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Abstract

Incorporating indefinite information into databases has been studied extensively. In this paper, we

propose a structure called an E-table to represent maybe information and inclusive and exclusive disjunc-

tions. We define the type of redundancies in E-tables and show how to eliminate them. Also we present

an extended relational algebra to operate on E-tables. In this paper we expand the concepts and opera-

tions defined by Lin and Sunderraman [1] in order to accommodate exclusive disjunctions in relational

databases.

1. Introduction

Although the relational model [2] did not originally allow incomplete information, the real world modeling
requirements stimulated a considerable amount of research on extending the relational model to include
incomplete information. Various kinds of incomplete information have been considered [3-6]. There has
been a thorough treatment of indefinite and maybe kinds of incomplete information in relational databases
by Liu and Sunderraman [1].

A data structure called an I-table is defined [1]. An I-table has three components: definite, indefinite
and maybe. For example the I-table in Figure 1 represents the following facts:

TEACHES

TEACHES
Teacher
John

Mac
Mac

TEACHES
Teacher
John

Mac
Mac
Lisa
Lisa
Robin

Course
CS 101
CS 102
CS 104
CS 200
CS 400
CS 500

Course

CS 101
CS 102
CS 104
CS 500

Teacher
John

Mac
Mac
Robin

definite part
indefinite

part
maybe part

definite part

part

maybe part
part

inclusive

exclusive

b)a)

Figure 1.a) An I-table, b) An E-table.

(1) John teaches CS 101.

(2) Mac teaches CS 102 or CS 104.

(3) Robin maybe teaches CS 500.
∗This study was supported by Boğaziçi University Research Fund under grant number 92A0117.
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The indefinite part of an I-table consists of a set, S, of set of tuples (i.e. S={w1, w2, . . .wj, . . .wk} ,

where wi = {t1, t2, . . . ti, . . . tj} and where ti is a tuple). Each set wi can be viewed as a statement R(t1)

or R(t2) . . . or R(tj). In Figure 1. a), the I-table contains in its idenfinite part just one set with two tuples
in it.

In this paper we extend the I-table so that it includes exclusive disjunctions as well as inclusive
disjunctions. In other words, the indefinite part of a table is divided into two parts: inclusive and exclusive.
We call such an extended I-table an E-table and explain it formally in the next section. The exclusive part
of an E- table is also a set of tuples. However here a set wv = {t1, t2, . . . tz} is viewed as a statement R(t1 )

xor R(t2 ) . . . xor R(tz). In Figure 1.b), in the E-table we represent not only all the information in the

I-table in Figure 1.a) but also the information that Lisa teaches either CS 200 or CS 400 but not both. This
example may suggest exclusive disjunctions are needed for representing an important class of incomplete
information and are often present in real life applications.

In the next section, we redefine the relational algebra operations for the E-table and also define an
operation called ELIMRID to reduce the redundancies in an E-table.

2. E-tables, Redundancies and Relational Algebra Operations

The E-table is an extension of the table representing a relation in the relational model. The table allows the
existence of disjunctive facts as proposed by the definition of I-tables [1]. The difference between an I-table
and an E-table is that the latter is capable of representing not only inclusive disjunctions, but exclusive
disjunctions as well.

An E-table scheme is an ordered list of attribute names R=< A1, . . . , An > . Associated with each
attribute name, Ai , is a domain Di . Then, T =< TD, TI , TE, TM > is an E-table over the scheme R where

TD ⊆ D1X . . .XDn

TI ⊆ 2D1X...XDn − {{θ}U{{t}|tεD1X . . .XDn}}

TE ⊆ 2D1X...XDn − {{θ}U{{t}|tεD1X . . .XDn}}

TM ⊆ 2D1X...XDn − {θ}

TD is the set of tuples named definite tuples. TI is the set of sets of tuples called inclusive indefinite
tuple sets. TE is the set of sets of tuples called exclusive indefinite sets. TM is the set of sets of tuples called
maybe tuple sets. The symbols T, T1, . . . are used for E-tables, t, t1, . . ., for tuples, w1, w2, . . . , q1, q2, . . . for
tuple sets, r, r1, . . . for relations. We use ‘or’ for the logical or operator and ‘xor’ for the logical exclusive or
operator.

Suppose that we have an E-table for storing information about a predicate P. The way to interpret
the content of an E-table can be explained as follows:

i) tεTD is interpreted as P(t).

ii) wεTI and w={t1, . . . , tn} is interpreted as P (t1) or . . . or P (tn)

iii) wεTE and w={t1, . . . , tn} is interpreted as P (t1) xor . . . xor P(tn )

iv) wεTM and w={t} is interpreted as P(t) xor ¬P(t)
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wεTM and w={t1, . . . , tn} is interpreted as (P (t1) xor . . . xor P (tn)) xor (¬P (t1) and . . . and

¬P (tn))

In Lipski’s [7] words, TM provides us “the set of objects for which we cannot rule out the possibility
that they belong to an external interpretation of a query”. The need to store the elements of TM arises
from i) the user’s desire to store such information, ii) the system’s generation of such tuples as a result of
the application of the algebra operators on TI , TE and TM .

Introduction of redundant information may be incurred through the application of the extended
relational algebra operators to E-tables or after an insert/modify operation. Possible sources of redundancy
in E-tables and the way to eliminate these redundancies can be summarized as follows:

1) tεTD , wεTI and t εw. Remedy: Delete w from TI . Insert in Tm each of the tuples in w-{t}.
2) w1 εTI , w2εTI and w2 ⊃ w1 .

Remedy: Delete w2 from TI . Insert in Tm each of the tuples in w2 − w1 .

3) w εTM , tεTD and tεw. Remedy: Delete w from Tm .

4) w1 εTM , | w1 |=1 and w2εTI and w2 ⊃ w1 . Remedy: Delete t from Tm .

5) t εTD , w εTE and tεw. Remedy: Delete w from TE .

6) w1 εTE , w2εTE and w2 ⊃ w1 . Remedy: Delete w2 from TE .

7) w1 εTE , w2 εTM and w1 ⊃ w2 . Remedy: Delete w2 from Tm .

8) w1 εTE , w2 εTM and w2 ⊃ w1 . Remedy: Delete w1 from TE .

9) w1 εTE , w2 εTI and w2 ⊃ w1 .

Remedy: Delete w2 from TI . Insert each element of w2 −w1 to TM .

10) w1 εTE , w2 εTI and w1 ⊃ w2 .

Remedy: Delete w1 from TI . Delete w2 from TE . Insert w1 to TE .

In the light of the different types of redundancies listed above, we can define an operator, ELIMRED,
that takes in as input an E-table and returns the E-table with all the redundancies eliminated.

Definition 2.1 ELIMRED : ΨR− > ΨR is a mapping such that ELIMRED (T) =T 0 , where T 0 is
defined as follows:

T 0
D = {t | t εTD}
T 0
I = {w | w εTI ∧ ¬(∃t)(tεTD ∧ tεw) ∧ ¬(∃w1)(w1εTI ∧ w ⊃ w1)

∧¬(∃w2)(w2εTE ∧ w ⊃ w2) ∧ ¬(∃w3)(w3εTE ∧ w3 ⊃ w)}
T 0
E = {w | w εS1 ∧ ¬(∃t1)(t1εTD ∧ t1εw) ∧ ¬(∃w1)(w1εTE ∧ w ⊃ w1)

∧¬(∃w2)(w2εTM ∧ w2 ⊃ w) ∧ ¬(∃w3)(w3εTI ∧ w ⊃ w3)}
where S1={w | w εTEV(∃w1)(∃w2)(w1εTE ∧ w2εTI ∧ w1 ⊃ w2 ∧ w = w1)}

T 0
M = {w | w εS2 ∧ (∀t)(tεw− > ¬(tεT oD)) ∧ ¬(∃w1)(w1εT

0
I ∧ | w |= 1 ∧ w1 ⊃ w)

∧¬(∃w2)(w2εT
0
E ∧ w ⊃ w2)}

where S2={w | w εTMV (∃w1)(∃w2)(w1εTI ∧ w2εTI ∧ w2 ⊃ w1 ∧ (∀t)(tεw2 − w1− >
w={t}) V (∃w3)(∃w4)(w3εTE ∧ w4εTI∧ w4 ⊃ w3 ∧ (∀t)(tεw4 − w3− > w={t})
V (∃t1)(∃w5)(t1εTD ∧ w5εTI ∧ t1εw5 ∧ (∀t)(tεw5 − {t1}− > w = {t}))}

Now, we define our extended algebra operators. The definitions of TD and TI are the same as those
in [1] for the union, selection, cartesian product, projection and intersection operators. Note that ΨR :{T |
T: E-Table over R}

Definition 2.2 Union on ΨR is a mapping U: ΨR ×ΨR− > ΨR .

Let T1 and T2 be two domain compatible E-tables. Then, T1UT2 = ELIMRED(T), where T is defined
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as follows:

TD ={t|t εT 1
DV tεT

2
D}

TI ={w|w εT 1
I V wεT

2
I }

TE ={w|w εT 1
EV wεT

2
E}

TM ={w|w εT 1
MV wεT

2
M}

An example of the onion operation is given in Figure 2.

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tinclusive

Tmaybe

T1

T2

T1 T2∪

a1

a5
a6

a3
a4

a7
a8

a9

a1

a3

a5
a6

a5
a7

a7
a8

a2

a4
a9

a3

a5
a7

a2

Figure 2. An example of the extended union operation.

Definition 2.3 Selection on elements of ΨR is a mapping σ : ΨR− > ΨR .

Let T1 be an E-table and F be a formula involving operands that are constants or attribute numbers
and arithmetic comparison operators: < . =, >, and logical operators V, ∧,¬ . Then, σF (T1)=ELIMRED(T),
where T is defined as follows:

TD = {t | t εT 1
D V F(t)}

TI = {w | w εT 1
I ∧ (∀t)(tεw− > F(t))}

TE = {w | w εT 1
E ∧ (∀t)(tεw− > F (t))}

TM = {w | (w εT 1
M ∧ (∀t)(tεw− > F(t)))

V (∃w1)(w1εT
1
I ∧ tεw1 ∧ F (t) ∧ w = t)

V (∃w2)(w2εT
1
E ∧w2 ⊃ w ∧ (tεw− > F (t)))}

An example of the selection operation is given in Figure 3.
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a3

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tinclusive

Tmaybe

a2

a3

a3

a4

a3

a4

a4

a3

a4

a3

a3

a3

b3

b2

b1

b2

b2

b4

b1

b4

b5

b6

b8

b7

b6

a3 b3

a3

a3

b1

b2

a3

a3

b5

b8

a3 b4

a3

a3

b7

b6

T σ1="a3"(T)

Figure 3. An example of the extended selection operation.

Definition 2.4 Difference on ΨR is a mapping -: ΨR × ΨR− > ΨR .

Let T1 and T2 be two domain-compatible E-tables. Then, T1 -T2 =ELIMRED(T), where T is defined
as follows:

TD = {t|(tεT 1
D) ∧ ¬(tεT 2

D) ∧ ¬(∃w)((wεT 2
I ∧ tεw)V (wεT 2

E ∧ tεw)V (wεT 2
M ∧ tεw))}

TI = {w|(wεT 1
I ) ∧ ¬(∃t)(tεT 2

D ∧ tεw ∧ ¬(∃w1)((w1εT
2
I ∧ ¬(w ∩ w1 = φ))

V (w1εT
2
E ∧ ¬(w ∩ w1 = φ))V (w1εT

2
M ∧ ¬(w ∩w1 = φ))}

TE = {w | (wεT 1
E) ∧ ¬(∃t)(tεT 2

D ∧ tεw)
∧¬(∃w1)((w1εT

2
I ∧ ¬(w ∩ w1 = φ))

V (w1εT
2
E ∧ ¬(w ∩ w1 = φ))

V (w1εT
2
M ∧ ¬(w ∩ w1 = φ))}

TM = {w | (wεT 1
M )

V (∃w1)(∃t)(tεT 1
D ∧ w1εT

2
I ∧ tεw1 ∧ w = {t})

V (∃w1)(∃t)(tεT 1
D ∧ w1εT

2
E ∧ tεw1 ∧w = {t})

V (∃w1)(∃t)(tεT 1
D ∧ w1εT

2
M ∧ tεw1 ∧ w = {t})

V (∃w1)(∃t1)(w1εT
1
I ∧ t1εT 2

D ∧ t1εw1 ∧ (∀t2)(t2εw1 − {t1}− > w = {t2}))
V (∃w1)(∃w2)(w1εT

1
I ∧w2εT

2
I ∧ ¬(w1 ∩ w2 = φ) ∧ (∀t1)(t1εw1− > w = {t1}))

V (∃w1)(∃w2)(w1εT
1
I ∧w2εT

2
M ∧ ¬(w1 ∩ w2 = φ) ∧ (∀t1)(t1εw1− > w = {t1}))

V (∃w1)(∃w2)(w1εT
1
I ∧w2εT

2
E ∧ ¬(w1 ∩ w2 = φ) ∧ (∀t1)(t1εw1− > w = {t1}))

V (∃w1)(∃w2)(w1εT
1
E ∧ w2εT

2
I ∧ ¬(w1 ∩ w2 = φ) ∧ (∀t1)(tεw1− > w = {t1}))}

An example of the difference operation is given in Figure 4.
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T1

Tdefinite

Tdefinite

Tinclusive

Tmaybe

Tdefinite

Tinclusive

Tmaybe

Tinclusive

Texclusive

Tmaybe

a1
a2
a3

a6
a7

a8
a9

a11
a12

a10
a11

a2
a6
a10

a1
a4

a2
a12

a5

a8
a9

a3

a1
a7

a11

T2 T1 T2

Figure 4. An example of the extended difference operation.

Definition 2.5 Projection on elements of ΨR is a mapping
∏

: ΨR− > ΨR

Let T1 be an E-table and A be a list of attribute numbers. Then,
∏
A(T1)=ELIMRED(T), where T

is defined as follows:
TD = {t | (∃t1)(t1εT 1

D ∧ t[A] = t1[A])V (∃w1)(w1εT
1
I ∧ (∀t1)(t1εw1− > t[A] = t1[A]))

V (∃w2)(w2εT
1
I ∧ (∀t2)(t2εw2− > t[A] = t2[A]))}

TI = {w | (∃w1)(w1εT
1
I ∧ w =

∏
A(w1)∧ | w |> 1}

TE = {w | (∃w1)(w1εT
1
E ∧ w =

∏
A(w2)∧ | w |> 1}

TM = {w | (∃w1)(w1εT
1
M ∧w =

∏
A(w1)}

An example of the difference operation is given in Figure 5.

Definition 2.6 Cartesian product of elements of ΨR1 and ΨR2 is a mapping x : ΨR1×ΨR2− > ΨR1.R2

Let T1 and T2 be I-tables such that T 1
I = {w1

1 , . . .w
1
m} and T 2

I = {w2
1 , . . .w

2
n} .

Let E = {{t1, . . . , tm} | (∀i)(1 ≤ i ≤m− > tiεw
1
i )} and F={{t1, . . . , tn} | (∀i)(1 ≤ i ≤ n− > tiεw

2
i )} .

Let the elements of E be E1, . . . , Ee and those of F be F1, . . . , Ff . Let

Aij = {t | (∃t1)(∃t2)(t1εT 1
D ∧ t2εFI ∧ t = t1.t2)

V (∃t1)(∃t2)(t1εEk ∧ t2εT 2
D ∧ t = t1.t2)

V (∃t1)(∃t2)(t1εEk ∧ t2εFI ∧ t = t1.t2)}
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a3

T

Tdefinite

Tmaybe

a2

b3

b2

a3

a3

b1

b2

a4

a3

b2

b4

a4

a4

b1

b4

a3

a4

b5

b6

a3 b8

a3

a3

b7

b6

a2

a3

a4

a5

Π1 (T)

Tdefinite

Tinclusive

Texclusive

Tmaybe

Figure 5. An example of the extended projection operation.

where 1 ≤ k ≤ e, 1 ≤ l ≤ f ; i=k if ¬(e=0) and i=0 otherwise;

j=l if ¬(f=0) and j=0 otherwise.

Let A1, . . . , Ag be the distinct Aijs .

Then, T1 × T2 =ELIMRED(T), where T is defined as follows

TD = {t | (∃t1)(∃t2)(tεT 1
D ∧ t2εT 2

D ∧ t = t1.t2)},
TI = {w | (∃t1) . . . (∃tg)(t1εA1 ∧ . . .∧ t1εAg ∧ w = {t1, . . . , tg})},
TE = {w | (∃t1)(∃w1)(t1εT 1

D ∧ w1 = {t11, t12, . . . , t1k}εT 2
E ∧w = {t1.t11, t1.t12, . . . , t1.t1k})

V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 1
E ∧ w2 = {t21, t22, . . . t2m}εT 2

E

∧w = {t11.t21, . . . , t1k.t21, t11.t22, . . . , t1k.t22, . . . , t1k.t2m})}
TM = {w | (∃t1)(∃w1)(t1εT 1

D ∧ w1 = {t11, t12, . . . , t1k}εT 2
M ∧ w = {t1.t11, t1.t12, . . . , t1.t1k})

V (∃t1)(∃w1)(t1εT 2
D ∧ w1 = {t11, t12, . . . t1k}εT 1

M ∧ w = {t11.t1, t22.t1 . . . t1k.t1})
V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 1

I ∧ w2 = {t21, t22, . . . t2m}εT 2
M

∧(w = {t11.t21, t11.t22, . . . , t11.t2m}
V w = {t12.t21, t12.t22, . . . , t12.t2m}
. . . . . .
. . . . . .
V w = {t1k.t21, t1k.t22, . . . , t1k.t2m}))
V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 2

I ∧ w2 = {t21, t22, . . . t2m}εT 1
M

∧(w = {t21.t11, t22.t11, . . . , t2m.t11}
V w = {t21.t12, t22.t12, . . . , t2m.t12}
. . . . . .
. . . . . .
V w = {t21.t1k, t22.t1k, . . . , t2m.t1k}))
V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 1

E ∧ w2 = {t21, t22, . . . t2m}εT 2
M

∧w = {t11.t21, . . . , t1k.t21, t11.t22, . . . , t1k.t22, . . . , t1k.t2m})
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V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 1
M ∧ w2 = {t21, t22, . . . t2m}εT 2

E

∧w = {t11.t21, . . . , t1k.t21, t11.t22, . . . , t1k.t22, . . . , t1k.t2m})
V (∃w1)(∃w2)(w1 = {t11, t12, . . . t1k}εT 1

M ∧ w2 = {t21, t22, . . . t2m}εT 2
M

∧w = {t11.t21, . . . , t1k.t21, t11.t22, . . . , t1k.t22, . . . , t1k.t2m})}
An example of the cartesian product operation is given in Figure 6.

a1

T1

a2
a3

a5
a6

a4

b1

b2

b3

a1

a1

a2
a3
a2
a3

a2
a3

a5
a6

a5
a6

a4

a4

a1

a2

a3

a5
a6

b1

b2

b2
b2

b1
b1

b1
b1

b2
b2

b1

b2

b3

b3

b3

b3
b3

T1 x T2

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tmaybe

T2

Figure 6. An example of the extended cartesian product operation.

Since T1

⋂
T2 6= T1 − (T1 − T2) in our extended algebra, we also define the intersection operator.

Definition 2.7 Intersection on ΨR is a mapping
⋂

: ΨR × ΨR− > ΨR

Let T1 and T2 be two domain-compatible E-tables. Then, T1

⋂
T2 =ELIMRED(T), where T is defined

as follows:
TD = {t|tεT 1

D ∧ tεT 2
D}

TI = {w|(wεT 1
I ∧ T 2

D ⊃ w) ∧ (wεT 2
I ∧ T 1

D ⊃ w)}
TE = {w|(wεT 1

E ∧ T 2
D ⊃ w) ∧ (wεT 2

E ∧ T 1
D ⊃ w)}

TM = {w|(∃w1)(∃t)(w1εT
1
M ∧ tεT 2

D ∧ tεw1 ∧ w = {t})
V (∃w1)(∃t)(w1εT

2
M ∧ tεT 1

D ∧ tεw1 ∧ w = {t})
V (∃w1)(∃t)(w1εT

1
E ∧ tεT 2

D ∧ tεw1 ∧w = {t})
V (∃w1)(∃t)(w1εT

2
E ∧ tεT 1

D ∧ tεw1 ∧w = {t})
V (∃w1)(∃w2)(w1εT

1
I w2εT

2
I ∧ tεw1

⋂
w2 ∧ w = {t})

V (∃w1)(∃w2)(∃t)(w1εT
1
I ∧ tεT 2

D ∧ w = {t})
V (w1εT

1
E ∧ w2εT

2
I ∧ w = w1

⋂
w2)V (w1εT

2
E ∧ w2εT

1
I ∧ w = w1

⋂
w2)

V (w1εT
1
E ∧ w2εT

2
M ∧ w = w1

⋂
w2)V (w1εT

2
E ∧ w2εT

1
M ∧ w = w1

⋂
w2)

V (w1εT
1
I ∧ w2εT

2
M ∧ w = w1

⋂
w2)V (w1εT

2
I ∧ w2εT

1
M ∧ w = w1

⋂
w2)

V (w1εT
1
E ∧ w2εT

2
E ∧ w = w1

⋂
w2)V (w1εT

2
M ∧ w2εT

1
M ∧ w = w1

⋂
w2)}
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An example of the cartesian product operation is given in Figure 7.

a1

T1

T1 ∩ T2

Tdefinite

Tinclusive

Texclusive

Tmaybe

T2

a2
a3

a4
a5

a8
a6

a7

a1

a4
a5

a2
a6

a3
a9

a7
a8

a1

a4
a5

a2

a3

a6
a7

a8

Tdefinite

Tinclusive

Texclusive

Tmaybe

Tdefinite

Tinclusive

Tmaybe

Figure 7. An example of the extended intersection operation.

The use of the new relational algebra in our model can be demonstrated with an example.

Example 2.1: Consider the following query about Mary’s teachers:∏
3(σ2=4((σ1=′mary′ takes) × teaches)).

Assume that we have the following stored E-tables for the relations takes (student, course) and teaches

(teacher, course).

takesD ={<john, CS421> , <mary, CS321> , <mary, CS335>} (John takes CS421. Mary takes CS

321. Mary takes CS 335.)

takesE ={{<john, CS415> , <john, CS495>}} (John takes either CS 421 or CS 495 but not both.)

takesI ={{<mary, CS 364> , <mary, MATH310>}} (Mary takes CS 364 or MATH 310 or both.)

takesM ={{<mary, ART201> , <mary, ART301>}} (Mary may take only one of ART 201 and ART

301 or neither.)

teachesD ={<ann, CS 321> , <jim, CS 364>} (Ann teaches CS 321. Jim teaches CS 364.)

teachesE ={{<dick, CS 335> , <ed, CS 335>}} (Either Dick or Ed teaches CS335, but not both.)
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teachesI ={ }
teachesM = {{<tom,ART201> , <tom,ART301>}} (Tom may teach only one of ART201 or ART301

or neither.)

The result of the query about Mary’s teachers is an E-table Q as:

QD ={<ann>} (Ann is definitely Mary’s teacher.)

QE={{<dick> , <ed>}} (Either Dick or Ed is Mary’s teacher, but not both.)

QI={ }
QM ={{<tom> , <jim>}} (Tom may be Mary’s teacher. Jim may be Mary’s teacher.)

3. Conclusions

In this paper we presented a structure called an E-table which makes it possible to store exclusive and
inclusive disjunctions and maybe information in relational databases. We also redefined the relational algebra
operations to include exclusive disjunctions and defined an operator to get rid of redundancies in E-tables.
The main contribution of this work is to make possible the storing of exclusive disjunctions, an often needed
type of incomplete information. The concepts presented in this paper have been applied to LOGOB[8], a
deductive data model with predicates representing object sets.

References

[1] Liu, K. and Sunderraman, R., Indefinite and Maybe Information in Relational Databases, ACM Trans. on

Database Systems, vol. 15, no. 1, March 1990.

[2] Codd, E. F., A Relational Model for Large Shared Data Banks, Commun. ACM, vol. 13, no. 6 (June 1970).

[3] Biskup, J., Extending the Relational Algebra with Maybe Tuples and Existential and Universal Null Values,

Fundamenta Informaticae VII, 1 (1984), 129-150.

[4] Imielinski, T. and Lipski, W, On Representing Incomplete Information in a Relational Database, In Proceedings

of the 7th International Conference on Very Large Data Bases (Cannes, Sept. 1981), IEEE, New York, 1981,

pp 389-397.

[5] Liu, K. and Sunderraman, R., A Generalized Relational Model for Indefinite and Maybe Information, IEEE

Trans. on Knowledge and Data Engineering, vol. 3, no. 1, March 1991.

[6] Zaniolo, C., Database Relations with Null Values, J. Comput. Syst. Sci., 28, 1 (Feb. 1984), 142-166.

[7] Lipski, W., Jr., On Databases with Incomplete Information, Journal of the ACM, Vol. 28, no. 1, Jan. 1981.

[8] Savas, E. and Gundem, T., Handling Incomplete Information in LOGOB, In Proceedings of the 7th International

Symposium on Computer and Information Sciences, (Antalya, Nov. 1992).

38


