. Shape-from-
photometric-stereo recovers shape from multiple intensity images of the same scene generated using fixed
viewing direction and different light source directions; while SFS provides the shape estimate from a single
image. Thus, using multiple images which are taken with different lighting provides additional information
for robust surface reconstruction.

Since a single measurement of image brightness provides only limited information about surface
orientation, additional constraints such as smoothness must be used in order to find a unique solution.
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ELEKTRİK, VOL.6, NO.2, 1998

Although this smoothness term is used to ensure the convergence of the iterative process, it flattens the
SFS reconstruction. The solution of this problem is to use an adaptive smoothing function to reduce
oversmoothing along the reconstructed image. In this paper, we introduce a new SFS approach in which the
smoothness is controlled spatially over the image space [5]. The adaptive nature of the algorithm eliminates
the selection of the optimum value of smoothness parameter and protects the solution “to walk away” from
the ground truth, even if the ground truth is used as an initial condition [6]. Using calculus of variations [7]
and a linear approximation of the reflectance map [6], a new iterative scheme which simultaneously updates
the slope and height is developed. A hierarchical implementation of the SFS algorithm is also presented.

2. Formulation

In the usual formulation, the surface reflectance map R(p, q) is known, so that the shaded image provides
a single constraint on the surface gradient (p, q) at each point in the image. Additional constraints, such as
requiring that the gradient vary smoothly and that the gradient field be integrable, are then used to find a
unique solution for the surface.

Different parts of the surface are oriented differently and thus will appear with different brightness.
This spatial variation of brightness, or shading, is used to estimate the orientation of surface patches. For a
surface of uniform reflectivity, where the light source and the viewer are sufficiently distant and there is no
inter-reflection between objects, shading can be captured in the reflectance map R(p, q), where p and q are
surface gradient components

p =
∂z

∂x
and q =

∂z

∂y
, (1)

z(x, y) is the height field, and the z axis points towards the viewer. The above description tells us how
a shaded image is determined by the local orientation of the surface. In SFS, however, we must solve the
inverse problem; i.e., given a shaded image, we must find the surface which generated it. The reflectance
map together with the shaded image gives us one constraint on the solution. In the following, we describe
this constraint with three others used in SFS problems.

2.1. Brightness Constraint

The brightness constraint is based on the image irradiance equation

I(x, y) = βR(p, q) (2)

where I(x, y) is the intensity observed at the point (x, y) in the image and R(p, q) is the reflectance
map applied to the surface gradient (p, q) at that point. The proportionality constant β can be set to
1 by rescaling the intensity image or chosen so that the maximum possible brightness is I = 1. For the
Lambertian surface, we write

R(p, q) = cos θi = η
cos σ − p sinσ cos τ − q sinσ sin τ√

1 + p2 + q2
(3)

where θi is the incident angle between the surface normal and the light source direction, η is the albedo, σ
and τ are the slant and the tilt angles of the illuminant, respectively.

To use the image irradiance equation as a brightness constraint, we measure the total squared
brightness error over the image

F1(p, q) =
∫ ∫

(I(x, y) − R(p, q))2 dx dy. (4)
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GÜLTEKİN, GÖKMEN: Adaptive Shape From Shading

This cost functional is then used as a part of an energy functional which is minimized with respect to (p, q)
to find the solution of the shape-from-shading problem.

2.2. Smoothness Constraint

To help stabilize the iterative shape-from-shading algorithm and to ensure that it has a unique
minimum, we use

F2(p, q) =
∫ ∫

(p2
x + p2

y + q2
x + q2

y) dx dy (5)

where px , py , qx and qy are the partial derivatives of the surface gradient.

2.3. Integrability Constraint

To ensure that the gradient field (p, q) computed by the shape-from-shading algorithm corresponds
to a valid surface we use

F3(p, q, z) =
∫ ∫

((zx − p)2 + (zy − q)2) dx dy (6)

where zx and zy are the partial derivatives of the height field z .

2.4. Intensity Gradient Constraint

To require that the gradients of the reconstructed image be close to the gradients of the input image
in both x and y directions, we use

F4(p, q) =
∫ ∫

((Rx − Ix)2 + (Ry − Iy)2) dx dy. (7)

2.5. Coupled Height and Gradient Estimation using Integrated Constraints

The constraints presented above have been used in various combinations in the previous SFS algo-
rithms. In our implementation, we combine all four SFS constraints in a single functional to obtain a general
purpose algorithm and use a spatially controlled regularization parameter instead of a fixed regularization
parameter in order to adaptively control the smoothness over the image space. To achieve this, we construct
the following energy functional

F (p, q, z) = F1(p, q) + F
′

2(p, q) + µF3(p, q, z) + β F4(p, q) (8)

where F1 is the brightness constraint,

F
′

2(p, q) =
∫ ∫

λ(x, y) (p2
x + p2

y + q2
x + q2

y) dx dy (9)

is the spatially controlled constraint, F3 is the integrability constraint and F4 is the intensity gradient
constraint. In this energy functional, λ(x, y) is a function of spatial coordinates while µ and β are the
scalars. Minimizing (8) or equivalently solving associated Euler equations produces both a gradient field
(p, q) and a surface z(x, y) which best fits this gradient.

In our iterative process, the space varying regularization parameter at location (x, y) is determined
by the following function:

λnew(x, y) =

{
F(x, y, λold) if c(x, y) > 0 and λold > λmin

λold(x, y) otherwise
(10)
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where
F(x, y, λold) = (1− e−

c(x,y)
VT )λmin + (e−

c(x,y)
VT )λold(x, y), (11)

c(x, y) is the control signal, VT is a time-constant that controls the rate of exponential decrease and λmin is
a preselected minimum value that λ(x, y) may have. The control signal is defined as c(x, y) = abs(I(x, y)−
R(p, q)), where abs() denotes the absolute value and the function F(x, y, λold) is an exponentially decreasing
function with the following properties:

lim
c(x,y)→0

F(x, y, λold) = λold(x, y) and lim
c(x,y)→∞

F(x, y, λold) = λmin, (12)

so that the regularization parameter is only allowed to decrease during iterations.
Using the calculus of variations, minimizing (8) is equivalent to solving the following Euler equations:

Fp −
∂

∂x
Fpx −

∂

∂y
Fpy = 0

Fq −
∂

∂x
Fqx −

∂

∂y
Fqy = 0 (13)

Fz −
∂

∂x
Fzx −

∂

∂y
Fzy = 0

where subscripts denote the partial derivatives.
Approximating the reflectance map in (8) around (p, q) by Taylor series expansion of up to first-order

terms and replacing in (13), we obtainA11 A12 0
A21 A22 0
1 1 −4

 δp

δq

δz

 =

B1 + 1
4µB3

B2 + 1
4
µB3

B3

 (14)

where

A11 = 4λ+ λx + λy +
5
4
µ +R2

p(1 + 4β)

A12 = A21 =
1
4
µ +RpRq(1 + 4β)

A22 = 4λ+ λx + λy +
5
4
µ +R2

q(1 + 4β)

B1 = λ(pxx + pyy) + λxpx + λypy + µ(zx − p)
+Rp{I −R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy]}

B2 = λ(qxx + qyy) + λxqx + λyqy + µ(zy − q)
+Rq{I −R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy]}

B3 = px + qy − zxx − zyy.

and (δp, δq, δz) are the increments in (p, q, z) after an iteration. Solving (14) for (δp, δq, δz), we obtain the
updating scheme

δp =
1
∆

[A22(B1 +
1
4
µB3)− A12(B2 +

1
4
µB3)]

δq =
1
∆

[A11(B2 +
1
4
µB3)− A12(B1 +

1
4
µB3)] (15)

δz =
1
4

(δp + δq − B3)

(16)

where ∆ = A11A22 −A2
12 .
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3. Hierarchical Structure

The solution to the shape-from-shading problem requires long-range error to be reduced through strictly
local interactions. This situation arises mainly from the local nature of the representation used for gradient
and height fields and causes very large number of iterations in the iterative scheme. Multigrid methods are
often used in computer vision to speed up computationally intensive tasks such as shape-from-shading. In
these methods, an approximate solution computed for a reduced image is used to guide the algorithm toward
the complete solution on a larger image.

Multigrid implementation can be simplified by having a 2 : 1 decrease in grid nodes during a transition
from a finer grid to an adjacent coarser grid. Thus, the image resolution is reduced by a factor of 2 between
adjacent resolution layers. We use the simplest pyramid method for image sampling and interpolation. The
grid size for the lowest layer is 32x32. The input images for various resolution layers are derived from the
given highest resolution image by averaging the pixels that belong to the same cell in the low-resolution
layer. Let the variables with a tilde (˜) stand for the shape descriptors of the higher resolution layer while
the variables without tilde denote those of the lower resolution layer. Then, the communication of the results
from one layer to another are specified by the following rules:

Rule 1: The illuminant direction and albedo are the same

(σ̃, τ̃ , η̃) = (σ, τ, η).

This assumption is made based on experiments reported in [8] that the estimated illuminant direction and
surface albedo almost insensitive to changes in resolution. However, the illuminant direction and albedo can
also be estimated for each layer independently.

Rule 2: The surface descriptions of a higher resolution layer are interpolated from the descriptions
of the adjacent lower resolution layer. Let Ñ be the image size of the higher resolution layer. For
i, j ∈ {2, . . . , Ñ} , the shape descriptions for the higher resolution layer are

(p̃, q̃, z̃)i,j =



(p, q, 2z) i
2 ,
j
2
, if i and j are evens

1
2 [(p, q, 2z) i+1

2 , j2
+ (p, q, 2z) i−1

2 , j2
], if i is odd and j is even

1
2
[(p, q, 2z) i

2 ,
j+1

2
+ (p, q, 2z) i

2 ,
j−1

2
], if i is even and j is odd

1
4
[(p, q, 2z) i+1

2 , j+1
2

+ (p, q, 2z) i+1
2 , j−1

2

+(p, q, 2z) i−1
2 , j+1

2
+ (p, q, 2z) i−1

2 , j−1
2

] if i and j are odds.

Rule 3: The natural boundary condition is used for the interpolation of boundary pixels. For example,
for the boundaries of i = 1 and j = 1,

(p̃, q̃)1,j = 2(p̃, q̃)2,j − (p̃, q̃)3,j z̃1,j = z̃2,j − p̃1,j, for j ≥ 2
(p̃, q̃)i,1 = 2(p̃, q̃)i,2 − (p̃, q̃)i,3 z̃i,1 = z̃i,2 − q̃i,1, for i ≥ 2
(p̃, q̃)1,1 = 2(p̃, q̃)2,2 − (p̃, q̃)3,3 z̃1,1 = z̃2,2 − p̃1,1 + q̃1,1.

4. Iterative Scheme

Combining the hierarchical implementation and our new adaptive approach, we obtain the following robust
shape-from-shading scheme:

1. Estimate the reflectance map parameters (σ, τ, η).
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ELEKTRİK, VOL.6, NO.2, 1998

2. Normalize the input image: Ī(x, y) = I(x, y) / η.

3. Reduce the input image size to that of the lowest resolution layer.

4. a) Input the initial status p0 , q0 and z0 .
b) Initially set the regularization parameters at each pixel to the maximum value, i.e., λ(x, y) = λmax

and set λmin .
c) Set the values for µ and β .

5. Update the current surface shape. For each pixel, the partial derivatives are approximated by using
the forward finite differences. The reconstructed shape is updated by

pk+1 = pk + δp

qk+1 = qk + δq

zk+1 = zk + δz

and

δp =
1
∆

[A22(B1 +
1
4
µB3)−A12(B2 +

1
4
µB3)]

δq =
1
∆

[A11(B2 +
1
4
µB3)−A12(B1 +

1
4
µB3)]

δz =
1
4

(δp+ δq − B3)

where

A11 = 4λ+ λx + λy +
5
4
µ+ R2

p(1 + 4β)

A12 =
1
4
µ+RpRq(1 + 4β)

A22 = 4λ+ λx + λy +
5
4
µ+ R2

q(1 + 4β)

B1 = λ(pxx + pyy) + λxpx + λypy + µ(zx − p)
+Rp{I − R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy ]}

B2 = λ(qxx + qyy) + λxqx + λyqy + µ(zy − q)
+Rq{I −R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy]}

B3 = px + qy − zxx − zyy
Rp = [R(pk(x,y) + δ, qk(x,y))− R(pk(x,y), q

k
(x,y))] / δ

Rq = [R(pk(x,y), q
k
(x,y) + δ) −R(pk(x,y), q

k
(x,y))] / δ

∆ = A11A22 −A2
12.

6. Go to the next step if solution is stable or iterations has reached Nmax of current layer; otherwise
repeat Step 5.

7. Compute the control signal c(x, y) = abs(I(x, y) −R(pk(x,y), q
k
(x,y))).

8. Update λ(x, y) according to the following rule:

λnew(x, y) =

{
F(x, y, λold) if c(x, y) > 0 and λold > λmin

λold(x, y) otherwise
(17)
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where
F(x, y, λold) = (1− e−

c(x,y)
VT )λmin + (e−

c(x,y)
VT )λold(x, y).

9. If no change in λ(x, y) values continue to Step 10; otherwise go back to Step 5 and repeat the process
with new λ(x, y) values.

10. If current image is in the highest resolution stop; otherwise

a) Increase the image size and expand the shape reconstruction to the adjacent higher resolution
layer,

b) Expand λ(x, y),
c) Reduce the normalized input image to the current resolution,
d) go to Step 5.

5. Relationship to Existing Techniques

In our adaptive shape-from-shading implementation, we combined all SFS constraints in a single energy
functional. Thus, we have a general purpose algorithm which encompasses most of the existing methods.
These methods are special instances of this generalized method and can be obtained by appropriately selecting
parameter values.

In our method, we made λ as a function of spatial coordinates, i.e., λ(x, y), in order to control the
degree of smoothness of the reconstructed surface. If we set a constant value to λ and drop the intensity
gradient constraint in the integrand (β = 0), we obtain the scheme developed by Horn [6]. If we make
λ constant and drop both the integrability and the intensity gradient constraints (µ = 0 and β = 0), we
derive the algorithm presented by Ikeuchi and Horn [9]. If we instead remove both the departure from
smoothness and the intensity gradient terms (λ = 0 and β = 0), we obtained something reminiscent of the
iterative scheme of Strat [1], although Strat dealt with the integrability in a different way. We find Zheng
and Chellappa’s scheme [10] if we drop the departure from smoothness term (λ = 0) in our method.

6. Integrating Photometric Stereo and Adaptive SFS

To recover surface orientation locally, we must introduce additional information. To determine two unknowns,
p and q , we need two equations. Two images, taken with different lighting, will yield two equations for each
image point:

I = R(p, q) and Î = R̂(p, q). (18)

We also applied our adaptive regularization approach to the photometric stereo technique in order to
improve the quality of the reconstructed surface obtained by the iterative scheme.

Suppose we have two input images, I(x, y) and Î(x, y), illuminated by two light sources placed
different locations in the image space as (σ, τ ) and (σ̂, τ̂) respectively. Let the reflectance maps corresponding
to these illuminant directions be

R(p, q) = η
cos σ − p sinσ cos τ − q sinσ sin τ√

1 + p2 + q2
(19)

R̂(p, q) = η̂
cos σ̂ − p sin σ̂ cos τ̂ − q sin σ̂ sin τ̂√

1 + p2 + q2
. (20)

67
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Then, for the photometric stereo, we use the functional

F (p, q, z) = F
′

1(p, q) + F
′

2(p, q) + µF3(p, q, z) + β F4(p, q) (21)

where

F
′

1(p, q) =
∫ ∫
{(I(x, y) − R(p, q))2 + (Î(x, y) − R̂(p, q))2} dx dy (22)

and other terms, F
′

2 , F3 and F4 are the same as terms given in Section 2.

From the Euler equations (13), we haveA11 A12 0
A21 A22 0
1 1 −4

 δp

δq

δz

 =

B1 + 1
4µB3

B2 + 1
4µB3

B3

 (23)

where

A11 = 4λ+ λx + λy +
5
4
µ + (R2

p + R̂2
p)(1 + 4β)

A12 = A21 =
1
4
µ + (RpRq + R̂pR̂q)(1 + 4β)

A22 = 4λ+ λx + λy +
5
4
µ + (R2

q + R̂2
q)(1 + 4β)

B1 = λ(pxx + pyy) + λxpx + λypy + µ(zx − p)
+Rp{I −R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy]}
+R̂p{Î − R̂+ β[(pxx + pyy)R̂p + (qxx + qyy)R̂q − Îxx − Îyy]}

B2 = λ(qxx + qyy) + λxqx + λyqy + µ(zy − q)
+Rq{I −R+ β[(pxx + pyy)Rp + (qxx + qyy)Rq − Ixx − Iyy]}
+R̂q{Î − R̂+ β[(pxx + pyy)R̂p + (qxx + qyy)R̂q − Îxx − Îyy]}

B3 = px + qy − zxx − zyy.

Solving (23) for δp , δq and δz , we obtain the updating scheme

δp =
1
∆

[A22(B1 +
1
4
µB3)− A12(B2 +

1
4
µB3)]

δq =
1
∆

[A11(B2 +
1
4
µB3)− A12(B1 +

1
4
µB3)] (24)

δz =
1
4

(δp + δq − B3)

where ∆ = A11A22 −A2
12 .

7. Results and Conclusions

We tested our adaptive SFS algorithm on synthetic and real images. Due to space limitation, only one
synthetic example is presented here. In the experiments, we set λ(x, y) = 1, λmin = 0.01, µ = 0.1, β = 1
and Nmax for the highest resolution layer be 500. The iterations start from (p, q, z) = (0, 0, 0). All the
images are size of 128x128.

Fig. 1(a) shows the true height map obtained by a laser range finder used to generate the synthetic
input image to the algorithm and Fig. 1(b) shows its 3-D plot.
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(a) (b)

Figure 1. Mozart test image: (a) The true height map. (b) A 3-D plot of the true height map.

Fig. 2 shows the synthesized Mozart images with three resolution layers applied to the multiscale
iterative scheme. These images are generated from the true height map using Lambertian reflectance map
with parameters η = 250, σ = 45◦ and τ = 45◦ .

Figure 2. The input images, which are synthesized from the true height map with parameters η = 250, σ = 45◦

and τ = 45◦ , with sizes 32x32, 64x64 and 128x128 from left to right.

Fig. 3 shows the images with different resolutions synthesized from the (p, q) maps obtained by SFS
algorithm using the parameters η = 250, σ = 45◦ and τ = 45◦ . The similarity between the input images in
Fig. 2 and the reconstructed images in Fig. 3 illustrates that the irradiance requirement is satisfied by the
SFS solution.

If we convert our adaptive SFS algorithm to a non-adaptive algorithm by setting a constant value to
the regularization parameters, i.e., λ(x, y) = λ = 1, we obtain the three different levels of images shown in
Fig. 4 which are synthesized from the (p, q) maps using the reflectance map parameters η = 250, σ = 45◦

and τ = 45◦ . If we compare the results shown in Fig. 3 and Fig. 4, we can see that non-adaptive SFS
algorithm gives smoother surfaces because of setting a constant value to λ which flattens the reconstruction.
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Figure 3. The images synthesized from the (p, q) maps obtained by the adaptive SFS algorithm using the parameters

η = 250, σ = 45◦ and τ = 45◦ with sizes 32x32, 64x64 and 128x128 from left to right.

Figure 4. The images synthesized from the (p, q) maps obtained by the non-adaptive SFS algorithm using the

parameters η = 250, σ = 45◦ and τ = 45◦ with sizes 32x32, 64x64 and 128x128 from left to right.

The 3-D plots of the reconstructed surfaces obtained by the non-adaptive and adaptive SFS algorithms
are given in Fig. 5 with three different resolution levels. The smoothing effect of using a constant λ can be
easily seen from these plots. It can also be seen that the adaptive control of λ improves the solution around
discontinuities.

Fig. 6 shows two input images generated with the parameters (a) η = 250, σ = 45◦ , τ = 45◦ and
(b) η = 250, σ = 45◦ , τ = 135◦ , and used in photometric stereo as input images.

Fig. 7 shows the images synthesized from the (p, q) maps obtained by integrating the photometric
stereo and adaptive SFS algorithm. In Fig. 8, a 3-D plot of the reconstructed height map from this integrated
approach is shown. By comparing the results in Fig. 5 and Fig. 8, one can observe that this integration
improves the reconstructed surface by providing more symmetrical results with the help of information
gathered from two images.

In this paper, an adaptive scheme for recovering shape from shading which reduces smoothing of
the reconstructed surface by controlling the smoothness spatially has been developed and implemented. A
simple hierarchical implementation of the adaptive SFS algorithm is also presented.

Experimental results show that, the reconstructed surfaces obtained by shape-from-shading method
can be improved by adaptively controlling the smoothness parameter, and by combining the photometric
stereo and this adaptive SFS method.
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(a) (d)

(b) (e)

(c) (f)

Figure 5. The 3-D plots of the reconstructed surfaces obtained by the non-adaptive SFS algorithm with sizes (a)

32x32, (b) 64x64,(c) 128x128 and obtained by the adaptive SFS algorithm with sizes (d) 32x32, (e) 64x64, (f)
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ELEKTRİK, VOL.6, NO.2, 1998

128x128.

(a) (b)

Figure 6. The input images for the adaptive photometric stereo algorithm, which are synthesized from the true

height map using the parameters (a) η = 250, σ = 45◦ , τ = 45◦ and (b) η = 250, σ = 45◦ , τ = 135◦ .

(a) (b)

Figure 7. The images synthesized from the (p, q) maps obtained by the adaptive photometric stereo algorithm

using the parameters (a) η = 250, σ = 45◦ , τ = 45◦ and (b) η = 250, σ = 45◦ , τ = 135◦ .

Figure 8.A 3-D plot of the reconstructed height map from the adaptive photometric stereo algorithm.
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