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Abstract

Diameter-conditioned distribution functions of peak ratio (“peak”/diameter) and position ratio (“time to
peak”/diameter) of topological width functions of small networks were obtained analytically. Here diameter
is also the main stream length of the network. This is done by using translation routing, which is the simplest
case of linear routing schemes. A new concept, “junction configuration”, which is a characteristic property
for the IUH (instantaneous unit hydrograph) of the network, is introduced. Another scheme combining
the concepts of diffusion routing and width function was applied, and diameter-conditioned distribution
functions of dimensionless peaks and dimensionless positions of the IUH were obtained analytically. The
results of translation routing and diffusion routing approaches were compared and the results of this study
were compared with those of existing literature.

Key Words: Instantaneous unit hydrograph, river network, width function, translation routing, diffusion
routing.

Küçük Akarsu Ağları için Enstantane Birim Hidrograf Pik Karakteristiklerinin
Dağılımları

Özet

Küçük ağların topolojik genişlik fonksiyonlarının pik oranı (“pik”/çap) ve konum oranlarının (“pike
olan zaman”/çap) çap koşullu dağılım fonksiyonları analitik olarak elde edilmiştir. Burada çap ağın ana
kol uzunluğu olmaktadır. Bu, lineer öteleme modellerinin en basiti olan kinematik öteleme kullanılarak
yapılmıştır. “Düğüm noktası konfigürasyonu” adı ile anılan ve EBH (enstantane birim hidrograf)’ın karak-
teristik bir özelliği olan yeni bir kavram ortaya konulmaktadır. Bir başka yaklaşım, difüzyon ötelemesi ile
genişlik kavramının birleşimi kullanılarak EBH’ın boyutsuz pikleri ve boyutsuz konumlarının çap koşullu
dağılım fonksiyonları analitik olarak elde edilmiştir. Kinematik öteleme yaklaşımı sonuçları ile difüzyon
ötelemesi yaklaşımı sonuçları karşılaştırılmış, ayrıca bu çalışmanın sonuçları mevcut literatür sonuçları ile
karşılaştırılmıştır.

Anahtar Sözcükler: Enstantane birim hidrograf, akarsu ağı, genişlik fonksiyonu, kinematik öteleme,
difüzyon ötelemesi.
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Introduction

In the planning, design, construction and operation
phases of hydraulic structures the main variable to
be known is the amount of river flow. There are sev-
eral approaches for determining this variable. There
are stochastic methods as well as methods which
make use of the geomorphology of the river basin and
the topology of the river network. The IUH (instan-
taneous unit hydrograph) of a river basin is a classi-
cal tool commonly used as a component in rainfall-
runoff modeling. One of the approaches found in lit-
erature to determine the IUH in relation to geomor-
phological basin characteristics is the use of width
function. The width function concept will be ex-
plained in a further paragraph in detail. In this ap-
proach IUH is similar to the width function in case of
pure translation routing. Translation routing is the
simplest method which can be used. Diffusion rout-
ing, a more sophisticated method, is also of subject
which is expected to produce more realistic results.

In this study, firstly, for a given main stream
length, the cumulative p.d.f.’s of the “peak” and
“time to peak”s (position of the peak) of the IUH for

small networks are obtained analytically, producing
the IUH’s with the width function approach. Sec-
ondly, the same thing is done by producing the IUH’s
with a method developed in a previous work (Oğuz,
B., 1994), this new method is a combination of the
concepts of diffusion routing and width function. A
comparison is made of the results obtained by the
two methods.

General Information About River Networks

A channel network has points farthest upstream
known as sources, and a point farthest downstream
known as the outlet. The point at which two chan-
nels combine to form one channel is called a junction.
A link is a segment of channel network between two
successive junctions or between the outlet and the
first junction upstream or between a source and the
first junction downstream. The main stream length
of the network is denoted by λ. This magnitude is
also called the diameter of the network.

[2,1,1] [2,1,1] [2,2]

Figure 1. Three 6-source channel networks which are topologically different.
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Figure 2. Hypothetical drainage basin and width function, N(x)
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The important concept topology was first intro-
duced into geomorphology by Shreve in 1966 (Smart,
1972). The number of sources, links and junctions of
a channel network and the branching system of the
network are topological characteristics of a network.

In Fig. 1, three channel networks with 6 sources
are seen, of which the topologies are different.
We know from previous literature that the number
of topologically distinct channel networks (TDCN)
would be 2, 5, 14 and 42 for networks with 3, 4, 5
and 6 sources, respectively (Smart, 1972). For exam-
ple, a network with 5 sources may have 14 different
network configurations and no more.

The width function is the “width”, in a sense, of
the network drawn against a distance x from the out-
let. The width of the channel network is symbolized
by the number of links (N(x)) that exist at a certain
distance x from the outlet (Fig. 2). This concept is
similar to what is known as the time-area diagram.
Once the channel network is known, it is quite easy
to determine its width function. The property of
the network which will effect the hydrograph at the
outlet is its width function. Given the number of
sources, the number of all possible width functions
remains much lower than the number of TDCN’s.

A new concept, junction configuration, is
defined as the numbers of junctions having i
junctions between themselves and the outlet as
[a1, a2, . . . , ai, . . . , an] where n=k-1(k:termination
level of the network). In Fig. 1, 3 different TDCN’s
are seen for a network with 6 sources. The junc-
tion configuration of (a) and (b) are the same [2,1,1],
whereas the junction configuration of (c) is differ-
ent [2,2]. As an example [2,1,1], notation shows the
number of junctions having only 1 junction between
themselves and the outlet is 2; the number of junc-
tions having 2 junctions between themselves and the
outlet is 1; the number of junctions having 3 junc-
tions between themselves and the outlet is 1. Each
junction configuration has one width function corre-
sponding to it.

For networks of a given diameter λ, the mini-
mum and the maximum source numbers that can be
of subject are given by the following equalities:

µmin = λ µmax = 2λ−1 (1)

(Agnese et al., 1998)

Translation Routing and the Width Function

Translation routing is one of the cases of linear rout-
ing for which the one-dimensional general flow equa-
tion can be solved. The simplest case is pure trans-
lation with constant velocity V. In the case of trans-
lation routing, it would be expected that the IUH
can be described entirely by basin geometry. Ag-
nese and D’Asaro (1990) argue that the distribution
of link lengths do not play an important role in the
prediction of peak characteristics. Thus one may as-
sume constant link lengths (L).

If rainfall particles are injected instantaneously
and uniformly at all the junctions and sources of the
network in Fig. 2, these particles will travel a dis-
tance of a link length L during a time unit of L/V.
The particle injected at the junction at level one will
reach the outlet in one time unit. The particles in-
jected at the junctions at level two will arrive at the
outlet in two time units. In general, particles injected
at junctions or sources at level i will reach the outlet
in i time units. In other words, if Ni stands for the
width function value at level i, then Ni/

∑
Ni, per-

cent of the total particles will arrive at the outlet in
i time units. The total response of the network will
be the same as the width function with the abscissa
in units of time (L/V) instead of distance x. To find
the unit response of the network at the outlet the
width function values at all the levels, (Ni) must be
divided by 2µ-1, which is the total number of sources
and junctions. The unit response or the IUH can also
be considered as the p.d.f. of the arrival times (Ta)
of the particles to the outlet.

Pr(Ta = i time units) = Ni/(2µ− 1) (2)

λ-Conditioned CDF of Peaks and “Time to
Peaks” of Width Function

Agnese et al., (1998) have obtained the λ-conditioned
empirical probability densities of peak ratio (peak/λ)
and position ratio (“time to peak”/λ) of the topo-
logical width function for λ ranging from 32 to 512.
The networks they consider are large networks and
their results are empirically obtained by simulation.

In this study, an analytical approach is used for
the solution of the same problem. However, as will
be explained further on, the use of this approach lim-
ited the work to small main stream lengths, that is,
λ’s. Agnese et al. (1998) have obtained probability
densities of magnitudes which have certain dimen-
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sions. The aim of this study is to obtain the same
distributions for dimensionless magnitudes.

For a given main stream length (λ), all the
junction configurations must be determined, each
of which will produce its own width function. For
a given λ, the minimum and maximum numbers
of sources that will be of subject are given by
Eq. (1). Then by mathematical induction of
the problem, it is seen that for a given λ and
µ(magnitude=number of sources), the junction con-
figuration [a1, a2, . . . , ai, . . . , aλ−2] must be made up
of (λ-2) positive integers, the sum of which is equal

to (µ-2):

a1 + a2 + . . .+ aλ−2 = µ− 2 (3a)

Following inequalities must be satisfied since the
number of junctions at level 1 or i cannot exceed
twice the number of junctions at level i-1.

a1 ≤ 2, a2 ≤ 2a1, . . . , ai+1 ≤ 2ai, . . .
, aλ−2 ≤ 2aλ−3 (3b)
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Figure 3. λ-conditioned distribution functions of the peak ratios (a) and position ratios (b) of the topological width
functions.
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Figure 4. λ-conditioned distribution functions of the normalized prak (a) and position (b) of the topological width
functions.

Then, the problem of finding all junction config-
urations [a1, a2, . . . , ai, . . . , aλ−2] for given λ within
an interval of µmin and µmax for that λ turns into
a problem of partitioning of mathematics, satisfying
the conditions given in eq. 3b. This is done with
the help of Mathematica 3.02, and all possible junc-
tion configurations for λ=4,5,6 are determined. The
width functions (the “peaks” and “time to peaks”)
corresponding to the junction configurations can be
obtained easily.

A second problem related to a junction configura-
tion that must be solved is the probability of a junc-
tion configuration for a given λ. It is assumed that

the probabilities of bifurcation and non-bifurcation
are equal to 0.5 and that the branching of level i+1
independent of that of level i. As an example, look-
ing at one of the [2,1,1] networks in Fig. 1, it is seen
that, at the second level, the two links both succeed
in bifurcating. At the third level, only one of the four
links succeeds in bifurcating and the other three fail
to bifurcate. At the fourth level, only one of the two
links succeeds and the other fails. Therefore, the
probability of junction configuration [2,1,1] can be
written following the Bernoulli distribution as
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Pr[2, 1, 1] =
(

2
2

)
0.520.50︸ ︷︷ ︸

Prob. of 2 successes

at 2 trials

×
(

4
1

)
0.510.53︸ ︷︷ ︸

Prob. of 1 success

at 4 trials

×
(

2
1

)
0.510.51︸ ︷︷ ︸

Prob. of 1 success

at 2 trials

If this procedure is generalized for junction con-
figuration [a1, a2, . . . , ai, . . . , an], the following ex-
pression is obtained,

Pr[a1, a2, . . . , ai, . . .an] =
n∏
i=1

(
2ai−1

ai

)
0.5ai0.5(2ai−1−ai) a0 = 1 (4)

which can be simplified as

Pr[a1, a2, . . . , ai, . . .an] =
n∏
i=1

(
2ai−1

ai

)
0.52ai−1 a0 = 1 (5)

However, the probabilities of junction configura-
tions as computed above for a certain λ do not sum
up to one. Therefore, after calculating the proba-
bilities of all the junction configurations which form
a population for a certain λ, these probabilities are
normalized by dividing them by their sum. Thus, for
each λ, all possible “peak” and “time to peak” val-
ues of the width function with their corresponding
normalized probabilities are found.

Then the λ-conditioned c.d.f.’s of the peak ratios
(M/λ) and the position ratios (P/λ) of the topolog-
ical width function are obtained for λ=4,5,6 (Fig.
3a,b). M and P stand for the peak and the position
of the peak of the width function. λ main stream
length is in units of [kL]. The units of M and P are
[V/L] and [L/V] respectively. Consequently, peak
ratio and position ratio are in units of [V/kL2] and
[1/Vk], respectively. In these figures, the results of
Agnese et al. (1998) obtained for large networks by
simulation are shown for comparison. The c.d.f.’s
of Agnese et al. are not very accurate since these
curves are transferred into Figs. 3a, b by reading
values from their figures. The agreement of results

obtained analytically in this study and the results
of Agnese et al. (1998) obtained by simulation is
quite good. Agnese et al. found that E[M/λ]∼=0.5
independent of λ. This is also true for Fig. 3a. Ag-
nese et al.(1998) give a value of E[M/λ]=0.60 for
λ=32, and one can conclude from their results that
a greater E[M/λ] must be expected for smaller λ’s.
The P/λ value corresponding to F(0.50) in Fig 3b is
0.7, in agreement with the above cited findings. The
λ-conditioned c.d.f.’s of Fig.3a for λ=4, 5, 6 and of
Fig. 3b for λ=5, 6 (the c.d.f. for λ=4 has only 3
points) are quite close, showing the scale invariance
property of the peak and distance to peak of the
topological width functions.

A second way of expressing the topological width
function would by normalizing it so that it can cor-
respond to the IUH of the network. The normalized
peak is equal to

m = M/(2µ− 1) (6)

(Gupta and Waymire, 1983; Agnese et al., 1998).
The c.d.f. of the normalized peak and the c.d.f. of
the position corresponding to this case are given in
Figs. 4a and b. The simulation data results of Ag-
nese et al. (1998) show that E[m] for λ=6 is 0.28,
which is exactly the value read from Fig. 4a for λ=6
corresponding to F(0.50). At this point, it should
be noted that the normalized peak (m) in Fig 4a is
the response of the network to unit input and its di-
mension is [1/T] and the dimension of P in Fig 4b is
[T].

Diffusion Routing with Width Function

There are several methods used for flow routing. Dif-
fusion wave routing is one type of the distributed
(hydraulic) models used for this aim. Diffusion rout-
ing can be considered as a more realistic model than
translation routing. In this model, the impulse re-
sponse function is given as follows:

h(x, t; β) = x(4πβ2t
3)−1/2exp[−(4β2t)−1(β1t−x)2](7)

β1 = 1.5V (8)

and

β2 = (2SB)−1q(1− F 2) (9)

In eq.’s 6 and 7,
V is velocity, B is width,
q is discharge, F is the Froude number,
So is slope.
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The impulse response function (Eq.(7)) is given
for one-dimensional routing of flows in channels that
are wide and rectangular, and in which the frictional
effects are assumed to follow the Chezy law (Trout-
man and Karlinger, 1985).

Eq. (7) shows the response of a channel subject
to an instantaneous upstream input which is at a
distance of x (impulse response function). Eq. (7)
can be interpreted as the p.d.f. corresponding to
the travel time of a drop travelling a distance of x.
This equation is not a dimensionless equation, the
response h(x, t;β) is in units of [1/T].

In case the following definitions are made,

h? =
h

SV/y
dimensionless response (10a)

t? =
t

y/SV
dimensionless time (10b)

x? =
x

y/S
dimensionless distance (10c)

the non-dimensionalized form of Eq. (7) can be ob-
tained as follows:

h?(x?, t?) = x?[2π(1− F 2)t?3]−1/2

exp

[
−(1.5t? − x?)2

2(1− F 2)t?

]
(11)

where y is the depth of water.
Since Eq. (7) and Eq. (11) can be interpreted as

p.d.f.’s, the area under them must be equal to unity.
Introduction of diffusion routing into the width

function can be done by the following formulation:

U(t) =
∑

x h(x, t), N(x)∑
N(x)

(12)

U(t) will be the IUH satisfying the condition that
the area underneath it is equal to unity. If we use
the dimensionless response h?(x?, t?), then we obtain
the dimensionless IUH U? versus dimensionless time
t?. Here U? is defined as follows: (Oğuz, 1994).

U? =
U

SV/y
(13)

λ-Conditioned C.D.F.of Peaks and “Time to
Peaks” of Diffusion Routing Hydrograph

Eq. (11) is applied to all the networks symbolized by
their junction configurations for λ=4,5,6. In order to

perform diffusion routing, values must be assigned to
Froude number, depth of water and the slope. These
values are selected as F=0.2, y=1m and S=0.0003 as
common values in nature. Thus V=0.626 m/sec.

In order to find the IUH of a network, calcula-
tions at different x distances from the outlet must
be made. These x distances are selected at equal ∆x
distances from the previous one. Also calculations at
∆t intervals must be made. In this case, ∆x and ∆t
are chosen as 50m and 1 min, respectively. The link
lengths of the networks were assumed to be equal and
a value of 1000 m was assigned. Thus the c.d.f.’s of
peaks m? and positions P ? of the dimensionless IUH
of diffusion routing (width function combination) for
the above case are given in Figs. 5a, b.

In order to compare the results of diffusion
routing-width function scheme, which are dimension-
less (Figs. 5a, b), with those of translation routing-
normalized width function scheme, which have di-
mensions (Figs. 4a, b), Figs. 4a and b must be
transformed into a dimensionless form. The peak of
the normalized width function, m, in Fig. 4a has a
dimension of [1/T]. One time interval belonging to
the normalized width function must be equal to the
link length divided by the velocity,

1000
0.626

m

m/sec
= 1597sec

Thus the dimensionless time using Eq. (10b) is,

t? =
t

y/SV
=

1597
1/(0.0003× 0.626)

= 0.3

Since the peak of the normalized width function
m in Fig. 4a has a dimension of [1/T], the c.d.f.
of dimensionless width function peak m? is obtained
(Fig. 6a) by dividing m values by 0.3. Parallel to
this, the P values in Fig. 4b have a dimension of [T].
The c.d.f. of dimensionless position P ? is obtained
(Fig. 6b) by multiplying the P values by 0.3. Now
dimensionless c.d.f.’s of IUH peak characteristics of
Fig. 5a,b can be compared.

Looking at Figs. 5a and 6a, almost the same
results are obtained with respect to the median.
The corresponding dimensionless IUH peak values
(m?) by diffusion routing corresponding to F(0.50)
for λ=6,5,4 are 0.9, 1.1, 1.4, respectively. On the
other hand, the values (m?) by translation routing
corresponding to F(0.50) for λ=6,5,4 are 0.96, 1.05,
1.15, showing a great similarity. However, for other
F values, the agreement between the diffusion rout-
ing results and those of translation routing are not
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very good due to the greater variance of the trans-
lation routing dimensionless IUH peak values than
that of those of diffusion routing.

Comparing Figs. 5b and 6b, it is seen that the
dimensionless position of IUH peak (P ?) remains
greater for the translation routing case than the dif-
fusion routing case in general. The variance of P ?

for the translation routing case is greater than that
for the diffusion routing case.

Conclusions

Distribution functions of IUH peak ratios and posi-
tion ratios obtained for small networks by an analyt-
ical approach agree well with the results of Agnese et

al. (1998) obtained by simulation for large networks.
The analytical results show the scale invariance prop-
erties of the peak of the width function.

Distribution functions of dimensionless IUH
peaks for diffusion routing and for translation rout-
ing coincide with respect to the median, with the
variance of the latter remaining greater than that of
the former.

The dimensionless position of the IUH peak re-
mains smaller for the diffusion routing case than the
translation routing case; i.e., the peak is seen earlier
for a diffusion routing case under the same conditions
as for a translation routing case. The variance of the
dimensionless position is greater for the translation
routing case than for the diffusion routing case.
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Figure 5. λ-conditioned distribution functions of dimensionless peaks (a) and dimensionless positions (b) of the IUH
obtained by diffusion routing.
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List of Symbols

B width of channel network
E(.) expected value (.)
F Froude number
h impulse response function
h? dimensionless response

k termination level of network
L link length
m normalized peak of width function
m? dimensionless peak of IUH
M peak of width function
Ni number of links at level i
N(x) width function
P position of peak of width function
P ? dimensionless position of IUH
Pr probability
q discharge
S slope of channel network
t time
t? dimensionless time
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Ta arrival time of the
particles to the outlet

U IUH ordinate
U? dimensionless IUH ordinate
V velocity
x distance
x? dimensionless distance

xj number of links at level j
y depth
β1 advective velocity (celerity)
β2 diffusion coefficient
λ main stream length,

diameter of network
µ source number, magnitude of network
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