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Abstract

Some specific curves and surfaces have been used by engineers in the aerospace and automotive industries
to design parts, such as car-body panels, for the last three decades. In this study, a method is developed for
3D solid computer representation of warp knitted structures using a similar technique. For this purpose, a
three-dimensional cylindrical uniform solid yarn model was developed, such that the central axis is a space
curve, by using the Non-Uniform Rational B-Spline (NURBS) surfaces. Then this model was applied to
warp knitted fabrics using a CAD program written in C++ on a Silicon Graphics (SGI) workstation, which
has an Open Inventor graphical library. The computer generated images of some structures are also given
as examples in the study.

This paper describes the methodology and mathematics used to create the three-dimensional solid yarn
model and apply this model to textile structures.
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Çözgülü Örme Yapıların Bilgisayarda Üç Boyutlu Simülasyonu için Uniform
Olmayan Rasyonel B-Spline Kullanımı

Özet

Bazı özel eğri ve yüzeyler, havacılık ve otomotiv endüstrisindeki mühendisler tarafından otomobil parçalarının
tasarımı gibi amaçlar için otuz yıldır kullanılmaktadır. Bu çalışmada benzer bir teknik kullanılarak, çözgülü
örme yapıların bilgisayarda üç boyutlu katı simülasyonunu sağlayacak bir metot geliştirilmiştir. Bu amaçla
NURBS yüzeyleri kullanılarak merkez ekseni uzayda bir eğri olan üç boyutlu silindirik bir iplik modeli
geliştirilmiştir. Daha sonra C++ programlama dili ve Open Inventor grafik kütüphanesi ile Silicon Graphics
(SGI) iş istasyonu üzerinde yazılan bir bilgisayar destekli tasarım (CAD) programında, bu katı iplik modeli
kullanılarak çözgülü örme kumaşlar elde edilmiştir. Bu şekilde simüle edilen yapılardan bazıları örnek olarak
makalede sunulmaktadır.

Bu makalede üç boyutlu katı iplik modelini geliştirmek ve bu modeli kumaşlara uygulamak için kullanılan
hesaplamalar ve yöntemler anlatılmaktadır.

Anahtar Sözcükler: Tekstil, Çözgülü Örme, CAD (Bilgisayar Destekli Tasarım), 3 Boyutlu Katı Mod-
elleme, NURBS.
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Introduction

In textiles, the general aim of computer aided
design (CAD) systems is to provide a fast, easy de-
sign and realistic simulation of the structures on
the computer screen to enable manufacturers to as-
sess their designs before the real knitting or weav-
ing process. However, even the recent CAD sys-
tems and simulation programs in warp knitting can
only provide two- dimensional representations of
structures (Breitenstein, 1995; Candan, 1994; Latifi,
1990; Stumpf, 1996; Karl Mayer Textilmaschinen-
fabrik GmbH., 1992, 1995; ALC Computertectechnik
GmbH, 1995). This presentation is limited from the
perspective of the designer and customer, since the
fabrics are not pictures. Furthermore, designers and
customers want to predict the comfort, drape and
handling characteristics of the fabrics as well as the
aesthetic aspects of the design. Therefore most of
them still prefer to make their decisions after seeing
the physical samples instead of 2D computer images
which do not have geometrical definition of the sam-
ple displayed. However, if three-dimensional solid
models can be created on the computer screen, de-
signers and customers will have much more realistic
and adequate representation of structures and they
can manipulate the models (e.g., zooming, rotating

and scaling) and consider other aspects of the fabrics
as well as the aesthetic ones. In fact, there is a gen-
eral trend towards three-dimensional modelling in all
fields, parallel to the advancement in computing in
terms of both hardware and software. However, the
application of the 3D solid modelling concept in tex-
tiles is an even more difficult task than in other fields
due to the complexity, flexibility and irregularity of
the structures (Göktepe, 1998).

Nurbs Curves and Surfaces

Basic concepts of NURBS curves and surfaces are
explained briefly in the next section to aid under-
standing of the geometric aspects of the computer
modelling processes in this work.

A spline curve is a continuous curve that is com-
posed of several polynomial segments (Farin, 1993).
NURBS curves or surfaces are described by some
parametric equations that are not explicitly part of
the geometry. A curve is described in terms of one
parameter, u, as follows:

x = f(u) y = g(u) z = h(u)

This single parameter is mapped into a three-
dimensional (x, y, z) space by the three functions
given above (Figure 1).

0.0 1.0

z

y

u=0.0

u=1.0

x

object spaceparameter space

Figure 1. Mapping parametric curve to object space

These equations are provided by the most com-
mon graphical libraries such as Open GL and Open
Inventor, which was used in this study. Therefore a
programmer does not need to specify the equations
explicitly. Instead, he/she defines the following com-

ponents that make up the parametric functions:

• Control points

• Knot sequence
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• Order

Control points are points in object space that af-
fect the shape of the curve in some way. The curve

may pass near the control points or pass through
some of them (Figure 2). The control points can be
a set of data through which a curve is fitted or a grid
of points used to describe a curved surface.

control points

an approximating curve an interpolating curve

Figure 2. Using control points to shape the curve

The knot sequence is simply a list of non-
decreasing numbers which defines how the control
points affect the curve. The knot sequence deter-
mines whether the curve passes through and inter-
polates between some (usually the first and last) of
the control points (an interpolating curve in Figure
2) or passes near the control points (an approximat-
ing curve in Figure 2). The curves which are used
in this study have a multiplicity of knots, which
is four at the beginning and end. There are uni-
formly spaced single knots between them (for exam-
ple, 0,0,0,0,1,2,3,4,4,4,4), so that the curve represent-
ing the yarn passes through the end points.

The order of a curve determines the form of the
parametric equations. The order is equal to one
plus the maximum exponent (degree) of the vari-
ables in the parametric equations. For example, the
parametric equations of a cubic curve (degree=3, or-
der=4) has the following form:

x(u) = Axu
3 + Bxu

2 +Cxu+ Dx

y(u) = Ayu
3 + Byu

2 + Cyu+ Dy

z(u) = Azu
3 +Bzu

2 +Czu+Dz

In Open Inventor, the order of a curve is not explic-
itly specified. It is calculated as follows:

order = number of knots - number of control
points

The order of the curve determines the minimum
number of control points necessary to define the
curve. For example, to create a cubic curve at least
four points need to be specified. Two or more curve
segments can be joined into a piecewise cubic curve
by specifying more than four control points (Figure
3).

a cubic curve a piecewise curve

Figure 3. A piecewise cubic curve

371
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The order of the curve also affects the behaviour
of the curve when a control point is moved. For ex-
ample, such a change in the position of a control
point affects at most three segments of a quadratic
B-spline curve. This is called a local control prop-
erty, a feature which makes these curves very popu-
lar. For B-spline cubic curves, this control is not so
local since movement of a control point affects four
segments of the curve. As the order of the curve is
increased, the change in the curve becomes global (af-
fects the whole curve) and unpredictable. A NURBS
curve can have an order of up to eight in Open Inven-
tor (Wernecke, 1995). The curves with higher order
are not preferable because of their unpredictable be-
haviour. Cubic curves are the most commonly used
curves since they provide enough control for most
geometric modelling applications without the draw-
backs of higher-order curves. They are also found to
be suitable for accurate representation of warp knit-
ted stitches in this study, since they provide a smooth
continuity at breakpoints as well as other advantages
(Göktepe, 1998).

The continuity of a curve describes the behaviour
of the curve segments at breakpoints. The maxi-
mum continuity possible is order-2. In this study,
the highest possible continuity, which is C2 for the

cubic curves, is used to obtain the curves which have
identical curvature at the breakpoint.

In brief, the (non-rational) uniform cubic B-
spline curves with a continuity of two were used
for representing yarns. The knot sequence for these
curves has a multiplicity of four at the beginning and
end, which causes the curve to pass through the first
and last control points. In between, the curve shape
is uniform.

Solid Yarn Model

For simplicity, the yarn was modelled as a
monofilament yarn which was assumed to be uniform
with a circular cross-section. The path followed by
the thread in a fabric (i.e., central axis) refers to the
first parameter (u) of the NURBS surface and the
circle (i.e., cross-section) refers to the second param-
eter (v) of the same surface (Figure 4). Hence, the
curve used for representation in simple form defines
the first parameter of the surface. The values for the
second parameter (v) are calculated and set so that
the curve is wrapped with a cylindrical surface. This
also can be thought of as sweeping the central axis
with a circle (cross-section) along the yarn to create
a 3D solid image of loops and fabrics.

z

y

x

y

x

z

yarn radius

u

0 1

0 1

v

Figure 4. The u and v parameters (mapped to object space) for solid loop model
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A new set of control points is needed to define
the surface. For calculation of the co-ordinates of the
control points, it is necessary to obtain the tangents
to the curve of the central axis at the control points.
Then the circles defining the yarn cross-section are
placed around the control points perpendicular to
their tangents.

A plane in 3D space can be determined by a point
on it and a vector which is perpendicular to this
plane. Figure 5 shows such a plane (p), which is
perpendicular to V. V is the tangent line to a 3D
space curve (s) at a point (V1).

p

y

z

x

V

O

S

V2

V1

n2
n1

Figure 5. A plane and its normal vectors

Let V2 be a point on the tangent line to the curve
(s); then the vector V is given by

V = V2 − V1 = (a1, a2, a3)

If V2 and V1 are two vectors in 3D space:

V2 = (x2, y2, z2)

V1 = (x1, y1, z1)

Then,

a1 = x2 − x1

a2 = y2 − y1

a3 = z2 − z1

Considering the normal vector V, the equation of
the plane p can be written as

a1x+ a2y + a3z + d0 = 0

Since plane p contains V1 (as a point) then V1

satisfies this equation so,

d0 = −(a1x1 + a2y1 + a3z1)

Since V is not a zero vector, then at least one of
a1, a2, a3 is not zero. Suppose that a1 6= 0, thus,

x = −d0

a1
− a2

a1
y − a3

a1
z

Vectoral equation of p can be written as

r(y, z) = (x(y, z), y, z)

r(y, z) = (−d0

a1
− a2

a1
y − a3

a1
z, y, z)

ry = (−a2

a1
, 1, 0) =

1
a1

(−a2, a1, 0)

rz = (−a3

a1
, 0, 1) =

1
a1

(−a3, 0, a1)

‖ry‖2 =
1
a2

1

(a2
1 + a2

2), ‖rz‖2 =
1
a2

1

(a2
1 + a2

3),

The Gram-Schmidt method (Grossman, 1991)
can be used for orthogonalisation since a1 6= 0 so
rx and ry are linearly independent vectors (i.e., they
are not parallel). Define N1 and N2 to be two or-
thogonal vectors on plane p by using Gram-Schmidt
orthogonalisation for the vectors ry and rz:

N1 = ry, N2 = rz −
〈ry, rz〉ry
〈ry, ry〉

Scalar product of ry and rz:

〈ry, rz〉 =
1
a2

1

(a2a3) =
a2a3

a2
1

,

N2 =
1
a1

(−a3, 0, a1) −
a2a3
a2

1

1
a1

(−a2, a1, 0)
a2

1+a2
2

a2
1

,

So,
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N2 =
1
a1

(−a3, 0, a1) − a2a3

a1(a2
1 + a2

2)
(−a2, a1, 0)

Thus,

a1N2 = (−a3, 0, a1)− a2a3

(a2
1 + a2

2)
(−a2, a1, 0)

a1N2 =
1

a2
1 + a2

2

[−a3(a2
1 + a2

2)

+a2
2a3,−a1a2a3, a1(a2

1 + a2
2)]

a1N2 =
1

a2
1 + a2

2

[−a2
1a3,−a1a2a3, a1(a2

1 + a2
2)]

So,

N2 =
1

a2
1 + a2

2

[−a1a3,−a2a3, (a2
1 + a2

2)]

Then define

n1 =
N1

‖N1‖
=

a1

a1

√
a2

1 + a2
2

(−a2, a1, 0)

Let

a2 = a2
1 + a2

2 + a2
3

Hence,

a =
√
a2

1 + a2
2 + a2

3

n2 =
N2

‖N2‖
=

1
a
√
a2

1 + a2
2

(−a1a3,−a2a3, a
2
1 + a2

2)

where n1 and n2 is an orthonormal basis for the plane
p and satisfies the following condition:

〈n1, n2〉 = 0

Thus, the equation of a circle in the plane p can
be written as follows:

C̃(θ) = V1 + r(Cosθn1 + Sinθn2),
0 ≤ θ ≤ 2π (1)

where r is the radius of the circle. Hence, the open
(x, y, z) form of the equation can be given as follows:

C̃(θ) =



x1 − rCosθ
a2√
a2

1 + a2
2

− rSinθ a1a3

a
√
a2

1 + a2
2︸ ︷︷ ︸

x

,

y1 + rCosθ
a1√
a2

1 + a2
2

− rSinθ a2a3

a
√
a2

1 + a2
2︸ ︷︷ ︸

y

,

z1 + rSinθ

√
a2

1 + a2
2

a︸ ︷︷ ︸
z


0 ≤ θ ≤ 2π (2)

This formula gives the co-ordinates of a point cor-
responding to the θ angle on the circle with the ra-
dius of r. The radius r is calculated automatically
by the program from the linear density of the yarn
according to the material (PET, Nylon etc.). The
tangent (V) to the curve, which defines the loop at a
control point, is obtained by using the previous and
next points of the control point. For example, in
Figure 6, the tangent at point N3 is obtained by the
points N2 and N4 as follows:

V = N4 −N2 = (a1, a2, a3)

N4 = (x4, y4, z4) N2 = (x2, y2, z2)

a1 = x4 − x2 a2 = y4 − y2 a3 = z4 − z2

In the program, the circle (cross-section) is de-
fined by a uniform cubic B-spline curve that does
not pass through the end points. The program gen-
erates the co-ordinates of the first control point by
putting zero as the value of θ in Equation 2. Then it
calculates the co-ordinates of the subsequent points
by increasing the value of θ by π/2 for each point un-
til θ becomes equal to 3π. This process is repeated
for each control point on the central axis.

It is noted that θ is defined as 0 ≤ θ ≤ 3π in the
program instead of 0 ≤ θ ≤ 2π given in the equa-
tion. The condition of 0 ≤ θ ≤ 2π generates five
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control points to describe a circle. However, in this
case, the ends of the curve do not meet to generate a
closed circle due to the behaviour of the approxima-
tion curve used. Therefore the condition for θ had
to be modified as 0 ≤ θ ≤ 3π. Thus, for the second
parameter v, the number of control points is set as
seven and the knot sequence is defined as
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

P2

N0

P1

N2

N3 N4

N5

N6

P4
N7

P3

P0

New curve
generated by
calculated points

The curve generated by
user defined points

Figure 6. Redesign of a curve

to generate a closed circular cross-section. For exam-
ple, a loop defined by a curve (central axis) with 10
control points is defined by a surface with (10x7=)
70 control points in solid form. Figure 7 shows a 3D
solid loop model of a warp knit stitch while a point
and wire-frame representations of such a warp-knit
stitch obtained using the solid yarn model are shown
in Figures 8 and 9, respectively.

Application of the Yarn Model to Warp Knit-
ted Structures

It is necessary to have either a theoretical or an
empirical loop model to generate knitted structures
on the computer screen. This model describes the
geometrical configuration of the yarn in knitted fab-

rics. Then the number of control points needs to be
determined in order to define a single loop shape.
Once the loop is created, the fabric can be generated
by connecting loops to each other according to the
design. In this study, experimental work was con-
ducted to obtain the necessary empirical loop mod-
els and a CAD program was also developed to enable
design preparation (Göktepe, 1998).

Figure 7. 3D computer generated solid image of a typical
warp knit stitch

Determination of the control points number
to define a loop

It is obvious that the number of control points
depends on the shape of the loop to be created. The
minimum possible number of control points must be
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used to describe the loop types to allow faster ren-
dering. At least four control points are necessary to
create a cubic uniform B-spline curve as mentioned
earlier. Hence, number of control points ≥ 4

Figure 8. Point representation of a warp knit loop

Figure 9. Wire frame representation of warp knit loops
in a fabric

Basic two-dimensional loop shapes (Figure 10),
which were classified by Candan (1994), can be used
to determine the minimum number of points to de-
scribe the loop shape.

Generally, to define a shape, two points for the
beginning and end points and one point for each
corner (or turning points for curves) are adequate.

Thus, a closed or open loop and fall-plate loop can
be represented by five points while a laid-in loop can
be defined using four points. This assumption ex-
cludes the cross-over part where the loop connects to
the underlap. By including this point, a user needs
to enter six control points to define a basic warp knit
loop.

basic open or closed loop fall-plate

laid-in

Figure 10. Basic 2D loop types

For modelling purposes, the uniform cubic B-
spline curves have a drawback since the curves do
not pass through the points, except the first and last
points. However, it is desirable to have a curve which
passes through all the control points for more accu-
racy and a better control of the curve. To achieve
this, in the program, a new set of control points
(polygon) is created using the co-ordinates entered
by the user (Figure 6). As a result, the program
creates ten control points using the six user defined
points to represent the loop. For example, the calcu-
lation of the co-ordinates for new control points N1

and N2 (Figure 6) is given below:

r01 =
| P1P0 |
| P0P2 |

, r12 =
| P2P1 |
| P0P2 |

−−−→
P0N1 = −−−→P0P1 −

−−−→
P0P2.r01/4
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−−−→
P0N2 = −−−→P0P1 +−−−→P0P2.r12/4

This vectoral calculation is repeated for all user
defined points (except the first and last points). Con-
sequently, the user needs to specify at least six con-
trol points to describe the configuration of a basic
warp knit loop. Then the program calculates a new
set of (ten) control points so that the curve can pass
through the six points specified by the user.

Once a loop (or fabric) is created in simple form
using the curves, it can be displayed in a solid form
using surfaces by the 3D CAD system developed by
Göktepe (1998). To define a surface, the control
points and knot sequence must be specified for both
parameters. The u and v parameters can have a dif-
ferent order and a different knot sequence.

Some computer generated 3D solid images of fab-
rics are given in Figures 11-13.

Figure 11. Computer generated image of Tricot structure

Figure 12. Computer generated and rotated image of
Satin structure

Figure 13. Computer generated image of Queen’s Cord
structure

Conclusion

In this study, a three-dimensional solid yarn
model was developed using NURBS curves and sur-
faces. This 3D model was successfully used to rep-

resent some basic warp knitted fabrics on the com-
puter. Computer generated images of knitted struc-
tures show that the cubic NURBS curves and sur-
faces can be used for modelling and realistic simula-
tion of textile structures.
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Multifilament yarn models are recommended for
future studies to obtain more realistic representa-
tions of textile structures. This will require a much
more powerful computer than the Silicon Graphics

(SGI) workstation used for this study. Alternatively,
pictures of real yarns can be mapped to the surface
of the 3D yarn model using the texture mapping
method.
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