# Exclusive Disjunctions in Indefinite and Maybe Information in Relational Databases* 

Taflan İ. Gündem<br>Computer Engineering Dept., Boğaziçi University, 80815, Bebek, Istanbul-TURKEY


#### Abstract

Incorporating indefinite information into databases has been studied extensively. In this paper, we propose a structure called an E-table to represent maybe information and inclusive and exclusive disjunctions. We define the type of redundancies in E-tables and show how to eliminate them. Also we present an extended relational algebra to operate on E-tables. In this paper we expand the concepts and operations defined by Lin and Sunderraman [1] in order to accommodate exclusive disjunctions in relational databases.


## 1. Introduction

Although the relational model [2] did not originally allow incomplete information, the real world modeling requirements stimulated a considerable amount of research on extending the relational model to include incomplete information. Various kinds of incomplete information have been considered [3-6]. There has been a thorough treatment of indefinite and maybe kinds of incomplete information in relational databases by Liu and Sunderraman [1].

A data structure called an I-table is defined [1]. An I-table has three components: definite, indefinite and maybe. For example the I-table in Figure 1 represents the following facts:


Figure 1.a) An I-table, b) An E-table.
(1) John teaches CS 101.
(2) Mac teaches CS 102 or CS 104.
(3) Robin maybe teaches CS 500.

[^0]The indefinite part of an I-table consists of a set, S , of set of tuples (i.e. $\mathrm{S}=\left\{w_{1}, w_{2}, \ldots w_{j}, \ldots w_{k}\right\}$, where $w_{i}=\left\{t_{1}, t_{2}, \ldots t_{i}, \ldots t_{j}\right\}$ and where $t_{i}$ is a tuple). Each set $w_{i}$ can be viewed as a statement $R\left(t_{1}\right)$ or $R\left(t_{2}\right) \ldots$ or $R\left(t_{j}\right)$. In Figure 1. a), the I-table contains in its idenfinite part just one set with two tuples in it.

In this paper we extend the I-table so that it includes exclusive disjunctions as well as inclusive disjunctions. In other words, the indefinite part of a table is divided into two parts: inclusive and exclusive. We call such an extended I-table an E-table and explain it formally in the next section. The exclusive part of an E - table is also a set of tuples. However here a set $w_{v}=\left\{t_{1}, t_{2}, \ldots t_{z}\right\}$ is viewed as a statement $\mathrm{R}\left(t_{1}\right)$ xor $\mathrm{R}\left(t_{2}\right) \ldots$ xor $\mathrm{R}\left(t_{z}\right)$. In Figure 1.b), in the E-table we represent not only all the information in the I-table in Figure 1.a) but also the information that Lisa teaches either CS 200 or CS 400 but not both. This example may suggest exclusive disjunctions are needed for representing an important class of incomplete information and are often present in real life applications.

In the next section, we redefine the relational algebra operations for the E-table and also define an operation called ELIMRID to reduce the redundancies in an E-table.

## 2. E-tables, Redundancies and Relational Algebra Operations

The E-table is an extension of the table representing a relation in the relational model. The table allows the existence of disjunctive facts as proposed by the definition of I-tables [1]. The difference between an I-table and an E-table is that the latter is capable of representing not only inclusive disjunctions, but exclusive disjunctions as well.

An E-table scheme is an ordered list of attribute names $\mathrm{R}=<A_{1}, \ldots, A_{n}>$. Associated with each attribute name, $A_{i}$, is a domain $D_{i}$. Then, $T=<T_{D}, T_{I}, T_{E}, T_{M}>$ is an E-table over the scheme R where $T_{D} \subseteq D_{1} X \ldots X D_{n}$
$T_{I} \subseteq 2^{D 1 X \ldots X D n}-\left\{\{\theta\} U\left\{\{t\} \mid t \varepsilon D_{1} X \ldots X D_{n}\right\}\right\}$
$T_{E} \subseteq 2^{D 1 X \ldots X D n}-\left\{\{\theta\} U\left\{\{t\} \mid t \varepsilon D_{1} X \ldots X D_{n}\right\}\right\}$
$T_{M} \subseteq 2^{D 1 X \ldots X D n}-\{\theta\}$
$T_{D}$ is the set of tuples named definite tuples. $T_{I}$ is the set of sets of tuples called inclusive indefinite tuple sets. $T_{E}$ is the set of sets of tuples called exclusive indefinite sets. $T_{M}$ is the set of sets of tuples called maybe tuple sets. The symbols T, $T_{1}, \ldots$ are used for E-tables, $t, t_{1}, \ldots$, for tuples, $w_{1}, w_{2}, \ldots, q_{1}, q_{2}, \ldots$ for tuple sets, $r, r_{1}, \ldots$ for relations. We use 'or' for the logical or operator and 'xor' for the logical exclusive or operator.

Suppose that we have an E-table for storing information about a predicate P. The way to interpret the content of an E-table can be explained as follows:
i) $\mathrm{t} \epsilon T_{D}$ is interpreted as $\mathrm{P}(\mathrm{t})$.
ii) $\mathrm{w} \epsilon T_{I}$ and $\mathrm{w}=\left\{t_{1}, \ldots, t_{n}\right\}$ is interpreted as $P\left(t_{1}\right)$ or $\ldots$ or $P\left(t_{n}\right)$
iii) $\mathrm{w} \epsilon T_{E}$ and $\mathrm{w}=\left\{t_{1}, \ldots, t_{n}\right\}$ is interpreted as $P\left(t_{1}\right)$ xor... xor $\mathrm{P}\left(t_{n}\right)$
iv) $\mathrm{w} \epsilon T_{M}$ and $\mathrm{w}=\{\mathrm{t}\}$ is interpreted as $\mathrm{P}(\mathrm{t})$ xor $\neg \mathrm{P}(\mathrm{t})$
$\mathrm{w} \epsilon T_{M}$ and $\mathrm{w}=\left\{t_{1}, \ldots, t_{n}\right\}$ is interpreted as $\left(P\left(t_{1}\right)\right.$ xor $\ldots$ xor $\left.P\left(t_{n}\right)\right)$ xor $\left(\neg P\left(t_{1}\right)\right.$ and $\ldots$ and $\left.\neg P\left(t_{n}\right)\right)$

In Lipski's [7] words, $T_{M}$ provides us "the set of objects for which we cannot rule out the possibility that they belong to an external interpretation of a query". The need to store the elements of $T_{M}$ arises from i) the user's desire to store such information, ii) the system's generation of such tuples as a result of the application of the algebra operators on $T_{I}, T_{E}$ and $T_{M}$.

Introduction of redundant information may be incurred through the application of the extended relational algebra operators to E-tables or after an insert/modify operation. Possible sources of redundancy in E-tables and the way to eliminate these redundancies can be summarized as follows:

1) $\mathrm{t} \epsilon T_{D}, \mathrm{w} \epsilon T_{I}$ and $\mathrm{t} \epsilon \mathrm{w}$. Remedy: Delete w from $T_{I}$. Insert in $T_{m}$ each of the tuples in $\mathrm{w}-\{\mathrm{t}\}$.
2) $w_{1} \epsilon T_{I}, w_{2} \epsilon T_{I}$ and $w_{2} \supset w_{1}$.

Remedy: Delete $w_{2}$ from $T_{I}$. Insert in $T_{m}$ each of the tuples in $w_{2}-w_{1}$.
3) $\mathrm{w} \epsilon T_{M}, \mathrm{t} \epsilon T_{D}$ and $\mathrm{t} \epsilon \mathrm{w}$. Remedy: Delete w from $T_{m}$.
4) $w_{1} \epsilon T_{M},\left|w_{1}\right|=1$ and $w_{2} \epsilon T_{I}$ and $w_{2} \supset w_{1}$. Remedy: Delete t from $T_{m}$.
5) t $\epsilon T_{D}, \mathrm{w} \epsilon T_{E}$ and $\mathrm{t} \epsilon \mathrm{w}$. Remedy: Delete w from $T_{E}$.
6) $w_{1} \epsilon T_{E}, w_{2} \epsilon T_{E}$ and $w_{2} \supset w_{1}$. Remedy: Delete $w_{2}$ from $T_{E}$.
7) $w_{1} \epsilon T_{E}, w_{2} \epsilon T_{M}$ and $w_{1} \supset w_{2}$. Remedy: Delete $w_{2}$ from $T_{m}$.
8) $w_{1} \epsilon T_{E}, w_{2} \epsilon T_{M}$ and $w_{2} \supset w_{1}$. Remedy: Delete $w_{1}$ from $T_{E}$.
9) $w_{1} \epsilon T_{E}, w_{2} \epsilon T_{I}$ and $w_{2} \supset w_{1}$.

Remedy: Delete $w_{2}$ from $T_{I}$. Insert each element of $w_{2}-w_{1}$ to $T_{M}$.
10) $w_{1} \epsilon T_{E}, w_{2} \epsilon T_{I}$ and $w_{1} \supset w_{2}$.

Remedy: Delete $w_{1}$ from $T_{I}$. Delete $w_{2}$ from $T_{E}$. Insert $w_{1}$ to $T_{E}$.
In the light of the different types of redundancies listed above, we can define an operator, ELIMRED, that takes in as input an E-table and returns the E-table with all the redundancies eliminated.

Definition 2.1 ELIMRED : $\Psi_{R}->\Psi_{R}$ is a mapping such that ELIMRED $(\mathrm{T})=T^{0}$, where $T^{0}$ is defined as follows:

```
\(T_{D}^{0}=\left\{\mathrm{t} \mid \mathrm{t} \epsilon T_{D}\right\}\)
\(T_{I}^{0}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{I} \wedge \neg(\exists t)\left(t \epsilon T_{D} \wedge t \epsilon w\right) \wedge \neg\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{I} \wedge w \supset w_{1}\right)\right.\)
        \(\left.\wedge \neg\left(\exists w_{2}\right)\left(w_{2} \epsilon T_{E} \wedge w \supset w_{2}\right) \wedge \neg\left(\exists w_{3}\right)\left(w_{3} \epsilon T_{E} \wedge w_{3} \supset w\right)\right\}\)
\(T_{E}^{0}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon S_{1} \wedge \neg\left(\exists t_{1}\right)\left(t_{1} \epsilon T_{D} \wedge t_{1} \epsilon w\right) \wedge \neg\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{E} \wedge w \supset w_{1}\right)\right.\)
        \(\left.\wedge \neg\left(\exists w_{2}\right)\left(w_{2} \epsilon T_{M} \wedge w_{2} \supset w\right) \wedge \neg\left(\exists w_{3}\right)\left(w_{3} \epsilon T_{I} \wedge w \supset w_{3}\right)\right\}\)
        where \(S_{1}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{E} \mathrm{~V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{E} \wedge w_{2} \epsilon T_{I} \wedge w_{1} \supset w_{2} \wedge w=w_{1}\right)\right\}\)
\(T_{M}^{0}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon S_{2} \wedge(\forall t)\left(t \epsilon w->\neg\left(t \epsilon T_{D}^{o}\right)\right) \wedge \neg\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{I}^{0} \wedge|w|=1 \wedge w_{1} \supset w\right)\right.\)
        \(\left.\wedge \neg\left(\exists w_{2}\right)\left(w_{2} \epsilon T_{E}^{0} \wedge w \supset w_{2}\right)\right\}\)
        where \(S_{2}=\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{M} V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{I} \wedge w_{2} \epsilon T_{I} \wedge w_{2} \supset w_{1} \wedge(\forall t)\left(t \epsilon w_{2}-w_{1}->\right.\right.\right.\)
        \(\mathrm{w}=\{\mathrm{t}\}) \mathrm{V}\left(\exists w_{3}\right)\left(\exists w_{4}\right)\left(w_{3} \epsilon T_{E} \wedge w_{4} \epsilon T_{I} \wedge w_{4} \supset w_{3} \wedge(\forall t)\left(t \epsilon w_{4}-w_{3}->w=\{\mathrm{t}\}\right)\right.\)
        \(\left.V\left(\exists t_{1}\right)\left(\exists w_{5}\right)\left(t_{1} \epsilon T_{D} \wedge w_{5} \epsilon T_{I} \wedge t_{1} \epsilon w_{5} \wedge(\forall t)\left(t \epsilon w_{5}-\left\{t_{1}\right\}->w=\{t\}\right)\right)\right\}\)
```

Now, we define our extended algebra operators. The definitions of $T_{D}$ and $T_{I}$ are the same as those in [1] for the union, selection, cartesian product, projection and intersection operators. Note that $\Psi_{R}:\{\mathrm{T} \mid$ T: E-Table over R $\}$

Definition 2.2 Union on $\Psi_{R}$ is a mapping $\mathrm{U}: \Psi_{R} \times \Psi_{R}->\Psi_{R}$.
Let $T_{1}$ and $T_{2}$ be two domain compatible E-tables. Then, $T_{1} U T_{2}=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined
as follows:

$$
\begin{aligned}
T_{D} & =\left\{\mathrm{t} \mid \mathrm{t} \epsilon T_{D}^{1} V t \epsilon T_{D}^{2}\right\} \\
T_{I} & =\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{I}^{1} V w \epsilon T_{I}^{2}\right\} \\
T_{E} & =\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{E}^{1} V w \epsilon T_{E}^{2}\right\} \\
T_{M} & =\left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{M}^{1} V w \epsilon T_{M}^{2}\right\}
\end{aligned}
$$

An example of the onion operation is given in Figure 2.
$\mathrm{T}_{1}$

$\mathrm{T}_{2}$
$\mathrm{T}_{1} \cup \mathrm{~T}_{2}$



Figure 2. An example of the extended union operation.

Definition 2.3 Selection on elements of $\Psi_{R}$ is a mapping $\sigma: \Psi_{R}>\Psi_{R}$.
Let $T_{1}$ be an E-table and F be a formula involving operands that are constants or attribute numbers and arithmetic comparison operators: $<.=,>$, and logical operators $\mathrm{V}, \wedge, \neg$. Then, $\sigma_{F}\left(T_{1}\right)=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined as follows:

$$
\begin{aligned}
T_{D}= & \left\{\mathrm{t} \mid \mathrm{t} \epsilon T_{D}^{1} \mathrm{VF}(\mathrm{t})\right\} \\
T_{I}= & \left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{I}^{1} \wedge(\forall t)(t \epsilon w->\mathrm{F}(\mathrm{t}))\right\} \\
T_{E}= & \left\{\mathrm{w} \mid \mathrm{w} \epsilon T_{E}^{1} \wedge(\forall t)(t \epsilon w->F(t))\right\} \\
T_{M}= & \left\{\mathrm{w} \mid\left(\mathrm{w} \epsilon T_{M}^{1} \wedge(\forall t)(t \epsilon w->\mathrm{F}(\mathrm{t}))\right)\right. \\
& \mathrm{V}\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge t \epsilon w_{1} \wedge F(t) \wedge w=t\right) \\
& \left.\mathrm{V}\left(\exists w_{2}\right)\left(w_{2} \epsilon T_{E}^{1} \wedge w_{2} \supset w \wedge(t \epsilon w->F(t))\right)\right\}
\end{aligned}
$$

An example of the selection operation is given in Figure 3.

GÜNDEM: Exclusive Disjunctions in Indefinite and Maybe Information in...,

T

| $\mathrm{T}_{\text {definite }}$ |  |
| :---: | :---: |
| a3 | b3 |
| a2 | b2 |
| $\mathrm{T}_{\text {inclusive }}$ |  |
| a3 | b1 |
| a3 | b2 |
| a4 | b2 |
| a3 | b4 |
| $\mathrm{T}_{\text {exclusive }}$ |  |
| a4 | b1 |
| a4 | b4 |
| a3 | b5 |
| a4 | b6 |
| a3 | b8 |
| $\mathrm{T}_{\text {maybe }}$ |  |
| a3 | b7 |
| a3 | b6 |

$\sigma_{1=" a 3 "(T)}$

| $T_{\text {definite }}$ |  |  |
| :--- | :--- | :--- |
| a3 | b3 |  |
| $T_{\text {inclusive }}$ |  |  |
| a3 | b1 |  |
| a3 | b2 |  |
| $T_{\text {maybe }}$ |  |  |
|  |  |  |
| a3 | b4 |  |
| a3 | b5 |  |
| a3 | b8 |  |
| a3 | b7 |  |
| a3 | b6 |  |

Figure 3. An example of the extended selection operation.

Definition 2.4 Difference on $\Psi_{R}$ is a mapping -: $\Psi_{R} \times \Psi_{R}->\Psi_{R}$.
Let $T_{1}$ and $T_{2}$ be two domain-compatible E-tables. Then, $T_{1}-T_{2}=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined as follows:

$$
\begin{aligned}
T_{D}= & \left\{t \mid\left(t \epsilon T_{D}^{1}\right) \wedge \neg\left(t \epsilon T_{D}^{2}\right) \wedge \neg(\exists w)\left(\left(w \epsilon T_{I}^{2} \wedge t \epsilon w\right) V\left(w \epsilon T_{E}^{2} \wedge t \epsilon w\right) V\left(w \epsilon T_{M}^{2} \wedge t \epsilon w\right)\right)\right\} \\
T_{I}= & \left\{w \mid\left(w \epsilon T_{I}^{1}\right) \wedge \neg(\exists t)\left(t \epsilon T _ { D } ^ { 2 } \wedge t \epsilon w \wedge \neg ( \exists w _ { 1 } ) \left(\left(w_{1} \epsilon T_{I}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right)\right.\right.\right. \\
& \left.V\left(w_{1} \epsilon T_{E}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right) V\left(w_{1} \epsilon T_{M}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right)\right\} \\
T_{E}= & \left\{w \mid\left(w \epsilon T_{E}^{1}\right) \wedge \neg(\exists t)\left(t \epsilon T_{D}^{2} \wedge t \epsilon w\right)\right. \\
& \wedge \neg\left(\exists w_{1}\right)\left(\left(w_{1} \epsilon T_{I}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right)\right. \\
& V\left(w_{1} \epsilon T_{E}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right) \\
& \left.V\left(w_{1} \epsilon T_{M}^{2} \wedge \neg\left(w \cap w_{1}=\phi\right)\right)\right\} \\
T_{M}= & \left\{w \mid\left(w \epsilon T_{M}^{1}\right)\right. \\
& V\left(\exists w_{1}\right)(\exists t)\left(t \epsilon T_{D}^{1} \wedge w_{1} \epsilon T_{I}^{2} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& V\left(\exists w_{1}\right)(\exists t)\left(t \epsilon T_{D}^{1} \wedge w_{1} \epsilon T_{E}^{2} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)(\exists t)\left(t \epsilon T_{D}^{1} \wedge w_{1} \epsilon T_{M}^{2} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists t_{1}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge t_{1} \epsilon T_{D}^{2} \wedge t_{1} \epsilon w_{1} \wedge\left(\forall t_{2}\right)\left(t_{2} \epsilon w_{1}-\left\{t_{1}\right\}->w=\left\{t_{2}\right\}\right)\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge w_{2} \epsilon T_{I}^{2} \wedge \neg\left(w_{1} \cap w_{2}=\phi\right) \wedge\left(\forall t_{1}\right)\left(t_{1} \epsilon w_{1}->w=\left\{t_{1}\right\}\right)\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge w_{2} \epsilon T_{M}^{2} \wedge \neg\left(w_{1} \cap w_{2}=\phi\right) \wedge\left(\forall t_{1}\right)\left(t_{1} \epsilon w_{1}->w=\left\{t_{1}\right\}\right)\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge w_{2} \epsilon T_{E}^{2} \wedge \neg\left(w_{1} \cap w_{2}=\phi\right) \wedge\left(\forall t_{1}\right)\left(t_{1} \epsilon w_{1}->w=\left\{t_{1}\right\}\right)\right) \\
& \left.\mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{E}^{1} \wedge w_{2} \epsilon T_{I}^{2} \wedge \neg\left(w_{1} \cap w_{2}=\phi\right) \wedge\left(\forall t_{1}\right)\left(t \epsilon w_{1}->w=\left\{t_{1}\right\}\right)\right)\right\}
\end{aligned}
$$

An example of the difference operation is given in Figure 4.
$\mathrm{T}_{1}$


$\mathrm{T}_{1}-\mathrm{T}_{2}$


Figure 4. An example of the extended difference operation.
Definition 2.5 Projection on elements of $\Psi_{R}$ is a mapping $\Pi: \Psi_{R}->\Psi_{R}$
Let $T_{1}$ be an E-table and A be a list of attribute numbers. Then, $\prod_{A}\left(T_{1}\right)=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined as follows:

$$
\begin{aligned}
& T_{D}=\left\{t \mid\left(\exists t_{1}\right)\left(t_{1} \epsilon T_{D}^{1} \wedge t[A]=t_{1}[A]\right) V\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge\left(\forall t_{1}\right)\left(t_{1} \epsilon w_{1}->t[A]=t_{1}[A]\right)\right)\right. \\
&\left.V\left(\exists w_{2}\right)\left(w_{2} \epsilon T_{I}^{1} \wedge\left(\forall t_{2}\right)\left(t_{2} \epsilon w_{2}->t[A]=t_{2}[A]\right)\right)\right\} \\
& T_{I}=\left\{w \mid\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{I}^{1} \wedge w=\prod_{A}\left(w_{1}\right) \wedge|w|>1\right\}\right. \\
& T_{E}=\left\{\begin{array}{l}
\text { a }
\end{array}\right\}\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{E}^{1} \wedge w=\prod_{A}\left(w_{2}\right) \wedge|w|>1\right\} \\
& T_{M}=\left\{w \mid\left(\exists w_{1}\right)\left(w_{1} \epsilon T_{M}^{1} \wedge w=\prod_{A}\left(w_{1}\right)\right\}\right.
\end{aligned}
$$

An example of the difference operation is given in Figure 5.
Definition 2.6 Cartesian product of elements of $\Psi_{R 1}$ and $\Psi_{R 2}$ is a mapping x: $\Psi_{R 1} \times \Psi_{R 2}->\Psi_{R 1 . R 2}$
Let $T_{1}$ and $T_{2}$ be I-tables such that $T_{I}^{1}=\left\{w_{1}^{1}, \ldots w_{m}^{1}\right\}$ and $T_{I}^{2}=\left\{w_{1}^{2}, \ldots w_{n}^{2}\right\}$.
Let $E=\left\{\left\{t_{1}, \ldots, t_{m}\right\} \mid(\forall i)\left(1 \leq i \leq m->t_{i} \epsilon w_{i}^{1}\right)\right\}$ and $\mathrm{F}=\left\{\left\{t_{1}, \ldots, t_{n}\right\} \mid(\forall i)\left(1 \leq i \leq n->t_{i} \epsilon w_{i}^{2}\right)\right\}$.
Let the elements of E be $E_{1}, \ldots, E_{e}$ and those of F be $F_{1}, \ldots, F_{f}$. Let
$A_{i j}=\left\{t \mid\left(\exists t_{1}\right)\left(\exists t_{2}\right)\left(t_{1} \epsilon T_{D}^{1} \wedge t_{2} \epsilon F_{I} \wedge t=t_{1} . t_{2}\right)\right.$
$V\left(\exists t_{1}\right)\left(\exists t_{2}\right)\left(t_{1} \epsilon E_{k} \wedge t_{2} \epsilon T_{D}^{2} \wedge t=t_{1} . t_{2}\right)$
$\left.V\left(\exists t_{1}\right)\left(\exists t_{2}\right)\left(t_{1} \epsilon E_{k} \wedge t_{2} \epsilon F_{I} \wedge t=t_{1} . t_{2}\right)\right\}$

GÜNDEM: Exclusive Disjunctions in Indefinite and Maybe Information in...,

T

$\Pi_{1}(\mathrm{~T})$


Figure 5. An example of the extended projection operation.
where $1 \leq k \leq e, 1 \leq l \leq f ; \mathrm{i}=\mathrm{k}$ if $\neg(\mathrm{e}=0)$ and $\mathrm{i}=0$ otherwise;
$\mathrm{j}=\mathrm{l}$ if $\neg(\mathrm{f}=0)$ and $\mathrm{j}=0$ otherwise.
Let $A_{1}, \ldots, A_{g}$ be the distinct $A_{i j} s$.
Then, $T_{1} \times T_{2}=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined as follows

$$
\begin{aligned}
T_{D}= & \left\{t \mid\left(\exists t_{1}\right)\left(\exists t_{2}\right)\left(t \epsilon T_{D}^{1} \wedge t_{2} \epsilon T_{D}^{2} \wedge t=t_{1} \cdot t_{2}\right)\right\}, \\
T_{I}= & \left\{w \mid\left(\exists t_{1}\right) \ldots\left(\exists t_{g}\right)\left(t_{1} \in A_{1} \wedge \ldots \wedge t_{1} \in A_{g} \wedge w=\left\{t_{1}, \ldots, t_{g}\right\}\right)\right\} \\
T_{E}= & \left\{w \mid\left(\exists t_{1}\right)\left(\exists w_{1}\right)\left(t_{1} \in T_{D}^{1} \wedge w_{1}=\left\{t_{11}, t_{12}, \ldots, t_{1 k}\right\} \epsilon T_{E}^{2} \wedge w=\left\{t_{1} \cdot t_{11}, t_{1} \cdot t_{12}, \ldots, t_{1} \cdot t_{1 k}\right\}\right)\right. \\
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{E}^{1} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{E}^{2}\right. \\
& \left.\left.\wedge w=\left\{t_{11} \cdot t_{21}, \ldots, t_{1 k} \cdot t_{21}, t_{11} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{2 m}\right\}\right)\right\} \\
T_{M}= & \left\{w \mid\left(\exists t_{1}\right)\left(\exists w_{1}\right)\left(t_{1} \in T_{D}^{1} \wedge w_{1}=\left\{t_{11}, t_{12}, \ldots, t_{1 k}\right\} \in T_{M}^{2} \wedge w=\left\{t_{1} \cdot t_{11}, t_{1} \cdot t_{12}, \ldots, t_{1} \cdot t_{1 k}\right\}\right)\right. \\
& V\left(\exists t_{1}\right)\left(\exists w_{1}\right)\left(t_{1} \in T_{D}^{2} \wedge w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{M}^{1} \wedge w=\left\{t_{11} \cdot t_{1}, t_{22} \cdot t_{1} \ldots t_{1 k} \cdot t_{1}\right\}\right) \\
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{I}^{1} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{M}^{2}\right. \\
& \wedge\left(w=\left\{t_{11} \cdot t_{21}, t_{11} \cdot t_{22}, \ldots, t_{11} \cdot t_{2 m}\right\}\right. \\
& V w=\left\{t_{12} \cdot t_{21}, t_{12} \cdot t_{22}, \ldots, t_{12} \cdot t_{2 m}\right\} \\
& \ldots \ldots, \\
& \ldots \ldots \\
& \left.\left.V w=\left\{t_{1 k} \cdot t_{21}, t_{1 k} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{2 m}\right\}\right)\right) \\
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{I}^{2} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{M}^{1}\right. \\
& \wedge\left(w=\left\{t_{21} \cdot t_{11}, t_{22} \cdot t_{11}, \ldots, t_{2 m} \cdot t_{11}\right\}\right. \\
& V w=\left\{t_{21} \cdot t_{12}, t_{22} \cdot t_{12}, \ldots, t_{2 m} \cdot t_{12}\right\} \\
& \cdots \cdots \\
& \ldots \ldots \\
& \left.\left.V w=\left\{t_{21} \cdot t_{1 k}, t_{22} \cdot t_{1 k}, \ldots, t_{2 m} \cdot t_{1 k}\right\}\right)\right) \\
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{E}^{1} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{M}^{2}\right. \\
& \left.\wedge w=\left\{t_{11} \cdot t_{21}, \ldots, t_{1 k} \cdot t_{21}, t_{11} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{2 m}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{M}^{1} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{E}^{2}\right. \\
& \left.\wedge w=\left\{t_{11} \cdot t_{21}, \ldots, t_{1 k} \cdot t_{21}, t_{11} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{2 m}\right\}\right) \\
& V\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1}=\left\{t_{11}, t_{12}, \ldots t_{1 k}\right\} \epsilon T_{M}^{1} \wedge w_{2}=\left\{t_{21}, t_{22}, \ldots t_{2 m}\right\} \epsilon T_{M}^{2}\right. \\
& \left.\left.\wedge w=\left\{t_{11} \cdot t_{21}, \ldots, t_{1 k} \cdot t_{21}, t_{11} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{22}, \ldots, t_{1 k} \cdot t_{2 m}\right\}\right)\right\}
\end{aligned}
$$

An example of the cartesian product operation is given in Figure 6.


$$
\mathrm{T}_{1} \times \mathrm{T}_{2}
$$



Figure 6. An example of the extended cartesian product operation.

Since $T_{1} \bigcap T_{2} \neq T_{1}-\left(T_{1}-T_{2}\right)$ in our extended algebra, we also define the intersection operator.
Definition 2.7 Intersection on $\Psi_{R}$ is a mapping $\bigcap: \Psi_{R} \times \Psi_{R}>\Psi_{R}$
Let $T_{1}$ and $T_{2}$ be two domain-compatible E-tables. Then, $T_{1} \bigcap T_{2}=\operatorname{ELIMRED}(\mathrm{T})$, where T is defined as follows:

$$
\begin{aligned}
T_{D}= & \left\{t \mid t \epsilon T_{D}^{1} \wedge t \epsilon T_{D}^{2}\right\} \\
T_{I}= & \left\{w \mid\left(w \epsilon T_{I}^{1} \wedge T_{D}^{2} \supset w\right) \wedge\left(w \epsilon T_{I}^{2} \wedge T_{D}^{1} \supset w\right)\right\} \\
T_{E}= & \left\{w \mid\left(w \epsilon T_{E}^{1} \wedge T_{D}^{2} \supset w\right) \wedge\left(w \epsilon T_{E}^{2} \wedge T_{D}^{1} \supset w\right)\right\} \\
T_{M}= & \left\{w \mid\left(\exists w_{1}\right)(\exists t)\left(w_{1} \epsilon T_{M}^{1} \wedge t \epsilon T_{D}^{2} \wedge t \epsilon w_{1} \wedge w=\{t\}\right)\right. \\
& \vee\left(\exists w_{1}\right)(\exists t)\left(w_{1} \epsilon T_{M}^{2} \wedge t \epsilon T_{D}^{1} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)(\exists t)\left(w_{1} \epsilon T_{E}^{1} \wedge t \epsilon T_{D}^{2} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)(\exists t)\left(w_{1} \epsilon T_{E}^{2} \wedge t \epsilon T_{D}^{1} \wedge t \epsilon w_{1} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)\left(w_{1} \epsilon T_{I}^{1} w_{2} \epsilon T_{I}^{2} \wedge t \epsilon w_{1} \bigcap w_{2} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(\exists w_{1}\right)\left(\exists w_{2}\right)(\exists t)\left(w_{1} \epsilon T_{I}^{1} \wedge t \epsilon T_{D}^{2} \wedge w=\{t\}\right) \\
& \mathrm{V}\left(w_{1} \epsilon T_{E}^{1} \wedge w_{2} \epsilon T_{I}^{2} \wedge w=w_{1} \bigcap w_{2}\right) V\left(w_{1} \epsilon T_{E}^{2} \wedge w_{2} \epsilon T_{I}^{1} \wedge w=w_{1} \bigcap w_{2}\right) \\
& \mathrm{V}\left(w_{1} \epsilon T_{E}^{1} \wedge w_{2} \epsilon T_{M}^{2} \wedge w=w_{1} \bigcap w_{2}\right) V\left(w_{1} \epsilon T_{E}^{2} \wedge w_{2} \epsilon T_{M}^{1} \wedge w=w_{1} \bigcap w_{2}\right) \\
& \mathrm{V}\left(w_{1} \epsilon T_{I}^{1} \wedge w_{2} \epsilon T_{M}^{2} \wedge w=w_{1} \bigcap w_{2}\right) V\left(w_{1} \epsilon T_{I}^{2} \wedge w_{2} \epsilon T_{M}^{1} \wedge w=w_{1} \bigcap w_{2}\right) \\
& \left.\mathrm{V}\left(w_{1} \epsilon T_{E}^{1} \wedge w_{2} \epsilon T_{E}^{2} \wedge w=w_{1} \bigcap w_{2}\right) V\left(w_{1} \epsilon T_{M}^{2} \wedge w_{2} \epsilon T_{M}^{1} \wedge w=w_{1} \bigcap w_{2}\right)\right\}
\end{aligned}
$$

An example of the cartesian product operation is given in Figure 7.


Figure 7. An example of the extended intersection operation.

The use of the new relational algebra in our model can be demonstrated with an example.
Example 2.1: Consider the following query about Mary's teachers:
$\prod_{3}\left(\sigma_{2=4}\left(\left(\sigma_{1==^{\prime} \text { mary' }}\right.\right.\right.$ takes $) \times$ teaches $\left.)\right)$.
Assume that we have the following stored E-tables for the relations takes (student, course) and teaches (teacher, course).
takes $_{D}=\{<$ john, CS421>, <mary, CS321>, <mary, CS335> $\}$ (John takes CS421. Mary takes CS 321. Mary takes CS 335.)
takes $_{E}=\{\{<$ john, CS415>, <john, CS495>\}\} (John takes either CS 421 or CS 495 but not both.) takes $_{I}=\{\{<$ mary, CS $364>,<$ mary, MATH310> $\}\}$ (Mary takes CS 364 or MATH 310 or both.)
takes $_{M}=\{\{<$ mary, ART201>, <mary, ART301> $\}\}$ (Mary may take only one of ART 201 and ART 301 or neither.)
teaches $_{D}=\{<$ ann, CS $321>,<$ jim, CS $364>\}$ (Ann teaches CS 321. Jim teaches CS 364.)
teaches $_{E}=\{\{<$ dick, CS $335>,<$ ed, CS $335>\}\}$ (Either Dick or Ed teaches CS335, but not both.)
teaches $_{I}=\{ \}$
teaches $_{M}=\{\{<$ tom,ART201>,$<$ tom,ART301 $>\}\}$ (Tom may teach only one of ART201 or ART301 or neither.)

The result of the query about Mary's teachers is an E-table Q as:
$Q_{D}=\{<$ ann $>\}$ (Ann is definitely Mary's teacher.)
$Q_{E}=\{\{<$ dick $>,\langle$ ed $>\}\}$ (Either Dick or Ed is Mary's teacher, but not both.)
$Q_{I}=\{ \}$
$Q_{M}=\{\{<$ tom $>,<\mathrm{jim}>\}\}$ (Tom may be Mary's teacher. Jim may be Mary's teacher.)

## 3. Conclusions

In this paper we presented a structure called an E-table which makes it possible to store exclusive and inclusive disjunctions and maybe information in relational databases. We also redefined the relational algebra operations to include exclusive disjunctions and defined an operator to get rid of redundancies in E-tables. The main contribution of this work is to make possible the storing of exclusive disjunctions, an often needed type of incomplete information. The concepts presented in this paper have been applied to LOGOB[8], a deductive data model with predicates representing object sets.

## References

[1] Liu, K. and Sunderraman, R., Indefinite and Maybe Information in Relational Databases, ACM Trans. on Database Systems, vol. 15, no. 1, March 1990.
[2] Codd, E. F., A Relational Model for Large Shared Data Banks, Commun. ACM, vol. 13, no. 6 (June 1970).
[3] Biskup, J., Extending the Relational Algebra with Maybe Tuples and Existential and Universal Null Values, Fundamenta Informaticae VII, 1 (1984), 129-150.
[4] Imielinski, T. and Lipski, W, On Representing Incomplete Information in a Relational Database, In Proceedings of the 7th International Conference on Very Large Data Bases (Cannes, Sept. 1981), IEEE, New York, 1981, pp 389-397.
[5] Liu, K. and Sunderraman, R., A Generalized Relational Model for Indefinite and Maybe Information, IEEE Trans. on Knowledge and Data Engineering, vol. 3, no. 1, March 1991.
[6] Zaniolo, C., Database Relations with Null Values, J. Comput. Syst. Sci., 28, 1 (Feb. 1984), 142-166.
[7] Lipski, W., Jr., On Databases with Incomplete Information, Journal of the ACM, Vol. 28, no. 1, Jan. 1981.
[8] Savas, E. and Gundem, T., Handling Incomplete Information in LOGOB, In Proceedings of the 7th International Symposium on Computer and Information Sciences, (Antalya, Nov. 1992).


[^0]:    *This study was supported by Boğaziçi University Research Fund under grant number 92A0117.

