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Abstract

The computational algorithms of different multiobjective optimization techniques and their applications
to structural systems are presented. The weighting, ε-constraint, goal programming and modified game
theory methods are described along with a comparative study of the results. The conflicting nature of the
objective functions is studied through two multiobjective optimization problems. Specifically, the design of
a 25-bar space truss and that of a satellite with flexible appendages are considered in numerical studies. The
results from the multiobjective optimization methods are evaluated in terms of a supercriterion. It is con-
cluded that the results obtained using the goal programming and modified game theory/goal programming
approaches are properly balanced yielding the best compromise in the presence of conflicting objectives.

Key Words: Multiobjective optimization, objective function, structural design, supercriterion.

Yapısal Tasarımda Çok Objektifli Optimizasyon Tekniklerinin Mukayeseli Bir
Çalışması

Özet

Değişik çok objektifli optimizasyon teknikleri ve yapısal sistemlere uygulamaları sunulmaktadır. Çok ob-
jektifli optimizasyon tekniklerinden ağırlık, ε-sınırlama, küresel kriter, amaç programlaması ve değiştirilmiş
oyun teorisi teknikleri mukayeseli sonuçlarla açıklanmıştır. Objektif fonksiyonlarının birbirleriyle çelişen
karakterleri iki örnek problem üzerinde incelenmiştir. Bu problemler 25 çubuktan oluşan bir kafes kriş
yapısının ve esnek kolları olan bir uydunun tasarımını kapsamaktadır. Bu problemler üzerinde çok ob-
jektifli optimizasyon tekniklerinden alınan sonuçlar bir süperkriter yardımıyla değerlendirilmiştir. Amaç
programlaması ve amaç programlaması ile birleştirilen değiştirilmiş oyun teorisi tekniklerinin çok objektifli
optimizasyon teknikleri arasında birbirleriyle çelişen objektif fonksiyonlarına rağmen en uzlaşımlı sonuçları
verdikleri anlaşılmıştır.

Anahtar Sözcükler: Çok objektifli optimizasyon, objektif fonksiyonu, yapısal tasarım, süperkriter
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1. Introduction

Many optimum design problems involve several ob-
jective functions that are generally conflicting in na-
ture. The optimization methods dealing simultane-
ously with several objective functions, multiobjective
or multicriteria optimization methods, play a very
important role in these cases. This is particularly
true in the optimum modeling and design of large
space structures where the optimization of structural
weight and that of fundamental natural frequency of
vibrations are of primary concern to the designer.

Several studies dealing with multiobjective opti-
mization techniques have been reported over the past
several years since the appearance of the paper by
Kuhn and Tucker (1951). Pareto optimality serves
as the basic criterion in most of the multiobjective
literature. The concept of multicriteria optimization
in the context of engineering applications was intro-
duced by Zadeh (1963). The survey paper by Stadler
(1984) summarizes the applications of multicriteria
optimization in mechanics.

The most extensive use of multiobjective opti-
mization has been made in optimal structural mod-
eling and design. Commonly used single objectives
in multiobjective structural optimization include the
weight, fundamental natural frequency, deflection
and velocity of the structure. The control energy
is also used by Sunar and Rao (1995) as an objective
function for actively controlled structures.

This paper presents a comparative study of the
multiobjective optimization techniques in the con-
text of structural modeling and design.

2. Multiobjective Optimization Techniques

Multiobjective optimization schemes usually collapse
multiple objective functions into a single objective
function in some manner and the resulting problem
is solved as a single optimization problem. All the
multiobjective optimization techniques involve, to a
certain extent, a trade-off between different objec-
tives and thus some engineering judgment may be
needed to set up the priorities for the various objec-
tive functions. At the same time, the fact that one
method, in some cases, may prove to be superior to
others in keeping a good balance in the simultaneous
optimization of all the objective functions should not
be overlooked.

A standard vector optimization problem can be

stated as follows:

minimize f(X)
subject to gj(X) ≤ 0, j = 1, 2, . . . , m

hj(X) = 0, j = 1, 2, . . . , p
(1)

where f = [f1 f2 . . . fr ]T is the vector of objective
functions, X = [x1 x2 . . . xn]T is the vector of design
variables, gj is the jth inequality constraint function
and hj is the jth equality constraint function. Note
that any maximization objective can be converted
into a minimization objective by simply changing its
sign.

In the numerical study, the objective functions
are normalized such that

C = k1f1(X0) = · · · = krfr(X0) (2)

where C is any convenient number, k′is(i =
1, 2, . . . , r) are constants and X0 is the starting de-
sign vector. Thus the new objective functions are
given by

Fi(X) = kifi(X), i, 1, 2, . . . , r. (3)

A different normalization scheme involves solving
the single objective optimization problems:

minimize fi(X), i = 1, 2, . . . , r
subject to gj(X) ≤ 0, j = 1, 2, . . . , m

hj(X) = 0, j = 1, 2, . . . , p.
(4)

The minimum value of fi(X) is called the best value
of fi(X), which is shown as fi(X∗i ) where X∗i is the
optimal design vector obtained when only fi is min-
imized. The worst value fiw of fi is defined as the
maximum value of fi on the set {X∗1,X∗2, . . . ,X∗r}
and is determined from fiw = max

j=1,2,...,r
fi(X∗j ). Then

the following normalization procedure, which gives 0
as the minimum value and 1 as the maximum value
of the ith objective function, can be used:

fni(X) =
fi(X) − fi(X∗i )
fiw − fi(X∗i )

(5)

where fi(X) is the value of the ith objective function
at any design. This leads to the vector of normalized
functions: fn = [fn1 fn2 . . . fnr]T .

For the purpose of comparing the relative effi-
ciencies of the various multiobjective optimization
techniques, a supercriterion (S), also known as the
bargaining model, is constructed as follows:

S =
r∏
i=1

[fiw − fi(X)]. (6)
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The supercriterion gives an indication as to how far
an objective function is from its worst value at any
design. Thus the higher the value of S, the bet-
ter the modeling and design in terms of a compro-
mise solution. The various multiobjective optimiza-
tion techniques considered in the comparative anal-
ysis are summarized below.

2.1. Weighting Method

In this method, the objective functions are made
scalars in a suitable manner. Two methods are used
in this study.

In the first method, the problem is posed as fol-
lows:

minimize F (X) =
r∑
i=1

ciFi(X)

subject to gj(X) ≤ 0, j = 1, 2, . . . , m
hj(X) = 0, j = 1, 2, . . . , p

(7)

where ci is a constant indicating the weight (and
hence importance) assigned to Fi. By giving a rela-
tively large value to ci it is possible to favor Fi over
other objective functions. Note that the condition
r∑
i=1

ci = 1 can be posed by the designer in Eq. (7).

The following problem is solved in the second
method:

minimize F (X) =
r∏
i=1

F cii (X)

subject to gj(X) ≤ 0, j = 1, 2, . . . , m
hj(X) = 0, j = 1, 2, . . . , p

(8)

where it is assumed that all the objective functions
are to be minimized. An objective function can be
maximized in this method by switching the sign of
the exponent of the objective function from plus to
minus.

2.2. ε-Constraint Method

The method optimizes one of the objective functions
while the others are required to have specified up-
per bounds. In other words, it minimizes one objec-
tive function and simultaneously maintains the max-
imum acceptable levels for the other objective func-
tions. The formulation adopted in this work is as
follows:

minimize Fi(X), i = 1, 2, . . . , r
subject to gj(X) ≤ 0, j = 1, 2, . . . , m

hj(X) = 0, j = 1, 2, . . . , p
Fj(X) ≤ εj, j = 1, 2, . . . , and j 6= i.

(9)

The selections of Fi(X) and εj of this method are not
straightforward and depend on the particular prob-
lem under consideration. As shown in the above for-
mulation, the optimization problem (Eq. (9)) can be
solved for all Fi(X)’s (i = 1, 2, . . . , r) and the opti-
mum solution that is best suited to the problem can
be chosen among the r solutions. But this insolves
much computational effort. In this work, εj is cho-
sen as εj = 1.1 F (X0). Note that this choice of εj is
arbitrary and any other choice, such as 1.2 Fj(X0),
may also be used depending upon the problem. But
the basic philosophy of this method does not alter
with different selections of εj. In general, the higher
values of εj’s mean a wider feasible region for the
single objective optimization problem and this may
in turn give a more improved solution for Fi(X) at
the expense of the other objective functions.

2.3. Goal Programming Method

In this method, the designer sets goals to be at-
tained for each objective and a measure of the devia-
tions of the objective functions from their respective
goals is minimized. The generalized goal program-
ming method proposed by Ignizio (1976) is adapted
to non-linear problems as follows:

minimize F (X) =

{
r∑
i=1

ci[d+
i + d−i ]q

}1/q

, q ≥ 1

subject to Fi(X) − d+
i + d−i = Ti, i = 1, 2, . . . , r

gi(X) ≤ 0, j = 1, 2, . . . , m
hj(X) = 0, j = 1, 2, . . . , p

(10)

where d+
i and d−i are, respectively, the under-

achievement and over-achievement of the ith goal;
Ti is the goal (or target) set by the designer for the
ith objective function (Rao et al. (1988)). In this

work, the goal of the ith objective function is taken
as its single optimum value, i.e., Ti = Fi(X∗i ). Fur-
thermore, it is assumed that over-achievement of the
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goals is not possible and hence d−i need not be de- fined. Thus the problem stated in Eq. (10) becomes

minimize F (X) =

{
r∑
i=1

ci[Fi(X) − Fi(X∗i )]q
}1/q

, q ≥ 1

subject to Fi(X) − Fi(X∗i ) ≥ 0, i = 1, 2, . . . , r
gi(X) ≤ 0, j = 1, 2, . . . , m
hj(X) = 0, j = 1, 2, . . . , p.

(11)

2.4. Modified Game Theory

In game theory, each player is associated with an
objective function so that he tries to maximize his
profit at the expense of the profits of the other play-
ers. When adopting this theory into a multiobjective
optimization problem, the profit of a player is viewed

as a negative objective function relative to the profits
of the other players. A bargaining model or supercri-
terion is constructed and the final optimal solution
(Pareto optimal solution) is obtained by maximizing
the supercriterion. According to the game theory,
the Pareto optimal solution is determined by solving
the following problem (Rao and Hati (1979)):

minimize fc(c,X) =
r∑
i=1

cifi(X)

subject no 0 ≤ ci ≤ 1, i = 1, 2, . . . , r, and
r∑
i=1

ci = 1

gi(X) ≤ 0, j = 1, 2, . . . , m
hi(X) = 0, j = 1, 2, . . . , p

(12)

where c = [c1 c2 . . . cr]T . The equality con-
straint in Eq. (12) can be eliminated by substituting(

1−
r−1∑
i=1

ci

)
for cr. The supercriterion S of Eq. (6)

is maximized so that the resulting solution gives the
optimal combination of the objective functions (c∗)
and the final optimum solution (X∗ = X∗c).Hence
the minimization of the problem given by Eq. (12)
and the maximization of the supercriterion S must
be simultaneously accomplished in the game theory
with c and X being optimization variables, which is
numerically cumbersome.

Due to the computational complexities involved
with the original game theory, a modification to the
method was suggested (Rao and Freiheit (1991)).
The solution given by the modified game theory
(MGT) is expected to be near the optimal solution
obtained by the original game theory. The algorithm
for the MGT is as follows:

a) Formulate the normalized supercretiron, Sn,
as

Sn =
r∏
i=1

[1− fni(X)]. (13)

Note that due to the normalization used in Eq. (5),
Sn will always have a value between 0 and .

b) Formulate a Pareto optimal objective function
FC in terms of the normalized objective functions.
In this work, FC is formulated using the weighting
method as

FC =
r∑
i=1

cifni(X) (14)

with
r∑
i=1

ci = 1.

FC is also formulated using the goal program-
ming method as

FC =

{
r∑
i=1

[fni(X)]q
}1/q

, q ≥ 2. (15)

c) The new optimization problem is posed as
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minimize F (X) = FC − Sn
subject to fi(X∗i ) ≤ fi(X) ≤ fiw, i = 1, 2, . . . , r

gj(X) ≤ 0, j = 1, 2, . . . , m
hj(X) = 0, j = 1, 2, . . . , p.

(16)

It is important to account for the constraints on the
objective functions to guarantee that Sn remains be-
tween 0 and 1.

3. Numerical Results

The comparative study of the multiobjective opti-
mization techniques is made using two example prob-
lems. In both problems, the multiobjective optimiza-
tion problems are collapsed into single objective op-
timization problems using the multiobjective opti-
mization schemes as discussed above and the result-
ing single objective optimization problems are solved
via the method of feasible directions (Arora (1989)).
The basic idea of this method is to move from one
feasible design to an improved feasible design to an
improved feasible design. Hence two properties are
desired in this method. The first one is the feasi-
bility of the new design and the second one is that
the new objective function is smaller than the old
objective function. The iterative process is repeated
until no more improvement in the objective function
is practically possible within the feasible region.

3.1. Three-Objective Design of a 25-Bar
Truss

The design of the truss shown in Figure 1 is consid-
ered under two load conditions (Table 1). The truss
is subject to constraints on the member stresses and
Euler buckling. The allowable stresses for all the
members are assumed to be the same in tension and
compression and is denoted as σa. The Young’s mod-
ulus is as sumed to be E = 6.9×1010 Pa and the ma-
terial density to be ρ = 2770 kg/m3. The members
are assumed to be tubular and the ratio of a nominal
diameter to thickness is taken as 100. Therefore the
buckling stress in any ith member becomes

σbi =
−100.01πEA

8`2i
, i = 1, 2, . . . , 25 (17)

where Ai and `i are the cross-sectional area and
length, respectively, of the ith member. The cross-
sectional areas of members of the truss are taken as
design variables and are arranged into eight different
groups such that A1, A2 = A3 = A4 = A5, A6 =
A7 = A8 = A9, A10 = A11, A12 = A13, A14 =
A15 = A16 = A17, A18 = A19 = A20 = A21 and

A22 = A23 = A24 = A25. Thus there are eight design
variables for this problem. Upper and lower bounds
are imposed on the design variables as x`i ≤ xi ≤
xui , i = 1, 2, . . . , 8. The upper and lower bounds xui
and x`i on all the members are taken as 3.2258×10−3

m2 and 6.45 × 10−5 m2, respectively. Three objec-
tive functions are consideed: minimization of weight,
minimization of displacement of node 1 of the truss
and maximization of the fundamental natural fre-
quency of the truss. The objective functions can be
expressed as

2540

1905

1905

5080

2540

5080

1

z

3 4
5 2

9 87 6

17 13

12

22

10

14
15 23

18

20

19
24

17
21

16

25

10
10

7
8

9

5

4

6

3

1
2

Figure 1. Twenty Five-Bar Truss

f1(X) = 9.81
25∑
i=1

ρAi`i, f2(X)

=
2∑
i=1

(δ2
xi + δ2

yi + δ2
zi)

1/2, f3(X) = ωn (18)

where δxi, δyi and δzi are the x, y and z compo-
nents of displacement of node 1 for load condition
i(i = 1, 2), and ωn is the fundamental natural fre-
quency of vibrations of the truss. The following con-
straints are considered:

|σij(X)| ≤ σa, i = 1, 2, . . . , 25, j = 1, 2
−σij(X) ≤ −σbi i = 1, 2, . . . , 25, j = 1, 2 (19)

where σij(X) is the stress in member i in load con-
dition j. The allowable stress σa is assumed to be
2.76× 108 Pa for all the members.
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Table 1. Loads Acting on 25-Bar Truss

Joint
1 2 3 6

Load Condition 1 (N)
Fx 0 0 0 0
Fy 88,960 -88,960 0 0
Fz -22,240 -22,240 0 0

Load Condition 2 (N)
Fx 4,448 0 2,224 2,224
Fy 44,480 44,480 0 0
Fz -22,240 -22,240 0 0

The single objective optimization results and the
results obtained by various multiobjective optimiza-
tion techniques are given in Table 2. The starting
design variables are taken as x0

i = 2.54 × 10−2 m
(i = 1, 2, . . . , 8), which correspond to objective func-
tion values of f1(X0) = 1475 N, f2(X0) = 3.92 ×
10−2 m and f3(X0) = 68.866 Hz. The objective

functions are scaled so that f1(X0) = F2(X0) =
F3(X0) = 500. The individual objective function
optimizations yielded the best and worst values of
the objective functions as f1(X∗1) = 1037N, f1w =
7025.5N, f2(X∗2) = 7.83× 10−3 m, f2w = 4.9× 10−2

m, f3(X∗3) = 113.511 Hz, and f3w = 72.288 Hz.

Table 2. Results for 25-Bar Truss

Method f1(N) f2(m) f3(Hz) Iter. S
Single Min. of f1 1037.04 0.0490 73.331
Single Min. of f2 7025.53 0.0078 72.288
Single Min. of f3 3934.39 0.0328 113.511
Weighting (1) 1462.79 0.0359 90.986 16 12002
Weighting (2) 1700.55 0.0286 85.753 13 12912
ε-Constraint 1622.01 0.0394 96.993 27 11270
Goal Programming (q = 2) 1636.42 0.0302 87.070 15 13197
Goal Programming (q = 3) 1675.89 0.0289 85.364 14 12419
MGT (Weighting) 1503.87 0.0365 90.392 19 11052
MGT (Goal Prog. q = 2) 3033.65 0.0232 103.141 11 28066

The first weighting method is applied with c1 =
c2 = c3 = 1/3 and the second with c1 = c2 = c3 = 1.
The ε-constraint method is formulated as follows:

minimize −F3(X)
subject to gj(X) ≤ 0, j = 1, 2, . . . , 100

F1(X) ≤ 550
F2(X) ≤ 550.

(20)

The results listed in Table 2 for different opti-
mization schemes indicate that the improvement in
one objective function yields deterioration in the oth-
ers. The results of the weighting method are compro-
mise solutions and are not necessarily Pareto opti-
mal. The ε-constraint method can also be formulated
so that F1(X) and F2(X) are individually taken as
objective functions, but this involves additional com-

putational effort. In addition to the stress and buck-
ling constraints, the constraints imposed on F1(X)
and F2(X) in this method (Eq. (20)) are found to
be active. These new constraints determine the level
of compromise for the method. In the goal program-
ming method, it is assumed that c1 = c2 = c3 = 1.
The method is implemented with q = 2 and 3 and
the results are found to be almost identical.

The MGT is conceptually different from the other
methods in trying to obtain a near Pareto optimal
solution to the multiobjective optimization problem.
Table 2 shows that the optimum design of the MGT
with the goal programming technique somewhat re-
sembles the result produced by the single objective
optimization of f3(X), but a close examination of
both results reveals that the result of the MGT with
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the goal programming techniques is well-balanced
between different objectives. This conclusion is also
supported by the largest value of S obtained by the
MGT with the goal programming technique.

3.2. Four-Objective Design of a Satellite
with Flexible Appendages

The appendages of the satellite illustrated in Fig-
ure 2 are modeled as cantilever beams of circular
cross-section (Starkey and Kelecy (1988)). Consider
the problem of rotating the satellite about the z-axis
from some initial angle θi to some final angle θf . If
it is assumed that the appendages are flexible and
lightly damped, the motion of the appendages will
continue even after the rotation has ceased at θf .
Since such oscillations may corrupt the mission of
the whole craft, the goal is to generate a control law

for the torque T , and structurally modify the ap-
pendage so that they come to rest shortly after the
craft reaches the angular position θf .

The satellite is modeled as illustrated in Figure
3. The main body of the satellite is assumed to be
cylindrical with a radius of r0 and is modeled as a
rigid mass with a mass moment of inertia of J. The
appendages are modeled by dividing each appendage
into three segmets of length `. The segments are
modeled as point masses m1, m2 and m3 connected
by massless, girid links of length ` each. The links
are joined with torsional springs of stiffnesses k1, k2

and k3 at the joints. Symmetry is assumed between
the appendages.

The satellite is actively controlled by a torque ap-
plied about the z-axis of the main body. The torque
T is given by

θf

θi

y

x

Figure 2. Satellite with Flexible Appendages
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Figure 3. Model of Satellite

T = g1(θf − θ1)− g2θ2 − g3θ3 − g4θ4 − g5θ̇1 − g6θ̇2 − g7θ̇3 − g8θ̇4 (21)

where g1 through g8 are the feedback gains of the controller.
The equations of motion of the satellite can be derived using Lanrange’s method as[

θ̇
θ̈

]
=
[

0 I
−M−1(K + ξG1) −M−1ξG2

] [
θ
θ̇

]
(22)

where I represents the 4× 4 identity matrix and

M =
1
`2


J + 2`2a1 + 2r2

0a2 + 4r0`a3 2`2a1 + 2r0`a3 4`2a4 + 2r0`a5 2m3(3`2 + r0`)
2`2a1 + 2r0`a3 2`2a1 4`2a4 6`2m3

4`2a4 + 2r0`a5 4`2a4 2`2(m2 + 4m3) 4`2m3

2m3(3`2 + r0`) 6`2m3 4`2m3 2`2m3
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where

a1 = m1 + 4m2 + 9m3, a2 = m1 +m2 +m3, a3 = m1 + 2m2 + 3m3, a4 = m2 + 3m3, a5 = m2 + 2m3

and

K =
1
`2


0 0 0
0 k1 0 0
0 0 k2 0
0 0 0 k3

 , ξT =
1
`2

[1 0 0 0], G1 = [g1 g2 g3 g4], G2 = [g5 g6 g7 g8]

where

ki =
πEd4

i

32`
, i = 1, 2, 3

in which di represents the diameter of the ith seg-
ment and E is the Young’s modulus of the material.
The mass of the ith segments is

mi =
π

4
ρ`d2

i , i = 1, 2, 3

where ρ is the mass density of the material and the
moment of inertia of the satellite body is chosen as

J = 15m0`
2

where m0 is the initial value adopted for the mass
of an appendage segment. The following properties
are assumed in the numerical calculations: ρ = 2770
kg/m3, E = 6.9 × 109 Pa, d0 = 7.62 × 10−2 m, r0

(radius of the satellite’s main body) = 0.3048 m,
` = 0.6096 m, G0 = [g01 g02 . . . g08] = 0, where d0 is
the initial diameter assumed to be the same for all
the segments and G0 is the initial feedback gain of
the controller.

The design variable vector X = [x1 x2 . . . x11] is
such that xi for i = 1, 2, 3 corresponds to the struc-
tural change of the ith segment from its initial diam-
eter d0 (i.e., di = d0 + xi) and xi for i = 4, 5, . . . , 11
corresponds to the feedback gains of the controller.
The following four objective functions are considered
for minimization: weight of the satellite, control cost
(taken as the sum of the squares of the gains), max-
imum real part of the eigenvalues of the satellite,
and tangent of the largest angle that the eigenvalues
make with the negative real axis. Thus

f1(X) = 9.81
3∑
i=1

mi, f2(X) =
11∑
i=4

x2
i , f3(X) = max(σi), f4(X) = max

(
ωi
σi

)
(23)

where σi and ωi are the real and imaginary parts of
the ith eigenvalue, respectively. The real parts of the
eigenvalues of the satellite are required to be −0.3 or
less. The contraints are stated as

σi + 0.3 ≤ 0, i = 1, 2, . . . , 8 (24)

The results of the optimization are shown in
Table 3. When applying the multiobjective opti-
mization techniques, the normalization indicated by
Eq. (5) was used. The initial design is chosen as
(Starkey and Kelecy (1988)): xi = 5.77 × 10−3m,
x2 = −4.49 × 10−3m, x3 = −2.9 × 10−2m, x4 =
8933.2N ·m, x5 = 106411.1N ·m, x6 = −48835.2N ·
m, x7 = −27174.2N · m, x8 = 32252.7N · m · s,

x9 = −219929.3N · m · s, x10 = 259359.8N ·
m · s, x11 = −38628.9N · m · s. This corresponds
to f1(X0) = 183.35N, f2(X0) = 1.32695 × 1011,
f3(X0) = −0.44622, and f4(X0) = 9.6023. The sin-
gle objective optimization of each problem is per-
formed such that F1(X0) = F2(X0) = F3(X0) =
F4(X0) = 50, 000 and the results are listed in the
first four rows of Table 3. Note that the values of S
are calculated without regard to f2(X). It can eas-
ily be detected by inspection of the first four rows
of the table and by the information given above
that f1(X∗1) = 58.03N, f1w = 175.09N, f2(X∗2) =
2.054 × 1010, f2w = 1.327× 1011, f3(X∗3) = −0.65,
f3w = −0.3, f4(X∗4) = 3.56, f4w = 14.00.
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Table 3. Results for Satellite

Method f1(N) f2(−) f3(−) f4(−) Iter. S
Single Min. of f1 58.03 1.327× 1011 -0.30 5.99
Single Min. of f2 130.33 2.054× 1010 -0.30 14.00
Single Min. of f3 175.09 1.327× 1011 -0.65 7.61
Single Min. of f4 162.23 1.327× 1011 -0.34 3.56
Weighting (1) 172.11 1.327× 1011 -0.53 5.39 100 513
Weighting (2) 175.93 1.327× 1011 -0.39 3.82 13 -66
ε-Constraint 124.01 1.327× 1011 -0.43 8.89 23 2851
Goal Programming (q = 2) 146.93 1.327× 1011 -0.49 7.27 395 3151
Goal Programming (q = 3) 137.51 1.327× 1011 - 0.47 8.15 141 3254
MGT (Weighting) 165.42 1.327× 1011 -0.36 3.55 500 487
MGT (Goal Prog. q = 2) 146.91 1.327× 1011 -0.49 7.28 395 3151

The large differences in the nature and magnitude
of the objective functions made the problem very
sensitive to changes in the gains of the controller.
Most of the methods converged to the same gains.
It was observed that the feedback gains needed for
the control of the satellite were high in magnitude.
Furthermore, the minimum value that the maximum
of the real parts of system eigenvalues can take was
found to be −0.6453. This observation together with
the fact that the least slope obtained was 3.56 shows
that the system is difficult to control.

As Table 3 indicates, the MGT/goal program-
ming and goal programming methods yield large val-
ues of the supercriterion relative to the other meth-
ods. Hence, based on this observation, the solutions
of the MGT/goal programming and goal program-
ming methods may be preferred over the others.

4. Conclusions

A comparative study of several methods of multiob-
jective optimization has been carried out using two
structural design optimization problems. As men-
tioned before, an engineering judgment often needs
to be brought into the picture when a multicriteria
optimization problem is to be solved. An improve-
ment in one objective might necessitate some dete-
rioration in other objectives. A multiobjective opti-
mization method is evaluated based on such criteria
as its reliability and robustness in reaching Pareto
optimal design from a starting point, its efficiency of
convergence inrelatively small number of iterations
and the ease with which it can be applied to general
design problems.

The weighting method is easy to implement, but

its final design is not guaranteed to be Pareto op-
timal. The ε-constraint method requires additional
constraints to be satisfied. These constraints serve
as levels of trade-off between the objective functions.
Different ways may be adopted in formulating this
method and its application to a design problem may
be somewhat troublesome.

The goal programming method was tested with
values of q being 2 and 3. Both values of q caused the
method to approximately converge to the same final
points. The method attempts to produce a good bal-
ance between the individual objective functions by
trying to keep them close to their optimum values
and hence aims at reaching a Pareto optimal design.

The MGT is theoretically designed to reach a
near Pareto optimal design and is introduced so that
the game theory can be practically applied without
much deviation from its original form. Although the
final design is hoped to be near Pareto optimum, the
use of the MGT requires some additional work from
the designer.

The MGT/goal programming and goal program-
ming methods, in general, give higher values of S
than the other multiobjective optimization methods.
Therefore, the final designs obtained by these two
methods may be concluded to be properly balanced
with the best compromise in the presence of conflict-
ing objectives.
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