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Abstract

The aim of this study is to classify electromyogram (EMG) signals for controlling multifunction

proshetic devices. An artificial neural network (ANN) implementation was used for this purpose. Au-

toregressive (AR) parameters of a1, a2, a3, a4 and their signal power obtained from different arm muscle

motions were applied to the input of ANN, which is a multilayer perceptron. At the output layer, for

5000 iterations, six movements were distinguished at a high accuracy of 97.6%.
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1. Introduction

The analysis of muscle dynamics has been employed for a variety of applications, including prosthesis control
and discrimination of movements. Control of a multifunctional prosthesis can be implemented by using
myoelectric signals obtained from a couple of surface electrodes. This is particularly evident in cases where
the patient has lost his/her arm at a point distal to his/her elbow. The control strategy used in the work
evaluates the set of parameters of each movement via myoelectric signals obtained from almost identical
muscle contractions. The prosthesis is assumed to do six different movements. These are elbow flexion
and extention, wrist supination and pronation and finally grasp and resting. By using these parameters,
it is possible to classify different muscle contractions. Each class of muscle contraction is used to trigger
a particular function inteh prosthetic device. It is made sure that muscle contraction produces the right
signals for the required movement.

D. Graupe has first shown that muscle contraction could be defined from EMG signals [1,2]. He has

suggested the idea of using a time series model of EMG signals to identify a control strategy [3]. G. N.
Saridis and T. P. Gooteee have done statistical analysis of EMG signals occurring in the biceps and triceps
of patients with amputated or paralyzed arms [4]. Other multifunction prostheses have been developed

using several channels of amplitude coding [5]. These require the existence of several electrode sites that
are usually difficult if not impossible to locate on high level amputees. The Swedish hand and Utah arm
have been used with some success in combination with an electric hand, but this has required the use of a
mechanical switching arrangement or a switch-based quick co-contraction to select which of the two devices
is to be controlled [6,7]. More elaborate multifunction prostheses have been attempted, but the result is that

training the user to isolate the required number of control muscles is impractical, if not impossible [8].
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Kelly et al. have suggested a multifunctional control design based on EMG signal classification by
using different type of artificial neural networks (ANN) and utilizing Graupe’s work [9]. Their success rate

for classification was arount 90% for four movements. Later Hudgins et al. implemented a multifunctional
myoelectric control [10] based on Kelly et al.’s work, with a success rate of 92% for classification of the four
movements using ART 2.

In this study, multilayer perceptron network classification of the six movements was done using the
time series model parameters of the signals obtained from the biceps and triceps at an average success rate
of 97.6% for 5000 iterations.

2. Background

2.1. The Autoregressive (AR) Method

In order to obtain the complete linear information content of the EMG signals, it is essential that data
reduction be employed as far as possible to reduce the dimensions the problem without loss of information.
This is achieved, in our approach, by means of first employing signal identification. Noting that the recorded
EMG signal represents a time series that is essentially stochastic, our algorithm consists of identifying the
parameters of the time series that is recorded in terms of an autoregressive (AR) model, given by

Sk = −
p∑
i=1

aiSk−i + ek (1)

Sk denoting the recorder signal (kth discrete time), ai being the AR parameters, p being the order of the
AR model, and ek being white noise.

The use of an AR model in this problem has several advantages. It can be proven that a stationary time
series can be represented by an AR model as above [11]. Although the EMG signal is not fully stationary, it
is sufficiently stationary for each limb function considered, to yield AR parameters whose range of variations
with time are small enough to facilitate discrimination between limb functions.

The linear AR model is fully optimal only if Sk is Gaussian, and is otherwise only linearly optimal,
i.e., the best linear model for Sk . Hence, in the non-Gaussian case, a non-linear signal model would be
required for full optimality [11]. However, without prior parameter knowledge, which is not available in our
problem, no identification of an optimal model is possible in the general case, and if it were possible it would
be too lengthy and too complex from a computational point of view to be of use in a concrete prosthesis
application. Furthermore, one can show that the EMG signal can be considered as a n outcome of a sequence
of impulses with independent Poisson-distributed intervals passed through a linear filter. Since the muscles
involved are usually (in the biceps or triceps) actuated by a large number (several hundred, for example) of
motor units, the average interspike interval is small compared with the dominant time constant of the linear
filter involved. Assuming the practical average interspike interval concerned is of the order of t=0.1s, and
assuming that N=200 motor units are involved in the muscle contraction, the Poisson rate is λ=N/t=2000.
This Poisson rate implies that the EMG signal involved closely fits a Gaussian process. In this study, the
partial autocorrelation (PARCOR) algorithm is used in order to obtain AR parameters [12, 14].
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2.2. Artificial Neural Networks (ANN)

Recently, it has been shown that neural networks are able to solve various complex problems [13]. On the
other hand, multilayered feed-forward networks have a better ability to learn the correspondence between
input patterns and teaching values from many sample data by the error back-propagation algorithm [14].
Therefore, in this paper we used a three-layered feedforward neural network and trained it by error back-
propagation. The neural network’s software was written by the investigators and we employed back-
propagation in a supervised learning paradigm in which the generalized delta rule was used in adjusting
the weight values. Figure 1 shows a general structure of a neural network. Each layer is fully connected to
the previous layer, and has no other connection. The output Oj of each unit j is defined by

Oj = f(netj), netj =
∑
i

wjiOi + θj (i ∈ preceding layer) (2)

where Oi is the output of unit i, wij is the weight of the connection from unit i to unit j, θj is the bias

of unit j,
∑
i is a summation over every unit i whose output flows into unit j, and f(x) is a monotonously

increasing function. In practice, a logistic activation function (sigmoid function) f(x)=1/(1+exp(-x)) is
used.

Output layer

Hidden layer

Input layer

Unit k

Unit j

Figure 1. Ordinary type neural network

When the set of m-dimensional input patterns {ip = (ip1, ip2, . . . , ipm); p ∈ P } where P denotes set of

presented patterns, and their corresponding desired n-dimensional output patterns {tp(tp1, tp2, . . . , tpm); p ∈
P } are provided, the neural network is trained to output ideal patterns as follows. The squared error function
Ep for a pattern p is defined by

Ep =
1
2

 ∑
j∈output

(tpj − opj)2

 (3)

tpj : target (desired) value, opj : actual network output value.

The purpose is to make E =
∑
p Ep small enough by choosing appropriate wij and θij . To realize

this purpose, a pattern p ∈ P is chosen successively and randomly, and then wij and θj are changed by

∆pwji = −ε(∂Ep/∂wji) (4)

∆pθj = −ε(∂Ep/∂θj) (5)
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where ε is a small positive constant. By calculating the right hand side of (4) and (5), it follows that

∆pwji = εδpjOpi (6)

∆pθj = εδpj (7)

where

δpj =
{
f ′(netj)(tpj −Opj)(when j belongs to the output layer.)
f ′(netj)

∑
k wkjδpk(otherwise) (8)

Note that k in the above summation represents every unit k in the layer following the layer of j (unit

j). In order to accelerate the computation, the momentum terms are added in (6-7),

∆pwji(n+ 1) = εδpjOpi + α∆pwji(n) (9)

∆pθj(n+ 1) = εδpj + α∆pθj(n) (10)

where n represents the number of learning cycles, and α is a small positive value. In this study, by trial and
error the optimum α and ε constant values were determined to be: α=0.1, ε=4.

3. Methods and Results

This work aims at evaluating a logical strategy to drive the motors of the prosthesis. This strategy is
obtained via EMG signals extracted from the biceps and triceps muscles of the arm. The control design used
to obtain the strategy is presented in Fig. 2. As can be seen in the figure, controller design comprises the
phases (steps) of initial signal processing, characterization, classification, and decision making. In the first
phase, the EMG signal is detected using a pair of surface Ag-AgCl electrodes. The electrodes are placed
on fat biceps 3 cm distant from each other and behind the triceps. The EMG signal obtained from the
electrodes is amplified and passed through a low-pass filter to be sent to the level determining circuit. In the
second phase, A/D conversion, data recording, and AR modeling are done. At the last stage, the decision is
made by classifying the AR parameters using ANN.
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Figure 2. Myoelectric Control of a Multifunction Prosthesis
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Figure 3. The effect of AR parameters on error rate

EMG signals were obtained from a 26-year-old healthy man for elbow flexion and extension, wrist
supination and flexion and grasp and resting. Each movement was repeated 6 times and for each movement
4800 samples were taken within 1 second. Some data at the beginning and at the end of the data of 4800
were extracted in order for the rest to be linearized. During the experiment, great care was taken to use
the same muscle each time for the same arm movement. When the EMG signals were processed, they were
normalized and the DC levels were found. By subtracting the DC level from each sample the signals were
made to have a mean value of zero. Samples of 4800 were split into 12 segments of 400 samples (80 ms).
Each segment was multiplied with a Blackman type window function to perform windowing. Typical AR
model parameters obtained from recording EMG signals from two movements are given in Tables 1 and 2
[15]. AR parameters of a1, a2, a3, a4 and their signal power were applied to the input of ANN, which is
a multi-layer feed-forward perceptron. Training was done by back-propagation algorithm. During network
training, the controller collects 12 sample feature sets for each contraction. This group of training feature
sets is presented to the neural network with corresponding class outputs. The back-propagation algorithm
then adjusts the network weights from preset random values to reduce the output error to some specified
value. The desired output was set to 0.9 if it was the largest network output, and to 0.1 otherwise. The
error between the actual network output and desired output is used to update the network weights, which
are being continually modified by the most recent patterns presented to the classifier. The learning rate for
the back-propagation rule is kept small so that the long-term trends in the generated patterns produce the
desired weight adaptation.

Table 3 shows how many of the 12 patterns given are recognized by all movements. Six movements
are included: resting (R), elbow flexion (EF), elbow extension (EE), wrist supination (WS), wrist pronation

(WP) and grasp (G). For 100 iterations, all patterns of resting and elbow flexion are recognized where as
none of the patterns of wrist supination and grasp are recognized. Four of the wrist pronation and 5 of the
elbow extensions can be identified. On the other hand, the patterns of 2 wrist pronations, 2 elbow extensions
and 7 elbow flexions are wrongly recognized. For 500 iterations, elbow extension movement is recognized for
all patterns and this is achieved for wrist pronation and grasp for 600 iterations. After 2000 iterations all
patterns are recognized. This is because the values of wrist supination and grasp are close to each other.

The recognition percentage was found to be 96.1% for 3000 iterations, and 97.6% for 5000 iterations
assuming gain (learning rate) ε=4, and a momentum coefficient of α=0.1. The ANN programming language
is Turbo Pascal, and a PC with a Pentium 90 processor was used for the calculations.
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Table 1. AR parameters of elbow extension

a1 a2 a3 a4

-2.2914128854E+00 1.4157880401E+00 1.5643946565E-01 -2.7576257484E-01
-2.2236665563E+00 1.1925184658E+00 3.7804077194E-01 -3.4387288667E-01
-2.5605990742E+00 2.1284516167E+00 -4.7985836909E-01 -8.5217132090E-02
-2.1855094142E+00 1.1668151587E+00 3.5497629656E-01 -3.0421272700E-01
-2.1335049591E+00 1.0162656173E+00 4.8782226231E+01 -3.6814453276A+01
-2.3205685494E+00 1.3983241604E+00 2.496231425E-01 -3.2406063327E-01
-2.2736460701E+00 1.3090069187E+00 3.0759887510E-01 -3.4078144846E-01
-2.1544811453E+00 1.0935288607E+00 3.894865289E-01 -3.2407480865E-01
-2.2177809049E+00 1.1889682963E+00 4.0943813260E-01 -3.7655125553E-01
-2.3595552024E+00 1.5141832312E+00 1.3451033751E-01 -2.8448465373E-01
-2.3105310227E+00 1.4117335132E+00 2.0540127137E-01 -3.044298559E-01
-2.0866797895E+00 9.1354732122E-01 5.1311636760E-01 -3.3697516577E-01

Table 2. AR parameters of elbow flexion

a1 a2 a3 a4

-2.3542062185E+00 1.4851184597E+00 1.4528583345E-01 -2.7379972680E-01
-2.4726544348E+00 1.8385442000E+00 -2.0527237386E-01 -1.5744447000E-01
-2.4573193843E+00 1.7527869504E+00 -8.63436033770E-02 -2.0686584583E-01
-2.3926002892E+00 1.6307035562E+00 9.9958495213E-03 -2.4512770954E-01
-2.3730717435E+00 1.5655434941E+00 3.6312152113E-02 -2.2689045467E-01
-2.2351576581E+00 1.2796459202E+00 2.7017863040E-01 -3.1305935123E-01
-2.4544280426E+00 1.7943195752E+00 -1.2409796096E-01 -2.1258192259E-01
-2.6320357985E+00 2.2931298851E+00 -6.1287175187E-01 -4.5692505305E-02
-2.5094879915E+00 1.9042301538+00 -2.0069102896E-01 -1.9150689238E-01
-2.3592941518E+00 1.5443889449E+00 7.4672604464E+02 -2.5650593923E-01
-2.5892689199E+00 2.1397847674E+00 -4.3889054107E-01 -1.1007795451E-01
-2.4751362659E+00 1.8528491083E+00 -2.1320267626E-01 -1.8249904129E-01

Table 3. Testing results of six arm movements as a function of iteration

Iteration Resting WristS. Grasp WristP. ElbowE Elbow Movements of False
number (R) (WS) (G) (WP) x(EE) Fl(EF) Recognition

100 12 0 0 4 5 12 2WP,3EE,7EF
200 12 0 0 6 8 12 8WP,4EE,4EF
300 12 1 1 8 9 12 5G,2WS,4EE,3EF
400 12 1 6 9 11 12 10G,2WS,3EE,1E
500 12 1 6 11 12 12 11G,1WP,1EE
600 12 1 11 12 12 12 11G
800 12 1 12 12 12 12 11G
1000 12 2 12 12 12 12 10G
1200 12 3 12 12 12 12 9G
1500 12 8 12 12 12 12 4G
1800 12 11 12 12 12 12 1G
2000 12 12 12 12 12 12 0
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4. Conclusion

This work was done concerning the classification of myoelectric signals by a multilayer neural network which
has a stable feature. Previous studies have required high iteration of patient training for good-distinction
of myoelectric signals. In practice, neural network classifiers are well-suited for reducing the amount of
patient training required. It also has the feature that the commands concerning the desired movement are
received directly. For that reason, in this method, the network can easily adapt itself to the special types of
signals which are produced by the patient. For example, when a different elbow-extension signal is sent by
the patient, the neural network decides on the similarity of this to the trained elbow-extension signal, and
then the elbow-extension state must be 0.9 (logical 1) and the others must be 0.1 (logical 0), at the output.

This process is carried out easily and very fast (i.e., for real-time application) in the test phase of an ANN
program which we modified.

In this work, input values of neural network data were received from the patient, and there was no
loss of data. Values were rounded to three decimal places. The values aliasing from the AR parameters of
the six different movements were also taken into account. If they are distinguished, then it is clear that the
training percentage will rise more. Although Kelly et al. have claimed that it is sufficient to use only the
parameter a1 and that the other parameters have no real effect on the learning rate, in the present study
it has been shown that the AR parameters, such as a2, a3 and a4 , affect the learning the rate. As can be
seen from Figure 3, if the number of AR parameters is increased in the input of neural network, the error
rate of calssification is reduced. In another words, it is better to differentiate the learning rates of the types
of muscle movement. In addition, the first time, in this work, six movements were distinguished at a high
accuracyy rate, 96.1% for 3000 iterations. As mentioned in the introduction, the previous highest recognition
rate was 92% for four movements, also at about 3000 iterations.

In the future, this experimentally implemented work can be performed by engineers and medical
doctors in cooperation. The six basic movements can be investigated more specifically with the aid of
developments in computers and other technological fields (electrodes, interfacing, etc.). For example, patients
can also be trained to perform some extra movements, such as slow, middle, and fast elbow flexion. This
kind of myoelectrically controlled prosthesis is mounted to extensor and flexor muscles if the patient has lost
his/her arm somewhere under his/her elbow, and to the biceps, triceps and deltoid muscles if the patient has

lost of his/her arm somewhere above his/her elbow (as we had for this study). According to the patient’s

level of amputation, one, two, or all of the muscles (biceps, triceps, and deltoid) can be used.
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