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Abstract

In this study, a new method is presented, based on genetic algorithms for determining object parameters

such as radii and/or attenuation coefficients with some assumptions and estimating a cross-sectional

image of an object from its projections obtained by X ray illumination. After it was tested for projections

degraded by different random noise levels, it was observed that the genetic and fuzzy genetic algorithms

improved the signal to noise ratio of the projections. The fuzzy genetic algorithm gave better results than

the genetic algorithm.

1. Introduction

Image reconstruction from projections developed for X ray computerized tomography is a well-known image
processing technique [1]-[3]. Radon [4] established the mathematical foundations of tomography in 1917.
This technique is now extensively used in many scientific, industrial and medical areas [5]. In order to
reconstruct a cross-sectional image from the line integral data, a lot of algorithms exist [6]. The convolution
back-projection method has great computational complexity [1],[3]. The tomographic methods based on the
Fourier-Slice Theorem [7] require one dimensional (1D) Fourier transformations of the projections of the
object, interpolations in the Fourier domain to estimate the 2D Fourier transformation of the object from
the projections, 2D inverse Fourier transformation and application of some filtering functions in both space
and frequency domains.

In this study, cross-sectional images of two different objects were estimated using genetic and fuzzy
genetic optimization algorithms with some assumptions.

2. Projections and Noise

A shadowgram obtained by illuminating an object with penetrating radiation is known as projection. The
aim of image reconstruction is to obtain an image of a cross-section of the object from these projections.
This imaging technique is called transmission tomography because the transmission characteristics of the
object are being imaged. The resolution is lost along the path of the X rays while obtaining the projections.
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Computed tomography restores this resolution by using information from multiple projections. Therefore,
image reconstruction from projections can be considered a special case of image restoration.

X rays travel in straight lines, and therefore the projection data is the measure of the line integral
of some object parameters along straight lines such as attenuation coefficient. Let α(x, y) denote the
attenuation coefficient of the object at a point (x, y) in a slice at some fixed value of the z axis. Assuming
the illumination consists of an infinitely thin parallel beam of X rays, the intensity of the detected beam is
given by [1]

I = I0 exp
[
−
∫
L

α(x, y)du
]

(1)

where I0 is the intensity of the incident beam, L is the path of the ray, and u is the distance along L

(Figure 1). Defining the observed signal as follows

p = ln(I0/I) (2)

the linear transformation is obtained

p = p(s, θ) =
∫
L

α(x, y)du −∞ < s <∞, 0 ≤ θ < π (3)

where (s, θ) represent the coordinates relative to the object. L is the line whose normal through the origin
makes angle θ with the positive x -axis.
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Figure 1. X ray illumination geometry

The projection data for an ellipse, p(s, θ), can be simulated using the following equation [3]:

p(s, θ) =

{
2αAB

√
a2(θ)−s2

a2(θ) |s| < a(θ)
0, otherwise

(4)

where
a2(θ) = A2 cos2(θ) +B2 sin2(θ)
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and A and B are the radii on the major and minor axis of an ellipse respectively, α is the attenuation
coefficient, θ is the projection angle. Then, the projection function for a complex object can be calculated
using the superposition and rotation properties.

The variation of the attenuation coefficient with X ray energy, artifacts and noise in the reconstruction
can be cause of inaccurate characterization of objects. Noise in X ray systems has been extensively
investigated in the literature [8]. The model of an image degraded by additive random noise u(n1, n2)
is given as in [9]

g(n1, n2) = 0(n1, n2) + u(n1, n2) (5)

where 0(n1, n2) is the original image.

The signal to noise ratio, SNR, is defined as follows

SNR = 10 log10

V ar[0(n1, n2)]
V ar[u(n1, n2)]

(6)

where V ar[.] represents the variance. The normalized mean square error (NMSE) between the original image
0(n1, n2) and the processed image p(n1, n2) is defined by

NMSE[0(n1, n2), p(n1, n2)] = 100
V ar[0(n1, n2) − p(n1, n2)]

V ar[0(n1, n2)]
%. (7)

The measure NMSE [0(n1, n2), g(n1, n2)] is similarly defined [9]. The SNR improvement because of process-
ing is defined by

SNR improvement = 10 log10

NMSE[0(n1, n2), g(n1, n2)]
NMSE[0(n1, n2), p(n1, n2)]

dB (8)

3. Genetic and Fuzzy Genetic Algorithms

Genetic algorithms (GAs) are known as global optimization algorithms based on evolution and genetic
recombination in nature [10]. Although GA has few applications in signal processing, its potential use in
signal processing is high [11]. Traditional optimization techniques use gradients and/or random searches.
Gradient calculations are not used in random search methods, but gradient methods require gradient
calculations. Both of them have the drawback of finding local minima instead of the global minimum.
The best known global optimization techniques are based on guided random searches, such as simulated
annealing [12]. The disadvantage of the simulated annealing method is that the results are very sensitive
to the cooling schedule and optimization parameters, such as the initial value of temperature. Genetic
algorithms that do not use any gradient calculations effectively search design space to find the ‘global’
minimum. A binary encoding of the parameter of the cost function to be minimized is referred to as a
gene. A set of genes forms a chromosome undergoing reproduction, crossover, and mutation processes. The
cost function is evaluated for each chromosome. Then, they are ranked from the lowest to the highest cost
function value. Unacceptable chromosomes are eliminated after the ranking. Next, the crossover operation
pairing them at a random crossover point is performed. The mutation process preventing the system from
settling into local minima changes a small percentage of the bits in the chromosomes from 0 to 1 or visa
versa. Although genetic algorithms are considered to be the best approach while the number of unknown
parameters increases [13], it has been reported that fuzzy genetic algorithms tend to be more efficient and
more suitable for some applications [14]. It is possible to fuzzify genetic algorithms by extending their gene
pool to the whole unit interval [0 1]. While chromosomes are coded by binary numbers in classical genetic
algorithms, chromosomes in fuzzy genetic algorithms (FGAs) are represented by the numbers in [0 1] as
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stated in [14]. In order to apply genetic and fuzzy genetic algorithms to our problem, we simulated the
projections of multilayered elliptical objects. We formed the error function as follows:

Error =

√∑N
i=1(Pmi − P ci )2√∑N

i=1(Pmi )2

(9)

where Pmi is the measured or simulated projection, P ci is the computed projection using Eq. (4) for each
chromosome consisting of unknown parameters, and N is the total number of measurement or simulation
points. Using genetic and fuzzy genetic algorithms, Eq. (9) is minimized and unknown parameters are
determined. This process for GA and FGA is presented in Figure 2.

Collect the projected data

Select the type of algorithm

Encoding of object parameters
by binary numbers 0 or 1

Encoding of object parameters
by numbers in [0 1]

Generation of chrosomes randomly

Evaluation of Error function for all chromosomes

Ranking of chromosomes according to the error function values in increasing order

Discarding of unacceptable chromosomes

Pairing of remaining chromosomes

Mutation operation

is
iteration 

completed
?

NO

YES

FGA GAGA or FGA
?

STOP

Figure 2. Flow chart of the GA and FGA approaches

4. Numerical Results

As a first example, a two layered circular concentric cylindrical object as shown in Figure 3 was selected. The
outer radius of this object is known or it can be determined from measured projection data. The attenuation
coefficients and the radius of inner layer of the object were taken as unknown parameters for optimization.

For this aim, illuminated by X ray radiation, the projection was calculated using Eq. (4) for N = 32
points along s line with the length of l = 10 cm and d = 40 cm apart from the center of cylinders and
spaced ∆x = l/N intervals. The first layer was selected as α1 = 2 and A1 = B1 = 2 cm. The second layer
was chosen as α2 = 1.044 and A2 = B2 = 4 cm. Attenuation coefficients and the radii of the cylinder can be
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estimated by using the simulated projection only in one direction because of the symmetry with respect to
the cylinder axis z . For asymmetrical objects, the projections around the inhomogeneous object illuminated
from different directions must be measured.
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Figure 3. Measurement geometry of the two layered object

Table 1. The results for genetic and fuzzy genetic algorithms

Object parameters Real values Results found by Result found by Fuzzy
and Genetic Algorithm Genetic Algorithm

computation time 1st layer 2nd layer 1st layer 2nd layer 1st layer 2nd layer
Attenuation coefficients
for noise-free projections 2 1.044 2.125 1.054 1.94 1.045
Attenuation coefficients

for noisy projections 2 1.044 2.145 1.094 2.12 1.075
SNR=12.44 dB

Attenuation coefficients
for noisy projections 2 1.044 2.137 1.074 2.100 1.055

SNR=17.26 dB
Radii (cm)

for noisy-free projections 2 4 2.08 4 2.02 4
Radii (cm)

for noisy projections 2 4 2.12 4 2.09 4
SNR=12.44 dB

Radii (cm)
For noisy projections 2 4 2.10 4 2.07 4

SNR=17.26 dB
Time (sec.) – 314 296

For the application of genetic and fuzzy genetic algorithms, the search interval for attenuation
coefficients was chosen as 0 ≤ α1,2 ≤ 3, and the search interval for the radius of inner cylindrical object was
chosen as 0 ≤ A = B ≤ 4 cm. The projection data obtained by the genetic algorithm and fuzzy genetic
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algorithm were compared with the original projection data in Figure 4 and Figure 5, respectively. A similar
comparison was made for projection data degraded by different noise levels in Figure 6 and Figure 7 for SNR
= 12.44 dB and in Figure 8 and Figure 9 for SNR = 17.26 dB. Mean errors for both algorithms are given
in Figure 10. The fuzzy genetic algorithm required fewer iterations and gave more accurate results than the
genetic algorithm. The results of the genetic and fuzzy genetic algorithms are given in Table 1. Figure 11
shows the estimated image of the two-layered circular concentric cylindrical object reconstructed from the
projections obtained using the fuzzy genetic algorithm.
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Figure 4. Original projection data (——), and the pro-

jection data obtained as a result of the genetic algorithm

(−− −−)

Figure 5. Original projection data (——), and the

projection data obtained as a result of the fuzzy genetic

algorithm (− −− −−)
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Figure 6. Original projection data (−−−−), degraded

projection data at SNR of 12.44 dB (——) and the pro-

jection data obtained as a result of the genetic algorithm

with SNR improvement of 2.67 dB (++++)

Figure 7. Original projection data (−−−−), degraded

projection data at SNR of 12.44 dB (—–) and the pro-

jection data obtained as a result of the fuzzy genetic al-

gorithm with SNR improvement of 3.6 dB (++++)

For testing GA and FGA, a head phantom identical to Shepp and Logan [2] was also chosen. Each
ellipse was assigned a gray level as indicated in Table 2. By using two perpendicular projections parallel
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to the major and minor axes of the phantom and applying the GA and FGA, gray levels (GL) were as
given in Table 2. The reconstructed images are shown in Figure 12-(a) and Figure 12-(b) for GA and FGA,
respectively. The gray levels of ellipses were selected as unknown parameters for each algorithm. The search
interval for gray levels was selected as −1 ≤ GL ≤ 2. As seen in Table 2, the fuzzy genetic algorithm gave
more accurate results than the genetic algorithm.
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projection data at SNR of 17.26 dB (——) and the pro-

jection data obtained as a result of the genetic algorithm

with SNR improvement of 2.25 dB (++++)

Figure 9. Original projection data (−−−−), degraded

projection data at SNR of 17.26 dB (——) and the pro-

jection data obtained as a result of the fuzzy genetic al-

gorithm with SNR improvement of 3.4 dB (++++)
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Figure 11. The estimated image of the two-layered circular concentric cylindrical object

Table 2. Parameters of shepp and logan head phantom [2] and gray levels obtained by the GA and FGA approaches

Ellipses Center Major Minor Inclination Gray Level Gray Level Gray Level
Axis Axis (Real values) (Found by GA) (Found by FGA)

a 0,0 0.69 0.92 0 2 1.985 1.995
b 0,-0.0184 0.6624 0.874 0 -0.98 -0.978 -0.98
c 0.22,0 0.11 0.31 -18 -0.02 -0.022 -0.021
d -0.22,0 0.16 0.41 18 -0.02 -0.021 -0.02
e 0.035 0.21 0.25 0 0.01 0.009 0.01
f 0.01 0.046 0.046 0 0.01 0.009 0.01
g 0,-0.1 0.046 0.046 0 0.01 0.009 0.01
h -0.08,-0.605 0.046 0.023 0 0.01 0.009 0.01
i 0,-0.605 0.023 0.023 0 0.01 0.009 0.01
j 0.06,-0.605 0.023 0.046 0 0.01 0.009 0.01

Each bit was randomly given a value in the interval [0 1] for the fuzzy genetic algorithm. Each
chromosome consisted of 5 bits/parameter for both algorithms. If more bits are used, it is possible to obtain
greater accuracy in spite of slow convergence. The total number of chromosomes was chosen as equal to 10
times the total number of bits in a chromosome. The bottom 50 % of them were eliminated after the ranking
of the chromosomes. The remaining chromosomes were paired at randomly selected crossover points, such as
the first and the third, second and fourth, etc. Mutation was performed for 1% of the chromosomes at each
iteration. The algorithms were run for 30 iterations. To obtain the results, we used a PC with a Pentium
100 processor and the program codes were written in C.

5. Conclusion

In this study, a new method is presented, based on genetic and fuzzy genetic algorithms for determining
attenuation coefficients with some assumptions and the estimation of a cross section of inhomogeneous
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cylindrical objects illuminated by a X ray radiation. These algorithms were applied to two different objects.
After this method was tested for projections degraded by different random noise levels it was observed that
the genetic and fuzzy genetic algorithms improved the signal to noise ratio of the projections. This new
approach has a global search capability and its implementation is simple. The results showed that the fuzzy
genetic algorithm gave better results than the genetic algorithm.

(a) (b)

Figure 12. Reconstructed image of the head phantom (a) Using GA (b) Using FGA
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BOOK REVIEW

F. A. Aliev and V. B. Larin, Optimization of Linear Control Systems: Analytical Methods and
Computational Algorithms, Gordon and Breach Science Publishers, 1988 (ISBN 90-5699-113-2)

This book on linear control systems represents an approach of two experts to H2−Hx techniques on
the analysis and synthesis of linear control systems. Presentation of material is quite theoretical although
the authors always end the theory with related algorithms. Contents of the book with respect to chapters is
as follows:

Solution techniques are developed to the nonstandard LQG problem by modifying state space methods
in Chapter 1. The last section deals with the problem of optimal regulator synthesis in cases where the system
dynamics are described by a periodic system of difference and/or differential equations. The frequency
domain methods have been investigated in Chapter 2. The approach preferred is based on Wiener-Hopf
equation and minimization of the H2 norm. Chapter 3 deals with the development of computing procedures
involved with the realization of algorithms in the state space approach. These algorithms are also used in
Chapter 4 in developing numerical methods associated with the realization of frequency domain methods
(spectral factorization and J-factorization of matrix polynomials and matrix polynomials), of optimization.

While reading this book I have noticed certain things which, I think should better be presented here.
First of all, there is little or no background material in the book. On the other hand, reader is prepared to
making research in the topics of H2 − Hx techniques throughout the book though I would prefer to have
some open problems suggested or hinted in a book of this caliber. As already understood the intended
readers should be researchers in the H2−Hx fields of control (but it can not be a text book in those topics
either). There are many algorithms presented but practical simulations of the algorithms and case studies
are quite weak or not presented. In addition, it would be better to have more up to date references from the
so-called western literature. Lastly, there are too much simple typographical errors. Probably, most of my
critisizing remarks would not have been made in a second edition of this book.

In summary, this book involving the contributions and scientific tastes of two prominent researchers
in the field of control theory is strongly advisable to senior graduate students and researchers in the fields
of H2 −Hx techniques on the analysis and synthesis of linear control systems.

Kemal Leblebicioğlu
Electrical and Electronics Engineering Dept.
Middle East Technical University
06531, Ankara
kleb@metu.edu.tr
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