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Abstract

The global stabilization of nonlinear systems is investigated by using switching surfaces. The nonlinear

system is forced to a lower order switching manifold, which is designed to be stable by construction. Thus,

the stability of the reduced-order system is guaranteed and parameter selection for the switching surface

is avoided. The method is extended to a class of uncertain nonlinear systems and exemplified with some

fictitious dynamic models.

1. Introduction

The Variable Structure System (VSS) Theory has been an active area of research for many years. Variable

Structure Control (VSC) with a sliding mode was first described by former Soviet researchers and a survey

paper with numerous references was written by Utkin [20]. The subject has attracted great interest and

been investigated thoroughly by many authors [2, 4, 8, 9, 16, 22, 23]. One of the main issues in the design of
switching controls is to construct the switching surface so that the system response slides along the surface
to the origin. Switching surface design may be performed in an easier way when the system is given in
some special form, such as controllable canonical form or regular form [14, 17, 19, 21, 22]. However, we are
unlikely to be given such nonlinear systems. Thus, nonlinear systems, in general, need to be transformed to
one of those forms via nonlinear transformations. The existence of these transformations, however, is not
guaranteed for all nonlinear systems [12, 13, 14, 22] and the design of switching surfaces for this kind of
nonlinear systems becomes more complicated.

In our previous work [4], we approached the stabilization problem of nonlinear systems in a differ-

ent way. We utilized the idea of stabilizing dissipative systems in Hilbert space [1, 3]. Here, a generalized
Lyapunov-like theory is used to develop switching surfaces directly, which are globally attracting by construc-
tion. If these surfaces can be designed around the stable manifold of the unforced system, global stabilization
is guaranteed. If the unforced system does not have a stable manifold of proper dimension, then part of
the control may be used to create one and then the remaining part of the control can be used to drive the
system to this manifold.
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In this paper, for the sake of completeness, we shall review the idea presented for nominal systems in
[4]. Then, we shall extend the theory for a class of uncertain nonlinear systems.

In the next section, we shall study local systems defined on Rn by a linear analytic structure, i.e.,

ẋ = f(x) + G(x)u (1.1)

where f(x) ∈ Rn , G(x) ∈ Rn×m and u ∈ Rm and we choose a function σ(x) such that {x : σ(x) = 0} is

a smooth manifold through x = 0. Then we choose the control u so that σ(x)→ 0 as t→ ∞ . Thus σ(x)
is a generalized Lyapunov function, although we shall now require

σ̇(x) < 0 if σ(x) > 0

σ̇(x) > 0 if σ(x) < 0

so that σ(x)→ 0.

In section 3, an extension of the theory to a class of uncertain nonlinear systems is presented. Finally,
in section 4, the global construction of a stable manifold for (SI) systems on analytic manifolds is given.

Thus, the systems are defined by vector fields V and W on a manifold X which are locally of the form f(x)

and g(x). The theory of manifolds we require can be found in [10] and in Morse theory in [11].

2. Local Systems

In this section, we shall consider a nonlinear system whose local representation is given by (1.1). The control

input is a variable structure control (VSC) which steers the system to a (n − m) dimensional switching
manifold and then maintains it on this hypersurface. The VSC design process can be divided into two
phases; the switching manifold (or sliding surface) design and the construction of feedback gains necessary
to drive the system’s state to the switching manifold. Although it is possible to design a nonlinear surface,
the switching manifold is, in general, designed as a linear surface, i.e., σ(x) = Sx and the surface parameters

(S) are chosen so that the system exhibits the desired behaviour. For instance, if the aim is to stabilize the

nonlinear system, then S has to be determined such that the constrained system - (n −m) order-reduced
system - is stable. The reduced order system behaviour can be analyzed by means of an equivalent control
method as proposed by [20,21]. The so-called equivalent control is the control necessary to satisfy the sliding
mode regime, i.e.,

σ̇(x) = Sẋ = S
[
f(x) + G(x)ueq

]
= 0 (2.1)

or,

ueq = −
[
SG(x)

]−1[
Sf(x)

]
(2.2)

in which we assume that SG(x) is nonsingular ∀x . Then, the dynamics of the system on the switching
surface, i.e., the reduced order system equation is

ẋ =
[
I −G(x)[SG(x)]−1S

]
f(x) (2.3)

Thus, S is chosen such that (2.3) is stable. However, unless given in special forms such as canonical
form or regular form, it is not easy to find surface parameters for general nonlinear systems. Moreover,
there may not be such parameters which yield stabilization or other desired motions. On the other hand, in
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order to represent the nonlinear system in canonical form or regular form, we need nonlinear transformations
which transform the system to one of the following coordinates:

ẏi = yi+1 for i = 1, . . . , n− 1
ẏn = f̄(y) + ḡ(y)u (2.4)

or,

ż1 = f̄1(z1 , z2)
ż2 = f̄2(z1 , z2) + ḡ2(z1, z2)u (2.5)

where z1 ∈ Rn−1 and z2 ∈ R . The first representation (2.4) is the canonical representation and the second

is the regular form for a single input nonlinear system. It has been reported [12, 13] that the system (1.1)

with a single input can only be transformed into (2.4) if and only if there exists a region Ω such that the
following conditions hold:

(1) the vector fields {g(x), adfg(x), . . . , adn−1
f g(x)} are linearly independent in Ω,

(2) the set {g(x), adfg(x), . . . , adn−2
f g(x)} is involutive in Ω.

For a regular form, we need to solve some partial differential equations provided that a solution exists
[14, 21].

2.1. Single Input (SI) Case

In this subsection, we shall consider a single input (SI) local system of the form

ẋ = f(x) + g(x)u (2.6)

where f(x) and g(x) ∈ Rn and u ∈ R . Instead of transforming the nonlinear system to a special form and

then choosing surface parameters, we shall approach the problem in a different way. Let σ(x) be a smooth

function such that all level surfaces, i.e., σ(x) = const, are (n − 1)-dimensional smooth manifolds in and
consider the control

u =
c− 〈gradσ(x), f)〉
〈gradσ(x), g〉 =

c− Lfσ(x)
Lgσ(x)

(2.7)

where L(•) is the Lie derivative with respect to (.) and c < 0 if σ(x) > 0 and c > 0 if σ(x) < 0. Then, the

following theorem can be stated,

Theorem 1 Suppose that a smooth function σ(x) is given such that Lgσ(x) 6= 0 for all x . Then the surface

σ(x) is globally attracting with the control (2.7).

Proof We have

σ̇(x) =
∂σ

∂x
ẋ = 〈gradσ(x), f(x)〉 + 〈gradσ(x), g(x)〉u = c

if u is given by (2.7). Hence, if σ(x0 > 0) then c < 0 and σ(x)→ 0 as t→ −σ(x0)/c. Similarly, if σ(x0) < 0

then c > 0 and σ(x)→ 0 again as t→ −σ(x0)/c .
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The most obvious function, σ(x), to choose is

σ(x) = ||x||2− r2 (2.8)

for some r > 0. Then we have

Corollary 1 Suppose that the system (2.6) is locally controllable in the open set U near 0 and Br = {x :

||x|| ≤ r} ⊆ U . If 〈x, g(x)〉 6= 0 for all x ∈ Rn \Br , then the system (2.6) is globally stabilizable.

Proof Define σ(x) as in (2.8); then gradσ(x) = 2x and

u =
c− 〈gradσ(x), f(x)〉
〈gradσ(x), g(x)〉 =

c − 2〈x, f(x)〉
2〈x, g(x)〉

and since 〈x, g(x)〉 6= 0, the control is well defined. This control will drive any point from x ∈ Rn \ Br to
Br and then the local controllability can be used.

However, we are unlikely to have a control function, g(x), such that 〈gradσ(x), g(x)〉 6= 0 and so a

different control must be chosen near the set where 〈gradσ(x), g(x)〉 = 0. Let Ω = {x : 〈gradσ(x), g(x)〉 = 0}
and let Ωε = {x : dist(x,Ω) ≤ ε} be an ’ε-neighbourhood’ of Ω.

Theorem 2 Suppose there exists a function σ(x) such that the set Ω is an m-dimensional manifold for

some m < n and ∂Ωε is an (n−1)- dimensional manifold for each ε > 0 . Moreover, suppose that, for some

ε̄ > 0 , the set Ωε̄ is invariant for some feedback control u = u(x) , with ε-limit set {0} (i.e. the system is

stabilizable in Ωε̄ .) Then the system (2.6) is globally stabilizable.

Proof Parameterize σ(x) so that Ωε̄ is the set where σ(x) = 0 and that σ(x) > 0 in Rn \ Ωε . Then

the control (2.7) will drive the system to ∂Ωε̄ . We can then choose a stabilizing control in Ωε to drive the
system to 0.

Rather than choosing the surface, σ(x) = 0, arbitrarily, we may construct it to have some relation to
the dynamics of the system with no control. Consider the nonlinear unforced system

ẋ = f(x), x ∈ Rn (2.9)

and its linearization about an equilibrium point,

ẋ = Ax (2.10)

We shall refer to the Stable Manifold Theorem.

Theorem 3 (Stable Manifold Theorem) Let E be an open subset of R containing the origin, let

f(x) ∈ C1(E) and let φt be the flow of nonlinear unforced system (2.9). Suppose that f(x) = 0 and

that the Jacobian ∂f(0)
∂x

has k eigenvalues with a negative real part and n − k eigenvalues with a positive

real part. Then there exists a k-dimensional differentiable manifold S tangent to the stable subspace ES of
the linear system (2.10) at 0 such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S ,

lim
t→∞

φt(x0) = 0,
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and there exists an (n− k)- dimensional differentiable manifold U tangent to the unstable subspace EU of

(2.6) at 0 such that for all t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U ,

lim
t→−∞

φt(x0) = 0.

Proof For the proof of the above theorem, refer to [15].

In general, we can always choose coordinates in E such that the nonlinear unforced system (2.9) is
represented in the form

ẋ1 = J1x1 + f̃1(x1, x2)
ẋ2 = J2x2 + f̃2(x1, x2)

(2.11)

where J1 is an (n−m) × (n−m) matrix having all eigenvalues with a negative real part, J2 is an m×m
matrix having all eigenvalues with a positive real part and the functions f̃1(x1x2) and f̃2(x1, x2) are C1(E)

functions vanishing at (x1, x2) = (0, 0) together with all their first order derivatives. Clearly, x1 and

f̃1(x1, x2) ∈ Rn−m, x2 and f̃2(x1, x2) ∈ Rm . The stable manifold for nonlinear unforced system (2.9) passes

through (0,0) and is tangent to the subset of points whose x2 coordinate is equal to 0. Thus, if the equation
of the stable manifold is given by

x2 = ϕ(x1) (2.12)

then the mapping ϕ(x1) satisfies

ϕ(0) = 0,
∂ϕ

∂x1
(0) = 0 (2.13)

Moreover, this manifold is locally invariant for (2.11), which imposes on the mapping ϕ(x1) the constraint

∂ϕ

∂x1

[
J1x1 + f̃1(x1, ϕ(x1))

]
= J2ϕ(x1) + f̃2(x1, ϕx1)) (2.14)

as easily deduced by differentiating (2.12) with respect to time, any solution curve (x1(t), x2(t)) of (2.11)

which belongs to the stable manifold, i.e., satisfies x2(t) = ϕ(x1(t)) (See [13], for more details about

definitions).

Assume that (2.9) has a stable manifold M ⊆ Rn of dimension (n − 1), and assume that g(x) is

transversal to M (except, possibly, at the origin). If f(x) (and g(x)) are analytic then there exists a

neighbourhood U of M in Rn and a function σ(x) such that M = {x : σ(x) = 0} and g(x) is transversal

to the level curves Mε = {x : σ(x) = ε} ∩ U, ε > 0. The function σ(x) is a Morse function [11] and its

existence can be proved by elementary Morse theory (simply follow the dynamics determined by g(x)). The
following theorem can be stated,

Theorem 4 Let V denote the maximal neighbourhood of M on which σ(x) can be chosen so that g(x) is

transversal to the level curves Mε . Then the system (2.6) is globally stable on V .

Proof As before, define the feedback control u by

−〈grad(x), f(x)〉 + c

〈gradσ(x), g(x)〉 ,
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(with c < 0 if σ(x) > 0 and c > 0 if σ(x) < 0). Since g(x) is transversal to Mε we have 〈gradσ, g(x)〉 6= 0

on V and so the control drives the system to M . Now, since M is the stable manifold of (2.9), we can turn

off the control when we reach M and follow the unforced system (2.9).

Lemma 1 Consider the nonlinear SI system (2.6). Let the linearized system of (2.6) about the equilibrium
point be

ẋ = Ax+ bu (2.15)

If the (A,b) pair is stabilizable, then a (n− 1)-dimensional stable manifold can be created for the nonlinear

system (2.6) locally by some state feedback.

Proof Consider again (2.6) and partition the control as u = u1 + u2 , then

ẋ = f(x) + g(x)u1 + g(x)u2 = f̄(x) + g(x)u2

where f̄(x) = ˙̄x = f(x) + g(x)u1 and the linearized system

˙̄x = Ax̄+ bu1

Since (A, b) is stabilizable, then there exists a linear state feedback such that (n − 1) eigenvalues of (2.9)

are located at the left-hand side of the complex plane. It follows from theorem 3 that f̄(x) has an (n − 1)
dimensional stable manifold.

Remark 1 It is clear that for different linear state feedback, u1 = u1(x) , a new f̄(x) will be obtained which
leads to a different stable manifold. In other words, the shape and the dimension of the stable manifold will
depend on the state feedback. Obviously, since the state feedback gains are free to choose - provided that
lemma 1 is satisfied - then we can obtain infinitely many stable manifolds, i.e., a stable manifold is not
unique.

Remark 2 Instead of linear state feedback, some nonlinear state feedback could also be added to u1 in order

to cancel some nonlinear terms in f(x) and simplify f̄(x) . This will also change the shape of the stable
manifold.

Example 1 Consider the system ẋ = f(x) + g(x)u , where

f(x) =

 −x1 + x2
2

−2x2

4x3 + x2
1 + x3

2

 and g(x) =

 1− 4x2
2x

2
3

1 + x2
1

2 + x2
1x

2
2x

2
3


which has an equilibrium point at (0,0,0). The linearized system

d

dt

x1

x2

x3

 =

−1 0 0
0 −2 0
0 0 4

x1

x2

x3

+

 1
1
2

u1

has its eigenvalues at λ1 = −1, λ2 = −2 , and λ3 = 4, which guarantees a 2-dimensional local stable manifold
according to Theorem 3. The stable manifold for f(x) is
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σ(x) = x3 +
1
6
x2

1 +
1
27
x1x

2
2 +

1
10
x3

2 +
1

324
x4

2

The stable manifold for this particular example is plotted in figure 1. Note that the manifold, unlike the
standard linear sliding surface, is a nonlinear surface. Then,

Lgσ =
1
3
x1 −

4
3
x1x

2
2x

2
3 +

71
270

x2
2 −

4
27
x4

2x
2
3 +

2
27
x1x2(1 + x2

1)

+
4

324
x3

2(1 + x2
1) + x2

1x
2
2(x2

3 + 0.3) + 2

which is zero for some x . Thus, we need to choose another stable manifold such that Lgσ 6= 0 ∀x . The

manifold σ̄(x) = 4x3 + 1
3x

3
1 + 1

3x
3
2 satisfies

Lg σ̄ = 8 + x2
1 + x2

2 + x2
1x

2
2 6= 0 ∀x.

Figure 2 gives σ̄(x) which is again a nonlinear manifold. Then, applying the control

u1 =
7
3x

3
1 + 10

3 x
3
2 − x2

1x
2
2 − 4x2

1 − 4x3
2

x2
1 + x2

2 + x2
1x

2
2 + 8

to the system, we have ẋ = f̄(x) + g(x)u2 where

f̄(x) =

 −x1 + x2
2 + (1− 4x2

2x
2
3)u1

−2x2 + (1 + x2
1)u1

4x3 + x2
1 + x3

2 + (2 + x2
1x

2
2x

2
3)u1



whose stable manifold is exactly σ̄(x) = 4x3 + 1
3x

2
1 + 1

3x
3
2 . Then the other (VSC) part of the control, u2 , is

from (2.7)

u2 =
c − Lf̃ σ̄
Lgσ̄

and Lgσ̄ = 8 + x2
1 + x2

2 + x2
1x

2
2 6= 0 ∀x . Clearly, control u1 is to create an (n − 1)-dimensional local

stable manifold and control u2 is to force the new dynamics to the stable manifold. Figures 3 and 4 give
the simulation results of example 1. For this simulation, c = −0.5sgn(σ(x)) and the initial conditions are

x = [1 -15 0.4]T .
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Figure 1. Stable manifold, σ(x). Figure 2. Stable manifold, σ(x).
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1.5
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Time, (sec)
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-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

Time, (sec)

Control Input,u1 2 3

Figure 3. System response. Figure 4. Control input.

Remark 3 In order to keep the system on the manifold, the control input u in (2.7) changes sign, which

brings high frequency control chattering. This can be alleviated by considering instead of (2.7), the control

ufn =
−c
[

σ(x)
|σ(x)|+δ

]
− Lfσ(x)

Lgσ(x)
(2.16)

where c > 0 and δ is a positive small number. In this case, if σ(x) > 0, for instance, σ̇ = −c
 σ(x)
|σ(x)|+δ


and so when σ(x) is small, this is approximated σ̇(x) = −cσ(x)

δ i.e., σ(t) = σ(x0)e−ct/δ so that the switching

surface is never reached. This control is simply keeping the system close to the switching surface, which is
chosen so as to be stable.

Another possibility for smoothing the control signal is to use a saturation function, i.e.,

usat =
−csat(σ(x)) − Lfσ(x)

Lgσ(x)
(2.17)

8



BANKS, SALAMCI & OZGOREN: On the Global Stabilization...,

where c > 0, δ is a positive small number and

sat(σ(x)) =
{

σ(x) if |σ(x)| ≤ δ
sgn(σ(x)) otherwise

By using this control, the switching function becomes

σ̇(x) = −csat(σ(x)) =
{
−cσ(x) if |σ(x)| ≤ δ
−csgn(σ(x)) otherwise

which means that the control steers the system into a strip and inside the strip, the system tends to reach
the stable manifold.

2.2. Multi Input (MI) Case

In this subsection, the methodology presented in subsection 2.1 is extended to a multi-input (MI) case. Let
the nonlinear system be defined by

ẋ = f(x) +G(x)u = f(x) +
m∑
i=1

gi(x)ui (2.18)

where f(x) and g2 · (x) ∈ Rn and u ∈ Rm . The control will force the sysytem to an (n−m)-dimensional
switching manifold and then keep the system on the hypersurface after hitting it. Thus, m equations

are necessary to define the (n −m)-dimensional switching manifold. Let the ith element of the switching

manifold vector be σi(x). Then, in the vicinity of the switching manifold,

σ̇i(x) < 0 if σi(x) > 0
σ̇i(x) > 0 if σ(i(x) < 0 for i = 1, 2, . . . , m (2.19)

so that σi(x)→ 0. We now have

Theorem 5 Let the m dimensional vector Lf and (m×m) matrix LG be

Lf =

 Lfσ1(x)
...

Lfσm(x)

 LG =

 Lg1σ1(x) · · · Lgmσ1(x)
...

. . .
...

Lg1σm(x) · · · Lgmσm(x)

 (2.20)

If LG is nonsingular ∀x , then the control

u = L−1
G (c − Lf ) (2.21)

will drive the system (2.18) to the switching surface σ(x) provided that

c =

 −c1sgn(σ1(x))
...

−cmsgn(σm(x))

 ci > 0 for i = 1, 2, . . . , m

Proof Each component of the switching manifold should satisfy (2.19). Thus,
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σ̇(x) =
∂σi(x)
∂x

x = 〈gradσi(x), f(x)〉+ 〈gradσi(x), g1(x)〉u1

+ · · ·+ 〈gradσi(x), gm(x)〉um

for i = 1, 2, . . . , m or in compact form
σ̇(x) = Lf + LGu (2.22)

where Lf and LG are given in (2.20). Since LG is nonsingular ∀x , then the control (2.21) is well defined

and (2.22) becomes σ̇(x) = c and decouples. Choosing c as stated, (2.19) is satisfied.

As defined for the single input case in subsection 2.1, an (n−m)-dimensional stable switching manifold
may be constructed by first splitting up the control into two parts and then applying one of them to get a
f(x) whose linearization about the equilibrium point has (n−m) negative eigenvalues.

Example 2 Consider the nonlinear system ẋ = f(x) + g1(x)u1 + g2(x)u2 where

f(x) =

 −x1 + x2
2

2x2

3x3 + x2
1 + x3

2

 , g1(x) =

 −2
1 + x2

3

1 + 4
5
x1

 and gg(x) =

 5x1

1− x2
2

3


which has an equilibrium point at (0,0,0). The eigenvalues of the linearized system are λ1 = −1, λ2 = 2,

and λ3 = 3 . Thus, the system has a 1-dimensional local stable manifold (Theorem 3). The stable manifold

for f(x) is

σ1(x) = x2, σ2(x) = x3 +
1
5
x2

1

From (2.20)

LG =
[

1 + x2
3 1− x2

2

1 3 + 2x2
1

]
and detLG = 2+x2

2+2x2
1+3x2

3+2x2
1x

2
2 > 0, ∀x. Then u is well defined. Simulation results are given in Figures

5, 6 and 7 for c1 = −0.25sgn(σ1(x)), c2 = −0.25sgn(σ2(x)) , and the initial conditions x = [−1 0.8 1]T .

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time, (sec)

Control Input,u1

0 1 2 3 4 5 6

1.5

1

0.5

0

-0.5

-1

Tiem, (sec)

System responses, x1, x2 and x3

Figure 5. System response. Figure 6. Control input u1.
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One could also get an (n−1)-dimensional stable switching manifold by locating the (n−1) eigenvalues
of the linearized system to the left hand-side of the complex plane if the linearized system is at least
stabilizable (Lemma 1). Let σ(x) be a smooth function such that all the level curves σ(x) = const are

(n− 1)-dimensional smooth manifolds in Rn , and consider the control vector whose ith element is defined
by

ui =
〈gradσ(x), gi(x)〉(−〈gradσ(x), f(x)〉 + c)

m∑
k=1

〈gradσ(x), gk(x)〉2
=
Lgiσ(x)(−Lfσ(x) + c)

m∑
k=1

(Lgkσ(x))2

for i = 1, 2, . . . , m (2.23)

where L(•) is the Lie derivative with respect to (.) and c < 0 if σ(x) > 0 and c > 0 if σ(x) < 0.

Lemma 2 Assume that a stable manifold σ(x) is given such that

m∑
k=1

(Lgkσ(x))2 6= ∀x (2.24)

Then the surface σ(x) is globally attracting with the control (2.23)

Proof Simply take the derivative of σ(x),

σ̇ =
∂σ(x)
∂x

ẋ = 〈gradσ(x), f(x)〉 +
m∑
i=1

ui〈gradσ(x), gi(x)〉

and substitute ui into the equation. Then, σ̇ = c . Hence, if σ(x0) > 0 then c < 0 and σ → 0 as

t→ −σ(x0)/c. Similarly, if σ(x0) < 0 then c > 0 and σ → 0 again as t→ −σ(x0)/c .

Example 3 Consider the nonlinear system ẋ = f(x) + g1(x)u1 + g2(x)u2 where

f(x) =

−x1 + x2
2

−2x2

3x3 + x3
2

 , g1(x) =

 −2
1 + x2

3

1 + 4x2
1

 and g2(x) =

 5x1

1− x2
2

3


which has an equilibrium point at (0,0,0). The eigenvalues of the linearized system are λ1 = −1, λ2 = −2,

and λ3 = 3 . Thus, the system has a 2-dimensional local stable manifold (Theorem 3). The stable manifold

for f(x) is σ(x) = x3 + 1
9x

3
2 and

2∑
k=1

(Lgkσ)2 =
(

1 + 4x2
1 +

1
3
x2

2 +
1
3
x2

2x
2
3

)2

+
(

3 +
1
3
x2

2 −
1
3
x4

2

)2

6= 0 ∀x

Then u1 and u2 are well defined. Simulation results for example 3 are given in Figures 8, 9 and 10 for

c = −0.25sgn(σ(x)) , and the initial conditions x = [−1 0.8 1]T .

11
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Figure 7. Control input u2 . Figure 8. System response.
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Figure 9. Control input u1. Figure 10. Control input u2 .

Remark 4 Note that in examples 2 and 3, only the VSC part of the controls is given since the unforced
systems already have stable manifolds of proper dimensions. Thus, there are no state feedback control parts
in either examples for obtaining stable switching manifolds of appropriate dimensions.

Remark 5 One could obtain an (n − k)-dimensional stable manifold (where k < m) and attempt to force

the system to that manifold. In this case, it would be possible to turn off the (m−k) VSC part of the controls,
which again yields a system whose stable manifold dimension and control input numbers are appropriate.

3. Extension to Uncertain Systems

So far, the theory has been established for nominal systems, i.e., we have assumed that system models are
exact and there is no external disturbance. However, exact models may not be easily determined for all
systems and external disturbances cannot be estimated all the time. Hence, real systems may not be exactly
represented by their models and consequently the control-derived model becomes an irrelevant input into
the system as the unmodelled part deteriorates the system response.

12
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On the other hand, uncertainties and/or disturbances can be estimated within some bounds by doing
experiments or observing the system response. Thus, these factors should be added to the model dynamics
and the controller is to be designed so that the effects of uncertainties and/or disturbances are eliminated.

In this section, the theory discussed in Section II is extended to a class of uncertain nonlinear systems.
Assume that uncertainty on g(x) is negligible and that the SI system is given by

ẋ = f(x) + ∆f(x) + g(x)u (3.1)

where ∆f(x) represents the uncertainties on f(x). Note that equation (3.1) is a summation of three vectors,

namely f(x),∆f(x), and g(x)u, which define the next position of x (see Figure 11). Consider now the stable

manifold, σ(x), of the nominal system. From Theorem 3, it is clear that the vector f(x) is tangent to the

stable manifold σ(x) when the system is on the manifold (see Figure 12). If the vector ∆f(x) were zero,

then it would be possible to turn off the control since the f(x) dynamics would follow the stable manifold

σ(x).

f(x)
g(x)u

∆f(x)

X
. σ(x)

g(x)u-

g(x)u+

∆f(x)

f(x)

g(x)u+

∆f(x)+g(x)us

g(x)u-f(x)

0

∆f(x)

Figure 11. Explanation of system motion. Figure 12. Planar motion of the system on the stable
manifold.

When ∆f(x) is introduced to the system, the system will leave the stable manifold if the control is

turned off. Nevertheless, there always exists a control us which keeps the system on σ(x) provided that

Lgσ(x) 6= 0. This control simply creates another vector tangent to the stable manifold. The new vector can

be defined by

F s(x) := ∆f(x) + g(x)us

which yields ẋ = f(x) + F s(x).

The component of the two vectors f(x) and F s(x) must be directed to the origin in order to have a

stable motion. Since f(x) is always directed to the origin, the magnitude of F s(x) should be less than the

magnitude of f(x). This implies that

||f(x)|| > ||F s(x)|| (3.2)

Notice that inequality (3.2) can be satisfied if

||∆f(x)|| < ||f(x)||, ∀x (3.3)

The uncertainty condition given by inequality (3.3) simply implies that the magnitude of unmodelled
dynamics should not be greater that the magnitude of modelled dynamics.

13
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If the system is not on the stable manifold, σ(x), then the controller should drive the system to σ(x).
This is achieved by defining the control, u , from

σ̇(x) = Lfσ(x) + L∆fσ(x) + Lgσ(x)u

which results in

u =
−(δ + |L∆fσ(x)|max)sgn(σ(x)) − Lfσ(x)

Lgσ(x)
(3.4)

so that σ̇(x) = −(δ + |L∆fσ(x)|max)sgn(σ(x)) + L∆fσ(x) where δ is a small positive number. If the bond

of ∆f(x) is known, then |L∆fσ(x)|max can be computed, so that σ(x)→ as t→∞ .

Example 4 Consider the system given in example 1. Now assume there are some uncertain parameters in
the system.

ẋ = f(x) + ∆f(x) + g(x)u

where

∆f(x) =

 α1x
2
3

α2x1 + α3x
2
2

0

 ,
α1 = −0.9 sin(t/3), α2 = −0.9 cos(2t) and α3 = −0.9 cos(t/2).

The VSC part of the control

u2 =
c − Lf̄ σ̄(x)
Lgσ̄(x)

where c = −(δ + |L∆f σ̄(x)|max)sgn(σ̄(x)) and∣∣L∆f σ̄
∣∣
max

=
∣∣x2

1x
2
3α1

∣∣ +
∣∣x2

2(α2x1 + α3x
2
2

∣∣ = x2
1x

2
3

∣∣α1

∣∣
max

+ x2
2

∣∣x1

∣∣ ∣∣α2

∣∣
max

+ x4
2

∣∣α3

∣∣
max

Figures 13 and 14 show system responses and control input without
∣∣L∆fσ

∣∣
max

. The modified control with∣∣L∆fσ
∣∣
max

is applied to the system and the results are given in Figures 15 and 16. For this simulation we

have taken
∣∣α1

∣∣
max

=
∣∣α2

∣∣
max

=
∣∣α3

∣∣
max

= 0.95, δ = 0.5 , and the initial conditions are x = [1 − 1.5 0.4]T .
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0

0.2

0.4

0.6

0.8

1

1.2

Time, (sec)

Systemresponses,x1,x2 andx3
Control Input,u

Figure 13. System response without |L∆fσ(x)| term. Figure 14. Control input without |L∆fσ(x)| term.
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Figure 15. System response with |L∆fσ(x)| term. Figure 16. Control input with |L∆fσ(x)| term.

4. Global Theory

We shall present the global construction of a stable switching manifold for single input (SI) nonlinear systems

in this section. The idea can easily be extended to multi input (MI) nonlinear systems. Let X be a compact
differentiable manifold of dimension n and let V,W be vector fields on X . The controlled vector field
V + uW has the local representation

ẋ = f(x) + ug(x) (4.1)

in the coordinates x : N → Rn for some open set N ⊆ X . If S ⊆ X is a smooth submanifold of X of
dimension n − 1 (i.e. a hypersurface) then S and the vector Wx are transversal if

TS ⊕RWx = TX (4.2)

Suppose that p ∈ X is an equilibrium point of V, i.e. Vp = 0. It is well known [11] that the total index of

vector field V on X is given by the Euler characteristic of X, γ(X). Then X has at least one equilibrium

point if γ(X) > 0. Let (4.1) be a local representation of the system at p , where x : U → Rn is a coordinate

system in the neighbourhood U of p with x(p) = 0. We shall assume that (f(x), g(x)) is linearizable and
the linearized system is stabilizable at p so that we may write

ẋ = Ax+ f(2)(x) + u(g(0) + g(1)(x)) = Ax+ bu+ f(2)(x) + ug(1)(x)

where A = ∂f
∂x (0), b = g(0), f(2)(x) = f(x) − Ax, g(1)(x) = g(x) − g(0). Now write u = u1 + u2 and choose

u1 = kx to stabilize (A, b). Then we have

ẋ = (A+ bk)x+ f(2)(x) + (kx+ u2)g(1)(x) + u2b

Now choose an (n−1)-dimensional stable submanifold S ⊆ U of the system such that b+g(1)(x) is transversal

to S. Then S can be defined by a function σ(x) such that S = {x ∈ U : σ(x) = 0} . If y : U ′ → Rn is

another coordinate neighbourhood such that U ∩U ′ 6=Øand S ∩U ′ 6= Ø. Then we can extend S as follows:

15
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if y = h(x), then u1 is extended to u1 = kh−1(y) in U ′ and S is extended into U ′ as the union of all
trajectories of the system

ẏ = (A+ bk)h−1(y) + f(2)(h−1(y)) + (kh(1)(y))g(1)(h−1(y)) + u2(b+ g(1)(h−1(y)))

in U passing through S in U ∩ U ′ . In this way we obtain the maximal extension of S to X on which

b+ g(1)(h−1(y)) is transversal to the submanifold. Let Sm denote this maximal (n− 1)-dimensional stable

submanifold of the system (V,W ). It is defined by a set of equations

Sm = {m ∈ X : σi(x) = 0, i ∈ Ui}

where {Ui}1≤i≤L is a set of coordinate neighbourhoods. These functions σi(i) piece together to form a
section of the real line bundle over X . Finally we integrate the partial differential equation gradσ =

b+ g(1)(x) from Sm and define the region M′ just as in the local case. Then the local control

u2 =
−〈gradσ, f(x)〉 + c

〈gradσ, g(x)〉

will drive all the points in M′ to Sm , which is then a stable manifold using u2 = 0.

Conclusions

In this paper, we have presented a new method of design for switching manifolds for general nonlinear
systems. It has been shown that the stabilization of many kinds of nonlinear systems can be achieved by
first designing a stable manifold of lower dimension for the system and then using a switching control to steer
the system to this submanifold. The method does not uses nonlinear transformations to bring the system to
a special form and we do not need to choose switching surface parameters to stabilize the nonlinear system.
The idea is also extended to a class of uncertain nonlinear systems. The method easily extends to global
systems on differentiable manifolds, giving a truly global control method for nonlinear systems.
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