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Civil Engineering Department,

Fırat University, Elazığ - TURKEY
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Abstract

In this paper, an algorithm is developed for the optimum design of space trusses with the help of
spreadsheets. The algorithm depends on the interactive computing capability of spreadsheets. A general
purpose optimization tool in spreadsheets is used for the optimization procedures. The analyses of space
trusses are performed by the matrix displacement method. Specific macros have been developed for matrix
calculations related to the truss systems. The displacement, tensile stress, buckling stress and minimum
size constraints are considered in the formulation of the design problem. A number of design examples
are presented to demonstrate the application of the algorithm. The optimum designs obtained using the
spreadsheets are compared with those where a classical optimization method is employed.
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Uzay Kafes Sistemlerin Burkulma Sınırlayıcıları Altında Çalışma Tablolarıyla
Optimum Boyutlandırılması

Özet

Bu çalışmada, uzay kafes sistemlerin optimizasyonunu çalışma tablolarıyla gerçekleştiren bir algoritma
geliştirilmiştir. Algoritmanın temeli, çalışma tablolarının etkileşimli hesaplama yeteneklerine dayanmak-
tadır. Kafes sistemin analizi, matris-deplasman yöntemiyle yapılmıştır. Optimizasyon işleminde, çalışma
tablosu paket programları içerisinde yerleşik olarak bulunan genel amaçlı optimizasyon makrosundan yarar-
lanılmıştır. Kafes sistemle ilgili matrislerin kurulmasında, özel olarak geliştirilen makrolar kullanılmıştır.
Boyutlandırma probleminin formülasyonunda deplasman, çekme gerilmesi, burkulma gerilmesi ve minimum
alan sınırlayıcıları gözönüne alınmıştır. Geliştirilen algoritmanın uygulanabilirliği, çözülen sayısal örneklerle
gösterilmiştir. Çalışma tabloları kullanılarak elde edilen optimum boyutlandırma sonuçları, klasik optimiza-
syon yöntemlerinin sonuçlarıyla karşılaştırılmıştır.

Anahtar Sözcükler: Uzay Kafes; Deplasman; Burkulma; Optimizasyon; Çalışma Tablosu
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Introduction

Structural optimization techniques are quite well
adapted for structural design problems and they are
commonly used at the present time. Much research
has been carried out on optimum structural designs
for a variety of subjects ranging from bar systems to
continuum systems, and connections and effective al-
gorithms have been developed as well (Atrek et al.,
1984). However, the problems which are viable in
practice with respect to code specifications are solved
in only a small number of the above mentioned stud-
ies. Two different approaches are found in structural
optimization when examining these algorithms. One
is mathematical programming methods, which are
quite general and can be used to obtain the solu-
tion of any optimum structural design problem. It is
possible to obtain optimum cross sectional areas by
using linear, nonlinear, geometric and dynamic pro-
gramming methods under stress, displacement and
frequency constraints (Haug, 1981; Kiusalaas, 1978;
Saka, 1980, 1981; Yamakawa, 1981). Shape opti-
mization can also be performed through these meth-
ods (Ding, 1986; Lin, 1982; Majid and Saka, 1977;
Topping, 1983). Although mathematical program-
ming methods are general, they cause divergence
problems and become impractical when applied to
large-scale systems.

The second approach is the optimality criteria
method, in which the difficulties of mathematical
programming methods are not encountered. A re-
cursive relationship for the design variables is devel-
oped. This method is used for the optimum design of
both linear and nonlinear structures (Fleury, 1978;
Khot, 1978; Saka, 1984, 1987,1988; Khot, 1983;
Zacharopoulos, 1984).

Saka (1988) has obtained optimum steel truss
systems using the optimality criteria approach in
accordance with AISC and DIN specifications. In
Saka’s paper, displacement, stress, buckling and
minimum size constraints are considered. Since
classical optimization techniques are utilized in the
above mentioned research, lengthy and complicated
algorithms have been developed. The formulation
and programming of optimization algorithm have an
essential role in structural optimization.

The optimization tool of Microsoft Excel 7.0 is
used for the design algorithm presented in this pa-
per. Displacement, stress, buckling and minimum
size constraints are considered in the optimum de-
sign of steel truss systems. Spreadsheet programs,

which are commonly used at the present time, are
employed both in the optimization procedure and in
the analyses for the solution of the structural opti-
mization problem. The algorithm is based on the
automatic interaction and matrix calculation abili-
ties as well as the optimization tool of spreadsheets.
The using of the general-purpose optimization tool in
the optimization procedure reduces the problem to a
simple form. Microsoft Excel 7.0 was chosen as the
spreadsheet program and its notations together with
its Excel 4.0 macros are used in the present study.

Spreadsheets

General characteristics

Lotus 1-2-3 was among the first programs to be
used as spreadsheets. Nowadays, spreadsheets are
quite popular computer software. Although spread-
sheet programs developed by various software firms
have their own special features, they are based on the
same working principles. Moreover, most of them are
compatible with each other. The spreadsheets devel-
oped for the graphic-based operating systems such as
Microsoft Windows and OS/2 have commonly and
efficiently been used in recent years. A spreadsheet
comprises many ‘workbooks’. A workbook has 16
sheets each of which is a group of cells and contains
256 columns and 16384 rows in the Excel 7.0 program
as shown in Figure 1. The columns are called A, B,
. . . , Z, AA, AB, . . . , IV and the rows are numbered
from 1 to 16384 in general. A user can move around
among cells and write information on them. The in-
formation may be numeric or alphanumeric values
or formulae. Values of variables are written on the
cells and cell addresses are used as variable names
such as A1, M25. The cells or the group of cells can
be named if required and formulations can be ex-
pressed clearly with the help of these names. All op-
erations concerning spreadsheets are conducted by a
core program. This program scans all the filled cells
in the sheet and searches for logical relations and
updates the operations at once when entering new
information into the cells. This feature is called au-
tomatic interaction. One of the important concepts
of spreadsheets is that of range. A range covers one
or more rectangular cells of a sheet. The address of
a range can be defined by the addresses of both ends
of its diagonal, such as A2:B5. It is also possible to
give names to the ranges and use these names in op-
erations. The addresses representing the ranges or
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the names of the ranges can be used as parameters.
Some formulations can also be written on their de-
fined range. These types of formulations are used
particularly in matrix operations.

Macros

Simply defined, macros are small programs which
can be written and executed in spreadsheets (Or-
wis 1991; Weisskopf, 1997; Microsoft Corp., 1994).
Macros are defined in special sheets called macro
sheets. They use the cells of the sheets as variables.
There are two kinds: command macros and function
macros. Function macros assign the values of special
functions used in spreadsheets. Command macros
need special commands to be executed.

Analysis of Space Trusses

Entering data into the sheets

The data concerning a truss system are written
on a template table prepared beforehand in a sheet of
a workbook. There are some ranges on the template
table which have general information and others re-
lated to the joints, members and member groups of
a truss as shown in Figure 1 and Figure 2. Some
of these ranges are arranged for users to enter data
into while the others are prepared for the information
that will be obtained and transferred after calcula-
tions.

Giving names to the special ranges of the
sheets

Giving names to the special ranges and then call-
ing them by those names give the algorithm greater
flexibility. The data are used in the range named
‘General Information’ when defining the addresses
of the ranges. The naming of the ranges is per-
formed with the help of a command macro. First
the range addresses are determined and then related
ranges are defined by using the DEFINE.NAME()
function with this macro (Weisskopf, 1997; Microsoft
Corp., 1994).

Carrying out the matrix displacement
method

The matrices related to the matrix displacement
method are constituted with the help of a command
macro. The macro uses the information on the data
range and obtains the elements of the member stiff-
ness matrix, transformation matrix and external load
vector and then it writes down this information on
the relevant ranges. Matrix functions are used for
obtaining the system stiffness matrix, joint displace-
ments and axial member forces. The required auto-
matic interaction feature is utilized by writing the
matrix elements in the form of formulations. When
the cross sectional area of a member is changed, the
axial member forces and displacements of the system
are affected by this change immediately due to the
interaction feature. The MMULT(),

Figure 1. General information and joint descriptions
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Figure 2. Member and member group descriptions

TRANSPOSE(), MINVERSE() functions are used
in the matrix operations (Weisskopf, 1997; Microsoft
Corp., 1994).

The calculated axial member forces and system
joint displacements are placed in the relevant parts
of the tables in the sheets by means of referring. The
visual selection of the initial cross sectional areas be-
comes possible in an interactive way by monitoring
the data and the results with this feature. The pres-
ence of the calculated displacements together with
their limiting values in the same order of the ta-
ble makes the expression of displacement constraints
simple.

Optimization of Space Truss Systems

General purpose optimization tool

In the classical structural optimization methods,
an essential part of computer programming consists
of the optimization processes. In the present study
optimization processes are performed by a general
purpose optimization tool (Solver) that exists in the
spreadsheet. The following steps are carried out
when solving an optimization problem by the Solver:

1- The initial values for the design variables are
written at random on the relevant places of the sheet.

2- The objective function and constraints are for-
mulated and put in the appropriate places in the
sheet referring to the cells where the design variables
are present. The objective function is the volume of
the structure.

3- The best initial values for design variables are
selected by trial and error making use of the auto-
matic interaction feature.

4- The Solver is run and the objective function
and constraints are entered into the relevant places
of its dialog box as shown in Figure 3.

5- The ‘Solver Options’ dialog box is activated by
the ‘Options’ button of the Solver dialog box, and in-
formation such as optimization technique, precision
and number of iterations is entered into that box as
shown in Figure 4.

6- The optimization process is started by the
Solve button. The variation of the values in the ta-
bles is visually monitored during the optimization
with the interaction feature. The process terminates
when the adequate convergence is satisfied.

The above mentioned steps are followed in the
optimum design of a structure under displacement,
tensile and buckling stresses.
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StructureVolume: AD38

GroupSectionalAreas: AG13:AG20 MinSectionalArea: F7

YieldStress: F5 RealStresses: AC13:AC37

ComptDisplacements: N13:P22 DisplConstraints: K13:M22

Figure 3. Solver Parameters dialog box

Figure 4. Solver options

Tensile and buckling stress constraints

The stress constraints given in Saka (1990), which
are taken from AISC Spec. (1987), are considered in
the present study. The tensile stress constraint can

be expressed as

σi =
Fi
Ai
≤ σti (1)
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where Fi and Ai are the axial member force and
cross-sectional area of a tension member i, respec-
tively. σi is the computed axial tensile stress and σti
is the permitted axial tensile stress, which is given
in AISC Spec. (1987) as

σti = 0.6σy (2)

where σy is yield stress.
The stress constraints are considered as ‘buckling

stress constraints’ in compression members. Buck-
ling of an i-th compression member occurs either in
elastic range or in plastic range depending on the
slenderness ratio Si = Li/ri, where Li and ri are the
length and radius of gyration of the i-th member.

The design problem is formulated by only con-
sidering cross-sectional areas as variables. Hence, it
becomes necessary to express the above radius of gy-
ration in terms of area. This relationship is given by

r = aAb (3)

where a and b are constants whose values are ob-
tained by applying the least square approximation
to a practically available AISC standard section such
as angles, pipes, tees and double angles (Saka, 1990).
The values of a and b for some sections are given in
Table 1.

Table 1. The constants in Eqn. (3) for some sections

Constants Section Shapes
L O T JL

a 0.8338 0.4993 0.2905 0.5840
b 0.5266 0.6777 0.8042 0.5240

According to AISC (Specification 1987), the com-
puted axial compressive stress σi = Fi/Ak does not
exceed the permitted buckling stress:

if Si > C then σi ≤
12π2E

23S2
i

(elastic buckling) (4)

if Si < C then σi ≤
[1− S2

i /(2C
2)]σy

5
3 + 3Si

8C −
S3
i

8C3

(plastic buckling) (5)

where Ak is the area of members belonging to group
k, E is modulus of elasticity and C =

√
2π2E/σy.

Eqns (1), (4) and (5) can be arranged in the follow-
ing forms, such that each of them is constrained by
σy.

For tension members

1
0.6

Fi
Ak
≤ σy (6)

For compression members

if Si > C then
23S2

i

6C2
.
Fi
Ak
≤ σy (7)

if Si < C then

[
5
3 + 3Si

8C
S3
i

8C3

]
[1− S2

i /(2C2)]
.
Fi
Ak
≤ σy(8)

Eqns (6), (7) and (8) have the form

niσi ≤ σy (9)

where ni may be perceived as a variable factor of
safety and σri = niσi is described as ‘real stress’.

The macro for the real stress functions

A function macro called the ‘real stress function’
is prepared to transfer the stress constraints to the
Solver. This macro computes σri real stress values
from eqns (6), (7) and (8) depending on the signs
of member axial forces and the member slenderness
ratio. The definition of the macro is given in Figure
5.

The optimization macro for space truss sys-
tems

The optimization macro informs the Solver about
the objective function, the constraints and the opti-
mization options and it also starts the optimization
process. This macro is defined in Figure 6.
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Real Stress

Member force =ARGUMENT(“Fi”)

Member sectional area =ARGUMENT(“Ak”)

Member length =ARGUMENT(“Li”)

=IF(A<=0)

=RETURN(2∗!YieldStress)

=END.IF()

Tension member? =!IF(Fi>=0)

=RETURN(!FactorofSafety∗Fi/Ak)

=ELSE()

Member slenderness ratio (Si) =Li/(!aCoefficient∗Ak∧!bCoefficient)

Critical slenderness ratio (C) =SQRT(2∗PI()∧!2∗!ModulusofElasticity/!YieldStress)

Elastic buckling? =IF(Si>=C)

=RETURN(ABS(Fi)∗23∗Si∧2/(Ak∗6∗C∧2))

Plastic buckling? =ELSE()

=RETURN(ABS(Fi)∗(5/3+3∗ Si/(8∗C)-Si∧3/(8∗C∧3))/(Ak∗(1-Si∧2/(2∗C∧))))

=END.IF()

=END.IF()

=RETURN()

Figure 5. Real stress function macro

Optimization
Error control notice =ERROR(TRUE;ErrorinOptimization)

=FORMULA.GOTO(“GroupSectionalAreas”)
Reset the Solver =SOLVER.RESET()
Optim. Options =SOLVER.OPTIONS(9999;100;0.0001;FALSE;FALSE;2;1;1;0.05;FALSE)
Objective function =SOLVER.OK(!StructureVolume;2;0;!GroupSectionalAreas)
Min. size constraint =SOLVER.ADD(!GroupSectionalAreas;3;!MinimumSectionalArea)
Tens. & buckl. Stress const. =SOLVER.ADD(!RealStresses;1;!YieldStress)
Displ. constraints =SOLVER.ADD(!ComputedDisplacements;1;!DisplConstraints)
Start the optimization =SOLVER.SOLVE(TRUE)

=ERROR(FALSE)
=SOLVER.FINISH(TRUE)
=RETURN()

Figure 6. Space truss optimization macro

Design Examples

The algorithm is developed for the optimum de-
sign of both space and plane trusses by means of
spreadsheets. However, the 27-bar system presented
in Saka (1990) is only designed as plane truss in the
present study. The optimum design of 25-, 56- and
244-bar space truss systems, which are applicable
in practice, is performed by the spreadsheet after-
wards. In all these examples, the yield stress, the
permitted tensile stress and the factor of safety for
tension members are taken as 233.3 MPa, 140 MPa
and 1.6667, respectively.

Design of 27-bar plane truss

The optimum design of the 27-bar plane truss
shown in Figure 7 is considered as the first example.
The dimensions, the loading and member grouping
are given in Figure 7. The results obtained from
the present study are compared with those of Saka
(1990). The pipe sections are adopted in the design.
The vertical and horizontal displacements of joint 11
are restricted to 10 and 4 mm, respectively. The
modulus of elasticity is taken as 210 kN/mm2. The
minimum size constraints for area variables are con-
sidered to be 400 mm2. The optimization process
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is started with 2000 mm2 initial cross-sectional ar-
eas. The optimum designs are given comparatively in
Table 2. The computed stresses remain quite below

their limiting values in this example. The displace-
ment constraints are dominant in the design.

Figure 7. 27-bar plane truss

Table 2. Optimum designs for 27-bar plane truss

Group Sectional Areas ( mm2) Structure Volume
A1 A2 A3 A4 A5 (x 103 mm3)

Initial values 2000 2000 2000 2000 2000 108000

Optimum (Saka, 1990) 4038 4391 1174 402 1006 103484
Designs This work 4041 4395 1175 400 1007 103554

Design of 25-bar space truss

The second example is a 25-bar space truss shown
in Figure 8. This truss was designed by Venkayya
et al. (1969), Adeli and Kamal (1986) and Saka
(1990), with the help of different optimization tech-
niques. The same truss is designed by spreadsheet
herein. The members of the truss are collected in
eight groups. The pipe sections are considered in
the design. The modulus of elasticity is taken as 207
kN/mm2. The loading of the truss and the upper
bounds for the displacements of the restricted joints
are given in Table 3. The minimum cross-sectional
area for members is chosen as 6.45 mm2. The opti-
mization starts with the cross-sectional areas of 1000
mm2 for all members. The results for the optimum
design are listed and compared with those of Saka
(1990) in Table 4. The joint displacements remain
quite below their limiting values, and the buckling
stress constraints govern the design. The reduction
in the structure volume is 9.1% when compared with
the design of Saka (1990).

Design of 56-bar space truss

The third example is a 56-bar space truss whose
members are collected in three groups as shown in
Figure 9. Angle sections are adopted for members.
Joint 1 is loaded with 4 kN in the Y-direction and
30 kN in the Z-direction while the others are loaded
with 4 kN in the Y-direction and 10 kN in the Z-
direction. The vertical displacements of joints 4,
5, 6, 12, 13 and 14 are restricted to 40 mm while
the displacement of joint 8 in the Y-direction is lim-
ited to 20 mm. The modulus of elasticity and the
minimum member cross-sectional area are taken as
210 kN/mm2 and 200 mm2, respectively. The initial
cross-sectional areas are chosen as 2000 mm2 when
starting the optimization. The results of optimum
design are shown in Table 5. The obtained values
of joint displacements are much smaller when com-
pared with their upper bounds. It is found that the
tensile and buckling stress constraints are dominant
in the design.
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Figure 8. 25-bar space truss

Table 3. The loading and displacement bounds for 25-bar space truss

Joint Loading (kN) Displacement
Number Limitations (mm)

x y z x y

1 4.54 45.4 -22.7 8.89 8.89

2 0.0 45.4 -22.7 8.89 8.89

3 2.27 0.0 0.0 - -

6 2.27 0.0 0.0 - -

Table 4. Optimum designs for 25-bar space truss

Design Members (Saka,1990) This work
Variables mm2 ( mm2 )

A1 1 6.45 6.45
A2 2,3,4,5 1327.7 1266
A3 6,7,8,9 1927.7 1708
A4 10,11 6.45 6.45
A5 12,13 6.45 6.45
A6 14,15,16,17 449 496
A7 18,19,20,21 1077.4 913
A8 22,23,24,25 1672.3 1470

Structure Volume(x103 mm3) 89351 81246
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Figure 9. 56-bar space truss

Table 5. Optimum designs for 56-bar space truss

Group Sectional Areas (mm2) Structure volume
A1 A2 A3 (x 103 mm3)

Initial values 2000 2000 2000 521810
Optimum designs 773 477 832 187996

Design of 244-bar transmission tower

The design of a 244-bar transmission tower,
shown in Figure 10, is considered as the last example.
The members of this space truss are combined in 32
groups. The modulus of elasticity is considered to be

206 kN/mm2. The loading and the bounds imposed
on the displacements are given in Table 6. Angle sec-
tions are adopted for the members. The minimum
cross-sectional areas are taken as 200 mm2 and the
initial values for the areas are selected as 1000 mm2.
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The optimum designs are given in Table 7. The
optimum sectional areas of Saka given in the third
column of the table were obtained by using Saka’s
computer program (1990). The buckling stress and

displacement constraints are dominant in the design
problem. The reduction in the structure volume is
6% when compared with Saka’s design (1990).

Figure 10. 244-bar transmission tower
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Table 6. The loading and displacement bounds of trans-
mission tower

Joint Loading (kN) Displacement
Number Limitations (mm)

x z x z

1 -10 -30 45 15

2 10 -30 45 15

17 35 -90 30 15

24 175 -45 30 15

25 175 -45 30 15

Conclusions and Suggestions

In this work, an optimum design algorithm for
the space and plane trusses with the help of spread-
sheets considering displacement, stress and buckling
constraints is presented. The algorithm depends on
the use of the optimization tool of spreadsheets. It is
also demonstrated that the algorithm can be applied
effectively to the practical large systems.

It is also found from the numerical solutions that
the results obtained from the present work coincide
with those of previous work. Sometimes the algo-
rithm gives even better results in comparison with
those of the previous ones. The optimum design
of space and plane trusses can be performed by the
present algorithm without the need for any optimiza-
tion methods or techniques, making use of spread-
sheets which are used extensively in microcomput-
ers.

The algorithm developed for truss systems can be
applied quite simply to framed structures by making
small changes. Moreover, a more effective and flex-
ible algorithm can be developed by writing macros
in the Visual BASIC programming language which
exists in Microsoft EXCEL.

Table 7. Optimum Designs for 244-bar transmission
tower

Design (Saka,1990) This work
Variables (mm2) (mm2)

A1 263 267

A2 253 243

A3 200 200

A4 200 200

A5 2709 2557

A6 780 770

A7 308 291

A8 3820 3665

A9 1681 1680

A10 200 200

A11 3551 3390

A12 853 864

A13 200 200

A14 4027 3872

A15 200 200

A16 200 200

A17 200 200

A18 597 504

A19 200 200

A20 4941 4811

A21 1133 1100

A22 829 767

A23 200 200

A24 200 200

A25 200 200

A26 200 200

A27 200 200

A28 200 200

A29 200 200

A30 200 200

A31 200 200

A32 200 200

Structure
Volume(x108 mm3) 9.21 8.64

Notation
Ai = area of member i;
Ak = area of members in group k;
a,b = constants used in relating cross-

sectional area to radius of gyration;
C = critical value of slenderness ratio;
E = modulus of elasticity;
Fi = force in member i;

Li = length of member i;
ni = variable factor of safety for member i;
ri = radius of gyration for member i;
Si = slenderness ratio for member i;
σi = stress in member i;
σy = yield stress;
σri = real stress in member i;
σti = allowable tensile stress for σi
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