
Turk J Engin Environ Sci
25 (2001) , 561 – 568.
c© TÜBİTAK

A Comparison of the Performances between a Genetic Algorithm
and the Taguchi Method over Artificial Problems

Özgür YENİAY
Hacettepe University, Faculty of Science,

Department of Statistics, 06532, Beytepe, Ankara - TURKEY

Received 03.06.1999

Abstract

In the manufacturing industry, to produce the best quality product, it is important to define several
levels of inputs. The Taguchi method is proposed for the solution of this problem and is widely used.

In this study, a steady-state genetic algorithm (GA), called Genmak, is developed for the solution of
the experimental design problems. In order to compare the performance of the suggested algorithm with
that of the Taguchi method, 3 sets with different characteristics are carefully designed. Each set has 1000
test problems. Each of these test problems is an experimental design problem having 4 factors with 3
levels. Significant effects and optimum solution are determinated by statistical methods for every problem
generated. Two methods are applied to the problems and the number of problems in which the optimum
solution is reached is recorded. Then, the methods are compared with respect to these records. The results
show that the performance of the GA is as high as that of the Taguchi method. Another important result
is that the performance of the methods decreases as the amount of interaction in a problem increases.

Overall, it is concluded that GAs are suitable for finding the optimum solution to this kind of problem
and can be used as an alternative to the Taguchi method.

Key Words: Genetic algorithm, Experimental design, Taguchi method

Yapay Problemler Üzerinde Genetik Algoritma ile Taguchi Yönteminin
Performanslarının Karşılaştırılması

Özet
Üretim sektöründe üretilen ürünün kalitesini en iyi yapabilmek için, etmenlerin çeşitli düzeylerinin be-

lirlenmesi önemli bir problemdir. Taguchi yöntemi, bu problemin çözümü için önerilen yöntemlerden bir
tanesidir ve yaygın olarak kullanılmaktadır.

Bu çalışmada, deney tasarım problemlerinin çözümü için Genmak olarak adlandırılan bir durağan du-
rum genetik algoritma (GA) geliştirilmiştir. Önerilen algoritmanın performansını Taguchi yönteminin perfor-
mansı ile karşılaştırmak amacıyla farklı özelliğe sahip 3 küme tasarlanmıştır. Her kümede 1000 test problemi
vardır. Bu test problemlerinin herbiri, 3 düzeyli 4 faktöre sahip deney tasarım problemidir. Yaratılan her
problem için önemli etkiler ve en iyi çözüm, istatistiksel yöntemler yardımıyla belirlenmiştir. İki yöntem
problemlere uygulanmış ve en iyi çözüme ulaşılan problemlerin sayısı kaydedilmiştir. Daha sonra, yöntemler
bu kayıt değerlerine göre karşılaştırılmıştır. Sonuçlar GA’nın performansının Taguchi yönteminin perfor-
mansı kadar yüksek olduğunu göstermiştir. Diğer önemli bir sonuç ise, problemdeki etkileşim miktarı arttıkça
yöntemlerin performansının düşmesidir.

Genel olarak, GA’nın bu tür problemlere en iyi çözüm bulmada uygun olduğu ve Taguchi yöntemine
alternatif olarak kullanılabileceği sonucuna ulaşılmıştır.

Anahtar Sözcükler: Genetik algoritma, Deney tasarımı, Taguchi yöntemi

561

YENİAY

Introduction

Within the last decade, it has become appar-
ent that Genetic Algorithms (GAs) are potent tools
for solving a wide variety of difficult, real world
problems. There have been a number of interna-
tional conferences on the theory and applications
of GAs. They have been used successfully in a
wide variety of applications including packing (Falke-
nauer and Delchambre, 1992), scheduling (Fang et
al., 1993), neural networks (Bornholdt and Grau-
denz, 1992), traveling salesman (Grefenstette, 1987),
steiner tree (Kapsalis et al., 1993), and transport
problems (Michalewicz, 1994). Despite this variety
of applications, there have only been a few studies in
the field of experimental design. Reeves and Wright
(1995) demonstrated the relationship between GA
and statistical methods.

Genetic Algorithms

A GA may be described as a mechanism that
mimics the genetic evolution of a species (Goldberg,
1989; Holland, 1992). The basic principles of GAs
were first proposed by John Holland at the Univer-
sity of Michigan in the late 1960s and early 1970s.
Thereafter a series of papers and reports have be-
come available.

In nature, competition among individuals for
scant resources such as food and space and for mates
results in the fittest individuals dominating over
weaker ones. Only the fittest individuals survive and
reproduce, a natural phenomenon called “survival of
the fittest”. Their characteristics, encoded in their
genes, are transmitted to their offspring and tend to
propagate into new generations (Patnaik and Srini-
vas, 1994).

GAs simulate, in a rather simplified way, the pro-
cesses outlined above to get better solutions to a
problem. They work with a population of individ-
uals, each representing a possible solution to a given
problem. Each possible solution must be encoded
in a binary or non-binary string format such as Gray
code, floating point representation or sequence repre-
sentation (for details, see Reeves, 1993; Janikow and
Michalewicz, 1991). These strings are analogous to
chromosomes in nature. A chromosome is composed
of genes, each of which can take on a number of val-
ues called alleles.

The simplest forms of GAs work according to the
scheme shown in Figure 1.

1. initialise population (t)
2. determine fitness of population (t)
3. repeat until a stopping criterion is satisfied

a) select parents from population (t)
b) perform crossover on parents creating population (t+1)
c) perform mutation on population (t+1)
d) determine fitness of population (t+1)

Figure 1. Steps of a typical Genetic Algorithm

The initial population of individuals is generated
at random or heuristically. Then, each individual
is evaluated according to some fitness function. In
other words, the fitness function is used to map the
individual into a positive number which is called the
individual’s fitness. In step a, GA selects some in-
dividuals from the population. Individuals are se-
lected with a probability which depends on their fit-
ness. Population selection is based on the principle
of survival of the fittest. GAs traditionally use two
genetic operators (crossover and mutation) for gen-
erating new individuals (in steps b and c). Steps a,
b, c and d are repeated until some specified stopping
criterion is satisfied. This criterion can be set by the
number of iterations (generations), the amount of
variation of individuals between different generations
or a predefined value of fitness. The three primary
genetic operators focused on by most researchers are
described below.
Selection: Selection represents a very important
aspect of GAs. This is usually implemented as
a weighted selection, which means that individuals
with higher fitness have a better chance of being
chosen. It is possible for an individual to be selected
more than once, or not at all. Several selection meth-
ods may be used to determine the fitness of an in-
dividual. Proportional selection and ranking are the
main selection methods used in GAs. In the most
common type of selection, called fitness proportion-
ate selection, individual i with fitness fi is given a
selection probability

Pi =
fi
N∑
j=1

fi

(1)

where fi is the fitness of individual i,
N∑
j=1

fj is the to-

tal fitness of the population and N (population size)
is the number of individuals in the population.
Crossover: Crossover is the most important mech-
anism of the algorithm. It makes two new indi-

562

YENİAY

viduals (offspring) by combining two old ones (par-
ents). Several types of crossover operators have
been proposed, such as one-point crossover, two-
point crossover, multi-point crossover and uniform
crossover. The simplest form of crossover (one-point
crossover) proceeds as follows. First, the entire pop-
ulation is paired off at random to give N/2 sets of
individuals. A random choice is made, where the
likelihood of crossover being applied is typically be-
tween 0.6 and 1.0. If it is approved, one crossover po-
sition k is generated from the uniform distribution on
[1, . . . ,n-1], n: number of bits of an individual, and
the last n-k bits of each individual are exchanged. If
it is not approved, offspring are produced simply by
duplicating the parents.

Assume that the following two parents of length
n=10 have been selected for one-point crossover:
P1: 0 0 1 0 0 1 1 0 1 0 and P2: 1 1 1 0 0 1 0 0 0 1.

9 (n-1) possible crossover positions exist. Sup-
pose that position 6 has been selected. Then, one
offspring produced by the concatenation of 001001
from P1 and 0001 from P2 is 0010010001. The sec-
ond offspring produced by concatenation of 111001
from P2 and 1010 from P1 is 1110011010. Figure 2
illustrates this process (/ is the crossover position).

Parents 0 0 1 0 0 1 / 1 0 1 0 1 1 1 0 0 1 / 0 0 0 1

Offspring 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 11 0 1 0

Figure 2. Example of one-point crossover

Mutation: Mutation is applied to offspring after
crossover. The GA has a mutation probability, pm,
which dictates the frequency at which mutation oc-
curs. For each bit in each offspring, the GA checks
to see if it should perform a mutation. If it should,
it changes the bit value to a new one. Mutation in
a binary coded string is the changing of 0 to 1 or
1 to 0. For example, the GA decides to mutate bit
position 4 in the offspring 0010010001 (see Figure 3).

Offspring 0 0 1 0 0 1 0 0 0 1

Mutated offspring 0 0 11 0 1 0 0 0 1

Figure 3. Bit mutation on the fourth bit

The resulting individual is 0011010001 as the
fourth bit in the offspring is flipped.

The mutation probability should be kept very low
(usually about 0.001) as a high mutation probability
will destroy fit offspring and degenerate the GA into
random walk.

Experimental Design Methods

Experimental design is a useful analytical method
where a) a mathematical model of the system is not
available, b) the system is not well understood or c)
the system is described by a complex mathematical
model (Rowlands, 1996). Experimental design meth-
ods first gained acceptance as a result of the work of
Sir R.A. Fisher in agriculture. Today, they are used
in application fields such as agriculture, medicine
and chemistry and new methods have been devel-
oped. In addition to the experimental design meth-
ods which have been used in every field, there are
also special experimental design methods developed
for these fields.

Experiments where the effects of more than one
factor on response are investigated are known as full
factorial experiments. In a full factorial experiment,
both the levels of every factor are compared with
each other and the effects on the response of levels
with each factor are investigated according to the
levels of other factors. For example, in a 25 full fac-
torial design problem, with 5 factors each at two lev-
els, 32 experiments must be done in order to find the
best combination of factors. When there are 7 fac-
tors and 10 factors, the number of total experiments
become 128 and 1024 respectively. Thus, it is clear
that as the number of factors and levels increases,
the number of experiments geometrically increases.
In addition, the consideration about the experimen-
tal cost and time problem make the determination of
the best treatment combination harder. To reduce
the number of experiments to a practical level, only
a small set from all the possibilities is selected. The
method of selecting a limited number of experiments
which produces the most information is known as a
fractional factorial experiment (Montgomery, 1997).

Taguchi (1987) first developed a method which
simplifies the use of a fractional factorial experiment.
This method uses a special set of arrays called or-
thogonal arrays. These standard arrays stipulate
the way of full information of all the factors that
affect the performance parameter. The crux of the
orthogonal arrays method lies in choosing the level
combinations of the input design variables for each

563

YENİAY

experiment. For example, the L4 orthogonal array
consisting of 4 rows and 3 columns where each row
corresponds to a particular experiment (treatment
combination) and each column identifies settings of
a design parameter is as follows:

Experiment Column
number 1 2 3

1 1 1 1
2 1 2 2
3 2 1 2
4 2 2 1

Figure 4. L4 orthogonal array

In the first run, for example, the three design
variables are set at their low level (level=1). In the
second run, the first parameter is set at level 1 and
the remaining two variables are set to high level (level
2), and so on.

Generating the Test Problems and Their Spe-
cialties

In order to compare the performances of two
methods, 3 problem sets which consist of 1000 prob-
lems were generated. Each problem in these sets has
4 factors each at 3 levels, i.e., it has a 34 factorial
design. Therefore, the number of possible treatment
combinations is 81.

While the problem sets were being generated,
each of them was thought to have different prop-
erties. The problems were designed such that in the
first set only the main effects are important, in the
second set the main effects and interactions are im-
portant, and in the third set the main effects and
interactions are important (interaction effects, how-
ever, are smaller than those in the second set). The
purpose of changing the level of interactions in the
second and third sets is to see the effects of the in-
teractions on the methods.

By generating a problem in a set, we express ob-
taining Y81×1 response vector of that set with the
property described above. Before generating 1000
Y81×1 vectors in the ith set, only one Y81×1 vec-
tor for that set was produced. This was achieved in
two stages. In the first stage, with the help of the
designed properties of the set, for the β unknown pa-
rameters vector in the model given by (2), arbitrary
coefficients are attained. For instance, for the set
we want only the main effects to be important; the
coefficients of the main effects in the model are at-

tained larger than the coefficients of the other effects.
In the second stage, by using this arbitrary coeffi-
cients vector and X81×27 matrix in the model, Y81×1

was calculated. Whether the calculated Y81×1 vec-
tor possesses the property of the set it represents or
not was tested by analysis of variance (ANOVA). If
it was suitable for that set, a basic Y81×1 vector was
obtained. If not, we returned to the first stage and
the same operations were repeated by attaining a
new arbitrary vector of unknown parameters.

Y = Xβ + ε (2)

In matrix form, the model can be written as follows:

1 X1 X2 X1 X2 X2
4X3

2
66666666664

y1
y2
y3
.
.
.
y79
y80
y81

3
77777777775

=

2
66666666664

1 1 1 1 . . . 1
1 1 1 1 . . . 2
1 1 1 1 . . . 3
.
.
.
1 3 3 2 . . . 2
1 3 3 2 . . . 3
1 3 3 2 . . . 1

3
77777777775

2
66666666664

β0
β1
β2
.
.
.
β24
β25
β26

3
77777777775

+

2
66666666664

ε0
ε1
ε2
.
.
.
ε78
ε79
ε80

3
77777777775

where
Y81×1: the vector of response values,
β27×1: the vector of unknown parameters,
X81×27: a sub-orthogonal array produced by

selecting the columns corresponding to the main
effects, 2-factor linear interaction effects and 2-
factor quadratic interaction effects and excluding the
columns corresponding to the other interaction ef-
fects from the 81 × 40 dimensional L81 orthogonal
array,

εεε81×1: the vector of random errors.

The reason for producing a new X81×27 orthogo-
nal array by excluding the columns of L81 orthogonal
array corresponding to 3-factor and 4-factor interac-
tions is that the interpretation of these in the model
is hard and they are not used in practice. These
interaction effects will be in the error term in the
model.

The least squares estimates of βββ were found by
using the Y81×1 response vector and the X81×27 ma-
trix in the model given by (2). For each element of

564

YENİAY

βββ, the variances were computed. With the aid of
these variances, the 95% confidence intervals of each
element of βββ were found.

In order to generate 1000 problems with the
Y81×1 vector found for the ith set, 1000 ε81×1 ran-
dom error vectors from normal distribution with
mean 0 and variance 1 and 1000 βββ vectors from the
confidence interval of the estimated βββ vector were

produced by Minitab 9.2 for Windows. One thou-
sand different Y81×1 vectors were obtained by using
the βββ27×1 and εεε81×1 vectors produced in the model
given by (2). For instance, the first element of the
Y81×1 vector (y1: the response value obtained for the
first treatment combination) has the contribution of
the following effects:

y1 = Xβββ + ε = β0 + β1X1 + β2X2 + β3X1X2 + β4X
2
1 + β5X

2
2 + β6X3 + β7X4 + β8X

2
3 + β9X

2
4 +

β10X1X3 + β11X1X4 + β12X2X3 + β13X2X4 + β14X3X4 + β15X
2
1X2 + β16X

2
1X3 +

β17X
2
1X4 + β18X

2
2X1 + β19X

2
2X3 + β20X

2
2X4 + β21X

2
3X1 + β22X

2
3X2 + β23X

2
3X4 +

β24X
2
4X1 + β25X

2
4X2 + β26X

2
4X3 + ε (3)

where
y1: the first element of Y81×1 vector, i.e., the

fitness value of the first treatment combination,
βββ27×1: a produced βββ vector,
X1×27: a vector composed of the elements of the

first row of the X81×27 matrix,
εεε: the first element of the εεε81×1 vector.
Neither the GA nor the Taguchi method guaran-

tees an optimum solution to the problem considered.
It is not appropriate to compare the two methods
according to the results obtained from only one test
problem. Therefore, problems which have the same
characteristic were included in the same set and 1000
problems were generated for each set.

Although a GA can find good solutions for diffi-
cult problems, it does not give additional information
about the problem like experimental design methods
do. Therefore, each method must be applied to each
problem, and the number of problems in which the
optimum is reached must be recorded. This is the
best way to follow if the results obtained using the
two methods are to be compared.

Therefore, firstly the optimum solution for each
problem must be found by a statistical method. By
using the experimental design submodule of Statis-
tica 5.0 for Windows, the best treatment combina-
tions (optimum solutions) for the problems in 3 sets
were found. The results are shown in Table 1.

The Newman-Keuls range test (for details of this
test, see Montgomery, 1997) was used to determine
the treatment combinations which were not different
from the best one in each set. Table 2 shows treat-
ment combinations that had no difference from the
best treatment combinations.

Table 1. The best treatment combination in each set

Problem set Best treatment
combination

I 1 1 1 1
II 2 2 2 1
III 2 2 2 2

Table 2. The best and other combinations having no dif-
ference from the best treatment combinations
in each set

Problem set The best and other combinations
that are not different

from the best one
I 1 1 1 1 2 1 1 1
II 2 2 2 1 2 2 2 3
III 2 2 2 2

As seen from Table 2, there are second solutions
for both set I and set II. It has been observed that
the differences between these solutions and their cor-
responding optimum solutions are insignificant. As
a result, it was decided to make two controls accord-
ing to whether the result obtained when a problem
in the ith set was solved by GA and the Taguchi
method was one of the solutions in Table 1 and Ta-
ble 2. In this way the number of cases in which the
methods reach the optimal solution, the second best
solution and a different solution (unsuccessful cases)
can be found and the interpretation will be detailed.
The stages of the first control can be summarised as
follows:

Step 1: Take the kth problem from the ith set.

565

YENİAY

Step 2: Solve the problem by GA and the Taguchi
method.

Step 3: Check whether the result is the same as
the one given in Table 2.

Step 4: Add one to the success frequency of the
method with which the same result is obtained.

Step 5: Go to Step 1 for the solution of a new
problem. If k=1000 go to the next set and repeat
the first four steps. If i=3 and k=1000 end.

A Steady-State Genetic Algorithm: Genmak

The simple GA creates an entirely new popula-
tion from an existing population in each iteration.
GAs that replace the entire population are called
generational GAs. GAs that replace only a small
fraction of strings in each iteration are called steady-
state GAs.

Genmak is the name we gave to the GA we de-
veloped as an alternative to the Taguchi method by
taking experimental design conditions into account
and was programmed with Visual Basic 3.0 for Win-
dows. Only two new strings are obtained in each
iteration of Genmak and these are replaced by two
strings of the existing population. Thus, Genmak is
a steady-state GA (see selection step of Genmak).

Genmak can conveniently be used for experimen-
tal design problems with different numbers of fac-
tors and levels other than the 34 experimental design
problems explored in this study. Parameter values
are not constant. They can be changed according
to the problem. Each iteration can be monitored
on the screen and can be altered whenever needed
(changing a string in the initial population produced
randomly, for example) (Yeniay, 1999).

There are some similarities between the concepts
of GA and the design of the experiment such as:

chromosome - treatment combination
gene - factor
allele - level
offspring - new candidate for treatment combina-

tion
generation - iteration
population - a subset of all probable treatment

combinations
While Genmak was developed, these similarities

were used.
The Specialties of Genmak:
Initial population: By using Genmak, the initial

population can be generated both at random and by
the researcher. In this study, the initial population
was generated at random. The number of fitness

evaluations is limited and using a small population
is important in our study. Therefore, the population
size is taken as 13.

Selection: Genmak uses steady-state selection.
Thus treatment combinations in the population are
ordered by their fitness values. Two individuals that
have the highest fitness values are crossed over. By
this crossing we have offspring that replace two indi-
viduals having the lowest fitness value. In this way,
only two new individuals are obtained in each iter-
ation. In other words, the total number of fitness
evaluations decreases by 2 in each iteration.

Coding: Integer coding is used for Genmak. In
this study, as it concerns 34 design, chromosomes are
formed by 4 integers, and each of these integers cor-
responds to each gene (factor). For example, 1 1 2 3
chromosome means that the first and second factors
have low levels, the third factor has medium level
and the fourth factor has high level.

Crossover: In each generation of Genmak, two
chromosomes that have the highest fitness values of
the population are recombined by one point crossover
operator. In Genmak, there is a restriction that
the offspring created by crossover should be differ-
ent from their parents. Unless this rule is satisfied,
the crossover is repeated by changing the crossover
point or one of the parents.

Mutation: In Genmak, when any level of a factor
is chosen for mutation, this level value is changed by
one of the possible level values of the related factor.
For example, if the first gene of 1 1 2 3 chromosome
is chosen for mutation, the value of 1 is replaced with
2 or 3 randomly. In our study, the mutation operator
is not used.

Stopping Criteria: In order to compare GA and
the Taguchi method under the same conditions, it
was decided to use L27 orthogonal array correspond-
ing to 1/3 fraction of the 34 factorial design. Thus,
we had 27 fitness evaluations. As 2 fitness evalu-
ations are carried out each generation, (because 2
offspring were created), 14 new offspring are created
during 7 generations. Furthermore, as there are 13
individuals’ fitnesses that should be evaluated in the
initial population, we will have a total of 27 individ-
uals’ evaluations.

The reason why the number of function evalua-
tions is limited to 27 is that fitness values have to
be obtained by experiment in a real life application
(chemistry, textiles etc.). To set up and run these
experiments needs time and money in real life.

566

YENİAY

Solution By Genmak

Genmak was run with 7 iterations for each 1000
problems in 3 sets. The frequency of identification
of the solutions in Tables 1 and 2 and the number of
iterations required to find them were recorded. The
frequencies of discovery of those solutions by Gen-
mak and the Taguchi method are shown in Tables 3
and 4 respectively.

Solution By The Tauguchi Method

The frequency of success obtained by using L27
orthogonal array is given in Tables 3 and 4. From
these tables, we see that when L27 orthogonal ar-
ray was used, the best solutions were found in 100%
of the 1000 problems in all sets. Since Genmak re-
quired, on average, only 17 iterations to find the best
solution (see Tables 3 and 4), we wished to see the
performance by using less treatment in the Taguchi
method and we used 1/9 fraction of the 34 factorial,
i.e., L9 orthogonal array.

Table 3. Frequency of identification of the best solution
in 3 sets by Genmak and the Taguchi method

Problem set
Method I II III
GA 780 (17)* 370 (17)* 750 (17)*
Taguchi (L27) 1000 1000 1000
Taguchi (L9) 480 160 1000

*average number of iterations required to find the best
solutions given in Table 1 by Genmak.

Table 4. Frequency of identification of the best or sec-
ond best solution by Genmak and the Taguchi
method

Problem set
Method I II III
GA 840 (17)* 770 (17)* 750 (17)*
Taguchi (L27) 1000 1000 1000
Taguchi (L9) 1000 160 1000

*average number of iterations required to find the
solutions given in Table 2 by Genmak.

When L9 array was used instead of L27, 27-9=18
experiments decreased, but the chance of finding the
best solution decreased 52% in the first set and 84%
in the second set.

With Genmak, the performance of finding the op-
timum solution was 78% in the first, 37% in the sec-
ond and 75% in the third set of problems. It should
be noted that this level of success was obtained in
about 17 iterations and while the interaction effect
was increasing, the success of Genmak was decreas-
ing. The result was valid for L9 trials as well.

As Genmak found the best solution for most of
the problems in the first and third sets, it is seen
from Table 4 that the level of success of Genmak
did not change much in these sets. Genmak gener-
ally found the second best solution because of the
high interaction effect in the second set. Therefore,
its performance is better in Table 4. When L9 ar-
ray was used, the frequency of identification of the
second best solution was slightly higher than that of
the optimal solution in the first set (in 1000-480=520
problems). However, frequency of the second best so-
lution was exactly zero by using the same array in
the second set.

Conclusion

In this study, we dealt with problems where fit-
ness evaluations are expensive and time-consuming.
However, for many applications of GAs, a fitness
function is known and the time in which the fit-
ness function is evaluated is not so important. Al-
though all possible solutions and the best solution
were known in the study, to prepare and carry out all
of these experiments is expensive in the real world.
Therefore, the number of the function evaluations
was decided as 27 for the upper bound.

The results of the study are as follows:
i) Because of the reasons described above, it may

not be suitable to use a large population size in
solving the experimental design problems by GA,
because obtaining and processing the experimental
data requires time and money. In other words, there
is a linear relation between the number of experi-
ments and cost in this type of application.

ii) Experimental design methods give more infor-
mation about the process (for example, the regions
of good and bad results revealed and interaction be-
tween the factors).

iii) The purposes should be specified before de-
ciding which method can be used. If finding the best
solution is adequate, GAs may be suitable. However
if the purpose is having information about the pro-
cess, the design of experiment methods are better,
because they give more information.

567

YENİAY

iv) In the large dimensional problems, GAs need
less human effort than the experimental design meth-
ods.

Acknowledgments

Parts of this paper are based on my Ph.D. the-

sis at Hacettepe University. I would like to thank
Prof. Dr. Zehra Muluk and Prof. Dr. Gülsüm Ho-
caoğlu for their help in carrying out the experiments
and for their valuable suggestions. I also thank the
anonymous reviewers and the editor for their valu-
able suggestions on improving this paper.

References

Bornholdt, S. and Graudenz, D., General Asym-
metric Neural Networks and Structure Design by
“Genetic Algorithms”, Neural Networks, 5, 327-334,
1992.

Fang, H.L., Ross, P. and Corne, D., “A Promising
Genetic Algorithm Approach to Job-Shop Schedul-
ing, Re-Scheduling and Open-shop Scheduling Prob-
lems”, Proc. of 5th International Conference on Ge-
netic Algorithms, S. Forrest (ed.) Morgan Kauf-
mann, San Mateo, CA, 375-382, 1993.

Falkenauer, E. and Delchambre, A., “A Genetic Al-
gorithm for Bin Packing and Line Balancing”, Proc.
IEEE International Conference on Robotics and Au-
tomation, 1992.

Goldberg, D.E., Genetic Algorithms in Search, Op-
timisation and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

Grefenstette, J. J. 1987), Incorporating Problem-
Specific Knowledge into Genetic Algorithms, Ge-
netic Algorithms and Simulated Annealing, L. Davis
ed., Los Altos, CA, 42-60.

Holland, J.H., Adaptation in Natural and Artificial
Systems an Introductory Analysis with Applications
to Biology, Control and Artificial Intelligence, Cam-
bridge, Mass: MIT Press, 1992.

Janikow, C. and Michalewicz, Z., An Experimen-
tal Comparison of Binary and Floating Point Rep-
resentations in Genetic Algorithms, Proc. of the
Fourth International Conference on Genetic Algo-
rithms, Morgan Kaufmann, Los Altos, CA, 31-36,
1991.

Kapsalis, A., Smith, G.D. and Rayward-Smith,
V.J., “Solving the Graphical Steiner Tree Prob-

lem Using Genetic Algorithms”, JORS, 44, 397-406,
1993.

Michalewicz, Z., Genetic Algorithms + Data
Structures = Evolution Programs, Springer-Verlag,
Berlin, 1994.

Montgomery, D.C., Design and Analysis of Experi-
ments, John Wiley & Sons, NY, 1997.

Reeves, C.R. and Wright, C.C., “Genetic Algo-
rithms and Statistical methods: A Comparison”,
Proc. 1st IEE / IEEE International Conference on
Genetic Algorithms for Engineering Systems: Inno-
vations and Applications, Sheffield, UK, 1995.

Reeves, C., Modern Heuristic Methods for Combi-
natorial Optimisation, Blackwell Scientific Publica-
tions, Oxford, 1993.

Rowlands, H., “A Hybrid Approach for Optimum
Design Using a Genetic Algorithm, A Neural Net-
work and the Taguchi Method”, Second Interna-
tional Conference on Adaptive Computing in En-
gineering Design and Control, University of Ply-
mouth, 205-211, 1996.

Srinivas, M. and Patnaik, L.M., Genetic Algorithms:
A Survey, Computer, 6, 17-26, 1994.

Taguchi, G., System of Experimental Design: Engi-
neering Methods to Optimize Quality and Minimise
Costs, UNIPUB / Kraus International Publications,
Two Volumes, 1987.

Yeniay, Ö., A Genetic Algorithm Approach to the
Problems of Taguchi’s Experimental Design, Doc-
toral dissertation, Hacettepe University, 1999.

568

