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Abstract

The IUH (instantaneous unit hydrograph) of a channel network is still used as a component in rainfall
runoff modeling. There are two approaches to determine the IUH in relation to geomorphological basin char-
acteristics. One of these approaches is Rodriguez-Iturbe and Valdes, approach known also as Exponentially
Distributed GIUH (geomorphologic instantaneous unit hydrograph); the alternate approach is that of Gupta
and Waymire, known also as Linear Routing GIUH in the literature. A model developed in a previous study
which relates the geomorphological IUH of one of these approaches to the diffusive approximation of the
momentum equation is used for obtaining the IUH s the networks will produce. Also the concept of junction
configuration is made use of. A simulation study has been carried out for 6-source channel networks with
a certain junction configuration. Here the aim is to see the distribution of the IUH s which these networks
produce. The relationships between mean IUH properties and non-dimensionalized mean interior link length
of the network are obtained for a Froude number of 0.2 and for all possible junction configurations of 3, 4,
5, 6-source channel networks. The average relationships between IUH properties and dimensionless mean
interior link length are obtained for 3-8 source channel networks.

Key Words: mean instantaneous unit hydrograph, river network, topology, dimensionless response.

Rastgele Akarsu Ağlarının Ortalama Anlık Birim Hidrografları

Özet

Bir akarsu ağının ABH (anlık birim hidrograf)ı halen yağış akış modellemesinde bir bileşen olarak kul-
lanılmaktadır. ABHı jeomorfolojik havza karakteristiklerine bağlı olarak belirlemek üzere iki yöntem bulun-
maktadır. Bu yöntemlerin birisi aynı zamanda literatürde Üstel Dağılmış JABH (jeomorfolojik anlık birim
hidrograf) olarak ta bilinen Rodriguez-Iturbe ve Valdes yöntemidir; diğer yöntem ise Doğrusal Öteleme
JABH olarak ta bilinen Gupta ve Waymire yöntemidir. Önceki bir çalışmada geliştirilen ve bu yöntemlerden
birisinin jeomorfolojik ABHını momentum denkleminin difüzif yaklaşımı ile birleştiren bir model akarsu
ağlarının üreteceği ortalama ABHları elde etmek için kullanılmıştır. Ayrıca düğüm noktası konfigürasyonu
kavramından da yararlanılmıştır. 6-kaynaklı ve belli bir düğüm noktası konfigürasyonunu haiz akarsu ağları
için bir simülasyon yapılmıştır. Buradaki amaç bu ağların ürettikleri ABHların dağılımlarını görmektir.
Froude sayısının 0.2 olması halinde 3, 4, 5, 6-kaynaklı mümkün olabilecek bütün düğüm noktası kon-
figürasyonları için ağın ortalama ABH özellikleri ile boyutsuz ortalama iç link uzunluğu arasındaki ilişkiler
elde edilmiştir. 3-8-kaynaklı akarsu ağları için ABH özellikleri ile ortalama iç link uzunlukları arasındaki
ilişkilerin averajları elde edilmiştir.

Anahtar Sözcükler: Ortalama anlık birim hidrograf, akarsu ağı, topoloji, boyutsuz davranış.
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Introduction

The IUH (instantaneous unit hydrograph) of a
river basin is a classical tool which is commonly used
as a component in rainfall-runoff modeling during
the planning, design and operation phases of hy-
draulic structures. It has been attempted to re-
late the IUH to the characteristics of the channel
network. There are two approaches to determine
the IUH in relation to geomorphological basin char-
acteristics. The first approach is Rodriguez-Iturbe
and Valdes, (1979) approach. The second is an al-
ternate approach proposed by Gupta and Waymire
(1983). These two approaches are also named Expo-
nentially Distributed GIUH (geomorphologic instan-
taneous unit hydrograph) (ED-GIUH) and Linear
Routing GIUH (LR-GIUH) respectively. Rodriguez-
Iturbe and Valdes, approach is called exponentially
distributed GIUH because they have assumed that
the probability density function (pdf) of time of
travel in watershed streams is exponential. Gupta
and Waymire’s approach is named linear routing
GIUH since a time distribution based upon the lin-
earized equations of motion has been used (Allam
et al., 1990). More information on both of the ap-
proaches will be given in the following paragraph.

In an earlier study, a more realistic representa-
tion for the IUH of Gupta and Waymire’s approach
by the introduction of diffusion routing was experi-
mented with (Oguz, 1994). By making use of a con-
cept, junction configuration, suggested by Oguz and
Önöz (1999) all possible mean IUH s of 3, 4, 5, 6-
source channel networks can be obtained. In this
study these IUH s have been obtained for a single
Froude number (F=0.2) and for a single dimension-
less length value (L∗ = 0.3).L∗ is mean interior link
length of the channel network non-dimensionalized
with the slope and water depth of the channel net-
work (eq.11). If the Froude number is defined as
F = V/(gy)0.5, and if V = 1 m/sec, y = 2.5 m (as
common values in subcritical flows) F is found as 0.2.

Another aim of the study is to determine the re-
lationships between mean IUH properties and the
characteristic length for 3, 4, 5, 6-source networks for
a Froude number of 0.2. A final objective is to av-
erage the IUH properties for a network with a given
number of sources in the range 3-8.

Basic Concepts

Some basic concepts related to random channel
networks are presented below to facilitate under-

standing of the material that follows.
A channel network has points farthest upstream

known as sources and a point farthest downstream
known as the outlet. The number of sources a chan-
nel network has is known also as its magnitude. The
point at which two channels combine to form one is
called a junction. An exteriorlink is a segment of a
channel network between a source and the first junc-
tion downstream; an interiorlink is a segment of a
channel network between two successive junctions or
between the outlet and the first junction upstream.

Strahler ordering scheme for channel networks is
defined as follows: (1) channels that originate at a
source are defined to be first order streams; (2) when
two streams of the same order w join, a stream of or-
der Ω+1 is created; (3) when two streams of different
order join, the channel segment immediately down-
stream has the higher of the orders of the two com-
bining streams (Smart, 1972). In Fig. 1, a schematic
channel network of order 3 numbered ordered accord-
ing to Strahler’s scheme is shown.

A channel state of order i is defined as the collec-
tion (ensemble) of all the Strahler channels of that
order. Denoting a channel state by ci and the order
of the network by Ω, i can take a value between 1
and Ω(1 < i < Ω). It is known that for a basin of
order Ω there are 2Ω−1 possible paths. For Ω = 3
the path space S = {s1, s2, s3, s4} consists of the fol-
lowing paths:
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Figure 1. A schematic channel network ordered accord-
ing to Strahler scheme.
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path s1 c1 → c2 → c3 → outlet
path s2 c1 → c3 → outlet
path s3 c2 → c3 → outlet
path s4 c3 → outlet (Gupta and Waymire, 1983).

The important concept of topology was first intro-
duced into geomorphology by Shreve in 1966 (Smart,
1972). The number of sources, links, junctions of a
channel network and the branching system of the
network are topological characteristics of a network.
In the topology of a channel network system the
lengths of the links are not of interest. In Fig. 2, two
channel networks with five sources are seen, of which
the topologies are different. Channel networks with
equal number of sources have also equal numbers of
links, junctions and first-order Strahler streams and
thus are topologically comparable (Smart, 1972).

The widthfunction is the width, in a sense, of the
network drawn against a distance x from the outlet
as shown in Fig. 2. The width of the channel net-
work is symbolized by the number of links (N(x))
that exist at a certain distance x from the outlet.
This concept is similar to what is called as the time-
area diagram. Thus, once the channel network is
known, it is quite easy to determine its width func-
tion.

XX

Figure 2. Two 5-source channel networks which are topo-
logically different.

In a natural basin, rainfall particles released in-
stantaneously and uniformly over the basin will fol-
low different paths before arriving at the outlet. For
a channel network, the probability that the parti-
cle chooses a certain path from among all possible
paths (the path function probability) can be deter-
mined using the Strahler scheme. Each path has its
own random holding time (travel time to the basin

outlet). The IUH of a basin is the pdf of the holding
time of rainfall particles; it is obtained by multiply-
ing the probability that a particle follows a certain
path with the pdf of the holding time for this path
and then summing these products over all possible
paths. This leads to the general mathematical rep-
resentation of the geomorphological IUH of a basin
(Gupta et al., 1980). In the literature, there are two
approaches to determine the IUH in relation to geo-
morphological basin characteristics.
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Figure 3. Explanation of the width function of a channel
network.

The first approach is the one proposed by
Rodriguez-Iturbe and Valdes (1979), called the R−
V approach and also known as Exponentially Dis-
tributed GIUH (ED-GIUH), because they assumed
the pdf of time of travel in watershed streams to be
exponential. The mathematical structure of the R-
V approach was simplified and generalized by Gupta
et al. (1980) leading it to being named the gener-
alized R − V approach. In this approach, a given
channel network is ordered according to the Strahler
ordering scheme. It is assumed that rainfall par-
ticles are introduced into the basin instantaneously
and uniformly. The aim is to find the pdf of the
random time a particle spends in the basin until it
reaches the outlet (the holding time). Firstly, the
possible paths these particles may follow are deter-
mined. Then, using the geomorphological informa-
tion, the path probabilities are calculated. Secondly,
the pdf s of the holding time of links of order i (for all
orders) are determined (this is the time a link of or-
der i holds the particle before it moves onto a link of
order i + 1). Thirdly, making use of these link hold-
ing time pdf s and using the convolution concept, the
path holding time pdf s can be obtained. Finally by
multiplying the path holding time pdf s by the cor-
responding path probabilities and summing for all
possible paths, the pdf of the holding time of the
basin can be found, which is identical to the IUH.
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Gupta and Waymire (1983) proposed an alter-
nate approach. They studied the pdf of arrival times
of rainfall particles injected instantaneously and uni-
formly at all the nodes of the network. Rainfall input
is then routed to the basin outlet; routing is usually
linear. This alternate method is also named Lin-
ear Routing GIUH (LR-GIUH). The simplest case is
pure translation with constant velocity V . Starting
at the outlet, let xj define the number of links at
level j, then the response is

P (TB = j) = xj/(2M − 1) (1)

Here T denotes the holding time for the basin and
M is the number of sources or the magnitude. In
this case, the IUH will be similar to the width func-
tion N(x), number of links at distance x from the
outlet: U(t) ∼ N(V t) where V is the velocity of the
rainfall particles. Network order does not play a role
in this approach (Gupta and Waymire, 1983). Al-
though Gupta and Waymire (1983) stated that the
IUH will be similar to the width function N(x) when
pure translation with constant velocity is considered,
they also mentioned that the IUH derived by this ap-
proach did not agree with that of Rodriguez-Iturbe
and Valdes (1979). The structure of the second ap-
proach is much simpler than that of the first ap-
proach.

Review and Development of Previous
Work

a) Diffusion Routing Applied to the Derivation of
the IUH of a Channel Network
There are several methods used for flow routing. Dif-
fusion wave routing is one type of the distributed
(hydraulic) models used for this aim. In this model,
the diffusion approach used for various physical phe-
nomena is:

δy

δt
= β2

δ2y

δx2
(2)

where β2 is the diffusion coefficient. Neglecting the
inertia terms in the momentum equation and apply-
ing a linearized perturbation, the following equation
is obtained (Cunge, 1975):

β1
δ(V y)
δx

+
δ(V y)
δt

= β2
δ2(V y)
δx2

(3)

In the diffusion wave model, this equation is used in-
stead of the momentum equation. The coefficient β2

expresses the damping of the flood wave, thus, this
model considers damping during routing.
Troutman and Karlinger (1985) give the impulse re-
sponse function of the model given by eq. 3 for one-
dimensional routing of flows in wide and rectangular
channels and in which the frictional effects are as-
sumed to follow the Chezy law as:

h(x, t; β) = x(4πβ2t
3)−1/2exp[−(4β2t)−1(β1t− x)2] (4)

β1 = 1.5V (wave propagation velocity, kinematic wave velocity) (5a)

β1 = Vm +
√
gym (dynamic wave velocity) (5b)

β1 = Vp +
√
gyp (dynamic wave velocity) (5c)

and β2 = (2SB)−1q(1− F 2) (diffusion coefficient) (6)

in eqs. 3, 5 and 6, V is velocity, B is width, q is
unit discharge, S is the slope, y is the depth of the
channel network. F is used for the Froude number.
Vm and Vp stand for mean and peak velocities and
ym and yp stand for flow depth at mean and peak
discharges respectively (Sorman, 1995). In eq. 6, β2

becomes singular for F = 1. The impulse response
function h(x, t; β) must be valid for certain values of
diffusion coefficient β2 and wave velocity β1 each of
which depends on F and V . In this study eq. 5a is

used for β1.

Eq. 4 shows the response of a channel subject to an
instantaneous upstream input which is at a distance
of x (impulse response function). Eq. 4 can be in-
terpreted as the pdf corresponding to the travel time
of a drop travelling a distance of x. This equation is
not a dimensionless equation, the response h(x, t; β)
is in units of [1/T ]. The non-dimensionalized form
of eq. 4 is obtained as follows (Oguz, 1994):

h∗(x∗, t∗) = x∗
[
2π(1− F 2)t∗3

]−1/2
exp

[
−(1.5t∗ − x∗)2

2(1− F 2)t∗

]
(7)
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if

h∗ =
h

SV/y
is dimensionless response (8a)

t∗ =
t

y/SV
is dimensionless time (8b)

x∗ =
x

y/S
is dimensionless distance (8c)

Introduction of diffusion routing into the width func-
tion can be done by the following formulation (Oguz,
1994):

U∗(t) =

∑
x

h∗(x∗, t∗).N(x)∑
x

N(x)
(9)

where U∗ is the dimensionless IUH ordinate.

b) Junction Configuration

In this study an attempt is made to find the rela-
tion between the topology of the network and the
properties of the hydrograph at the outlet. It is
known from the literature that the number of topo-
logically distinct channel networks (TDCN) would be
2, 5, 14 and 42 for networks with 3, 4, 5 and 6 sources
respectively (Smart, 1972). That is to say, for exam-
ple, a network with 5 sources may have 14 different
network configurations and not more. We also know
that the property of the network which will affect
the hydrograph at the outlet is its width function.
By a very simple and close analysis of the different
network variations of 3, 4, 5, 6-source networks, it is
seen that the number of different width functions re-
mains much smaller than the TDCN number, which
is of interest for a network with a certain number of
sources (Table).

Table 1. Characteristics of all possible junction configurations of 3, 4, 5, 6 source channel networks

N No. of possible Possible junction No. of Probability of
Source Number Configurations Configurations TDCN∗ Junction configuration

3 1 [1] 2 1.0
4 2 [1,1] 4 0.8

[2] 1 0.2
5 [1,1,1] 8 0.571

3 [1,2] 2 0.143
[2,1] 4 0.286

6 [1,1,1,1] 16 0.381
[1,1,2] 4 0.095

5 [1,2,1] 8 0.190
[2,1,1] 8 0.191
[2,2] 6 0.143

*TDCN: Topologically discrete channel network

A network with 3 sources has only one width
function (2 TCDN), a network with 4 sources has
only 2 different width functions (5 TCDN), a network
with 5 sources has only 3 different width functions
(14 TDCN) and a network with 6 sources has only
5 different width functions (42 TDCN). This shows
that some different channel network configurations
produce the same width function. At this point the
concept junction configuration must be used. This is
the characteristic of the network affecting the width
function. All the networks having the same junction
configuration have identical width functions. The
junction configuration will be shown in square brack-

ets, by numbers of junctions having ai junctions be-
tween them and the outlet as [a1, a2, ....., ai, ....., an]
where n = λ−1 (λ:termination level of the network).

Looking at Fig. 4, 3 different TDCN s are ob-
served for a network with 6 sources. The junction
configuration of Fig. 4(a) and Fig.4(b) are the same
[2, 1, 1] whereas the junction configuration of Fig.
4(c) is different, [2, 2]. As an example the [2, 1, 1] no-
tation tells us the number of junctions having only
1 junction between themselves and the outlet is 2;
the number of junctions having 2 junctions between
themselves and the outlet is 1; the number of junc-
tions having 3 junctions between themselves and the
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outlet is 1 (Oguz and Önöz, 1999).

X X X

(a)

[2, 1, 1]

(b

[2, 1, 1]

(c)

[2, 2]

Figure 4. Definition of “junction configuration” for
source no. 6 for two possible junction configu-
rations.

As seen in Table 1, one junction configuration has
almost always more than one TDCN corresponding
to it. A formula can be written for finding the num-
ber of TDCN s having the same junction configura-
tion.

If any junction configuration is shown as
[a1, a2, ....., ai, ....., an] and if the number of TDCN
s having the same junction configuration is M, then

M =
n−1∏
i=1

(
2a1

ai+1

)
(10)

can be written in a slightly different way after propo-
sition 3 of Gupta and Waymire (1983). This formula
is valid for cases where N ≥ 3 (N is the number of
sources). ai must satisfy the following conditions:

1.σai = N − 2

2.ai+1 ≤ 2ai

3.a1max = 2

A Simulation Study and the Dimensionless
Mean IUH S of 3, 4, 5, 6-Source Channel Net-
works

Let L stand for the mean interior link length of
the network. If a dimensionless characteristic length

L∗ =
L

y/S
(11)

is defined, it is known that the IUH depends on
the Froude number (F ) and the characteristic length
(L∗) (Oguz, 1994). For this study, a Froude number
of 0.2 is selected. The mean exterior link length is
assumed to be 1.5 times the mean interior link length
(Smart, 1972). An L∗ value of 0.3 is chosen; it corre-
sponds to a network of which the mean interior link
length is 1000 m and the mean exterior link length
is 1500 m if the slope S and the depth of water y are
taken as 0.0003 and 1 m respectively. In a study on
Saudi Arabian wadis by Sorman (1995) the slopes of

three wadis (basins) were determined to be 0.0076,
0.0330 and 0.0092. Such information was not avail-
able for Turkish river networks. The slope value se-
lected for this study seems too low, compared with
the above cited slope values, to define the dimension-
less characteristic length L∗. L∗ may in reality get
higher values than were tested in this paper.

A simulation study has been performed for 6-
source channel networks with a junction configura-
tion of [2,1,1]. The generation mechanism of a chan-
nel network has two phases. The first one is gen-
eration of the topology and the second phase is the
assignment of link lengths. In this study the junc-
tion configuration is chosen as [2,1,1], which is to say
that the topology of the networks is the same and it
is known. So the second phase of the generation
mechanism follows. Both the interior and exterior
links of channel networks can be assumed gamma
distributed, with the mean of the exterior links being
assumed to be 1.5 times the mean of the interior links
(Smart, 1972). In this study, the mean interior link
length and the mean exterior link length are taken
as 1 km and 1.5 km respectively. Thus, gamma dis-
tributed random numbers with mean 1 are assigned
to interior link lengths and those with mean 1.5 are
assigned to exterior link lengths. Six random channel
networks are simulated by this mechanism.

The IUH s of these channel networks are obtained
by first finding the width functions of the networks,
then applying eq. 9. Calculations at different x∗ dis-
tances from the outlet must be made. In this case
the following definition is made,

∆x∗ =
∆x
y/S

(12)

these x∗ distances are selected at equal ∆x∗ dis-
tances from the previous one. ∆x∗ is taken as one
third of the mean interior link length. The IUH s
obtained are shown in Fig. 5. Here the aim is to see
the distribution of the IUH s.

It is observed that the dimensionless peaks take
values between 0.91 and 1.55, whereas the dimen-
sionless times to peak vary between 0.05 and 0.40.
An attempt is made to find the mean IUH s of 3, 4,
5, 6 source networks for all possible junction config-
urations.
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Figure 5. A simulation study for a 6-source channel net-
work with a junction configuration of [2,1,1]

Networks with mean interior and exterior link
lengths are considered. In other words, the interior
and exterior links of the networks are assigned val-
ues of 1 and 1.5 respectively. The width functions
are calculated taking ∆x∗ as one third of the mean
interior link length and the IUH s are obtained as
previously described. Since the interior and exterior
links are assigned mean lengths, the IUH s produced
must be considered as mean IUH s for certain junc-
tion configurations. These dimensionless mean IUH
s are shown in Fig. 6. It is observed in this figure
that the peak of the mean IUH of a 6-source network
with a junction configuration of [2,1,1] remains in the
range of the IUH peaks of the simulation study with
a value of 1.3 and similarly the time to peak of the
same IUH takes a value between the time to peak
values of the simulation study with a value of 0.2.
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0 0.5 1 1.5 2

[1,1,1,1]
[1,1,2]
[1,2,1]
[2,1,1]
[2,2]
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0.8
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Figure 6. The mean IUH s of 3,4,5,6 source channel networks for all possible junction configuration.

The Relationship Between Mean IUH
Properties and Characteristic Length

All the work in this paragraph is done for one
Froude number, F=0.2. The same work as in the
previous paragraph has been performed for six dif-
ferent L∗, dimensionless characteristic length values,
L∗=0.1-0.6 (increased by 0.1) for all possible junc-
tion configurations of 3, 4, 5, 6-source channel net-
works. The most important characteristics of the
mean IUH s produced, the dimensionless mean peaks
(Up∗) and the dimensionless mean times to peak

(tp∗) have been evaluated.
The relationships between the logarithmic values

of dimensionless mean IUH peak and dimensionless
characteristic length are given in Fig. 7. It is ob-
served that these relationships are almost linear for
small source numbers and become curvilinear as the
source number increases. Generally, the mean IUH
peak decreases as the source number increases for a
given dimensionless characteristic length value. For
a certain junction configuration, the mean IUH peak
decreases as the dimensionless characteristic length
increases.
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Figure 7. The relationship between logarithm of dimensionless mean IUH peak and logarithm of dimensionless charac-
teristic length for all possible junction configurations of 3, 4, 5, 6 source networks.

The relationships between the logarithmic values
of dimensionless mean time to peak and dimension-
less characteristic length are given in Fig. 8. In
this figure, the relationships do not appear for some
smaller L∗ values. This means that the peak of
the IUH is met at time zero. As a general trend,

the mean time to peak increases as the source num-
ber increases for a given dimensionless characteristic
length value. For a given junction configuration the
dimensionless mean time to peak increases with in-
creasing dimensionless characteristic length.
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Figure 8. The relationships between logarithm of dimensionless mean time to peak and logarithm of dimensionless
characteristic length for all possible junction configurations of 3, 4, 5, 6 source networks.

IUH Properties Averaged for a Network
With a Certain Number of Sources

Since the probability of a certain junction con-
figuration for a network having up to six sources is
known (Table), it is possible to average the relations
shown in Figs. 7 and 8. In other words, these rela-
tions can be averaged for a network with a certain
number of sources, independent of the junction con-
figuration. Consequently, the relations seen in these
figures will be summarized by one average curve for
each value of the number of sources. By using similar

logic and with the help of eq. 10, the source number
is extended to eight.

In Fig. 9, the average relationships between log-
arithm of dimensionless IUH peak and logarithm of
dimensionless characteristic length are given. These
relationships are almost linear and the IUH peaks
decrease as the source number increases for a given
characteristic length. It is observed that as the
source number increases these relations come closer
to one another. This implies that, for sufficiently
large source numbers, there might be only one rela-
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tion, which needs further investigation. For a given
source number the IUH peaks decrease with increas-
ing characteristic length.

-2
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lnL*
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5 SOURCES
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Figure 9. The average relationships between logarithm
of dimensionless IUH peak and logarithm of di-
mensionless characteristic length for 3-8 source
networks.

In Fig. 10, the average relationships between log-
arithm of dimensionless time to peak and logarithm
of dimensionless characteristic length are given. The
times to peak increase as the source number increases
for a given characteristic length. Similar to Fig. 9,
the relations get closer to each other as the source
number increases. For a given source number, the
times to peak increase with increasing characteristic
length.
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Figure 10. The average relationships between logarithm
of dimensionless time to peak and logarithm
of dimensionless characteristic length for 3-8
source networks.

In Figs. 9 and 10, the relationships depend only
on F and the source number of the network. The
relationships shown in Fig. 9 and Fig. 10 for U∗p and
t∗p may differ for different trial of F which is different
from 0.2. The logarithmic relationships between U∗p
vs L∗ and t∗p vs L∗ for F = 0.2, 0.4, 0.6, 0.8 values
are given in Oguz, 1994 for a range of 0.001-0.1 for
L∗. Further research using a wider range of L∗ val-
ues and greater F than the one tested in this paper
is recommended.

Conclusions

1. The dimensionless mean IUH s of 3, 4, 5, 6
source networks are obtained for all possible junc-
tion configurations for a Froude number (F ) of 0.2
and a dimensionless characteristic length (L∗) value
of 0.3 (Fig. 6).

2. The relationships between logarithm of dimen-
sionless mean IUH peak (U∗p ) and logarithm of di-
mensionless characteristic length (L∗) for all possible
junction configurations of 3, 4, 5, 6 source networks
for a Froude number of 0.2 are obtained (Fig. 7).

3. The relationships between logarithm of dimen-
sionless mean time to peak (t∗p) and logarithm of di-
mensionless characteristic length (L∗) for all possible
junction configurations of 3, 4, 5, 6 source networks
for a Froude number of 0.2 are obtained (Fig. 8).

4. The average relationships between logarithm
of dimensionless IUH peak (U∗p ) and logarithm of di-
mensionless characteristic length (L∗) for 3-8 source
networks for a Froude number of 0.2 are given (Fig.
9).

5. The average relationships between logarithm
of dimensionless time to peak (t∗p) and logarithm
of dimensionless characteristic length (L∗) for 3-8
source networks for a Froude number of 0.2 are ob-
tained (Fig. 10).
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List of Symbols

ai junction configuration
B width of channel network
c channel state
F Froude number
g gravitational acceleration
h response of network
h∗ dimensionless response of network
L mean interior link length of network
L∗ dimensionless characteristic length
M magnitude of network
N(x) width function
P path space
q unit discharge
Q discharge
S slope of channel network
t time
t∗ dimensionless time
tp time to peak of IUH

t∗p dimensionless time to peak of IUH
T holding time for the basin
U IUH ordinate
U∗ dimensionless IUH ordinate
U∗p dimensionless peak of IUH
V velocity
Vm mean velocity
Vp peak velocity
x distance from outlet
x∗ dimensionless distance
∆x distance interval
∆x∗ dimensionless distance interval
y depth
ym flow depth at mean discharge
yp flow depth at peak discharge
β1 advective velocity (celerity)
β2 diffusion coefficient
λ termination level of network
Ω order of stream
ω order of network
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