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Abstract

Viscoelastic fluids have gained increasing importance recently in technological applications. They are
considered more realistic when compared to Newtonian fluids in some situations where flow phenomena can
only be explained by using viscoelastic fluids’ models. This paper discusses problem of dealing with the
steady slow flow of an Oldroyd 8-constant viscoelastic fluid in a corner region with a moving wall. The
aim of this study is to examine theoretically whether or not fluid elasticity is responsible for the formation
of circulating cells near the corner, which has been observed experimentally in various polymer processes.
Using series expansions given by Strauss (1975) for the stream function and stress components, the governing
equations of the problem are reduced to linear ordinary differential equations. These equations have been
solved analytically. It is shown that streamline patterns are strongly dependent on viscoelastic parameters.
There is, unlike the case of Newtonian fluid, a secondary flow near the corner point.
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8 Sabitli Oldroyd Akışkanının Cidarlarından Birisi Hareketli Olan Bir Köşe
içindeki Daimi ve Yavaş Akımı

Özet

Viskoelastik akışkanlar son zamanlarda teknolojik uygulamalarda giderek artan bir ölçüde önem kazan-
maktadırlar. Akış olaylarının yalnızca viskoelastik akışkan modelleri yardımıyla açıklanabileceği bazı durum-
larda bu türden akışkanların Newtonian akışkanlara kıyasla daha gerçekçi modeller olduğu düşünülmektedir.
Bu makale, 8 sabitli viskoelastik Oldroyd akışkanının cidarlarından birisi hareketli olan bir köşe içindeki
daimi ve yavaş akımıyla ilgili olan böyle bir problemi tartışmaktadır. Çalışmanın amacı; çeşitli polimer
proseslerinde köşe noktası civarında oluştukları deneysel olarak gözlemlenmiş olan sirkülasyon halkalarına
akışkanın elastisitesinin neden olup olmadığını teorik olarak incelemektir. Akım fonksiyonu ve gerilme
bileşenleri için Strauss (1975) tarafından verilen seri açılımları kullanılarak problemi yöneten denklemler
analitik olarak çözümü verilebilen lineer diferansiyel denklemlere indirgenmiştir. Akım çizgilerinin yapısının
viskoelastik parametrelere kuvvetli bir şekilde bağlı olduğu gösterilmiştir. Newtonian akışkandan farklı
olarak, köşe noktası civarında ikincil akımların oluştuğu görülmüştür.

Anahtar Sözcükler: Radyal olmayan akım, 8 sabitli Oldroyd akışkanı, yavaş akım, sirkülasyon halkaları.
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Introduction

The creeping corner flow induced by a steady in-
plane motion of one of the walls has been examined
by Moffatt (1964) and Batchelor (1970), but their
works are restricted to Newtonian fluids. Hancock
and Lewis (1981) have investigated the effects of in-
ertia forces, by constructing a regular perturbation
series for the stream function, of which the lead-
ing term is the known similarity solution. The two-
dimensional steady and slow flow of an incompress-
ible Maxwell fluid in a corner formed by two planes,
one of which is sliding past the other at a certain
angle, was first investigated by Strauss (1975) using
a truncated series expansion for the stream function
of the form

ψ(r, θ) =
N∑

n=−1

ψn(θ)
rn

(1)

where ψ(r, θ) denotes the stream function in a polar
coordinate system. Strauss (1975) solved the prob-
lem up to three terms (N=1) in this assumed series
and found circulating cells adjacent to the moving
plane. Riedler and Schneider (1983) studied the non-
inertial flow of a power law fluid in a corner region
with a moving wall and showed that the streamline
patterns near the moving wall were considerably less
affected by the power law exponent than near the
wall at rest. Strauss’ work (1975) on the Maxwell
fluid has been recently extended by Huang et al.
(1993) for the exact same geometry and boundary
conditions as Strauss’ study (1975), to the case of an
Oldroyd-B fluid. They find that an increase in the
elastic parameter reduces cellular structure. Bhat-
nagar et al. (1996) reconsidered Strauss’ problem
by taking into account the next term in the series
expansion (1) and demonstrated that the solution
corresponding to N=2 is significantly different from
that for N=1.

The present paper concerns the steady slow mo-
tion of an Oldroyd 8-constant fluid near a corner of
plane rigid walls, one of which is stationary and the
other moving parallel to itself with a steady velocity
U. Our results are similar to those of Strauss (1975)
and Huang et al. (1993) but differ in some details.
Also, it is, as expected, possible to establish a rela-
tionship to their works.

Formulation of the problem and its solution

Consider the steady, two-dimensional, incom-
pressible, laminar flow of the Oldroyd 8-constant

fluid in a corner region bounded by two non-parallel
planes, one of which is moving with constant velocity
U, as is schematically illustrated in Fig. 1.
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Figure 1. Basic geometry of the problem

The viscoelastic fluid model used here is the
Oldroyd 8-constant model, constitutive equation of
which is given as follows (Bird et al., 1987)

T = −pI + S (2)

S + Λ1
DS
Dt + Λ3(S ·A1 + A1 · S) +

Λ5(trS)A1 + Λ6[tr(S ·A1)]I =

µ(A1 + Λ2
DA1

Dt + Λ4A2
1 + Λ7[tr(A2

1)]I) (3)

where T is the Cauchy stress tensor, p is the pressure,
I is the identity tensor, S is the extra stress tensor,
µ is the coefficient of viscosity, and Λi (i = 1, 2, ..., 7)
are the material constants. A1 is the first Rivlin-
Ericksen tensor and D/Dt the contravariant con-
vected derivative is defined as follows, respectively

A1 = ∇v +∇vT (4)

DS
Dt =

∂S
∂t

+ v · ∇S− S · ∇v−∇vT · S (5)

where v is the velocity vector, ∇ is the gradient op-
erator, while the superscript T denotes a transpose
operation.

When Λi = 0 (i = 1, 2, ..., 7) the model (3) re-
duces to the classical linearly viscous Navier-Stokes
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fluid (Newtonian fluid). Also, it should be noted
that this model includes the Maxwell fluid for Λ1 6=
0,Λi = 0 (i = 2, 3, ..., 7) and the Oldroyd-B fluid for
Λ1 6= 0,Λ2 6= 0,Λi = 0 (i = 3, 4, ..., 7)

In addition to Eqs. (2) and (3), the field equa-
tions consist of the equations of motion and the con-
tinuity equation. In the case of a steady flow, the
former equations in the absence of body forces take
the form

ρ(v · ∇v) = ∇ ·T (6)

where ρ is the (constant) density. The continuity
equation is

trA1 = 0. (7)

We shall assume a velocity field in a plane polar
coordinate system (r, θ) of the form

v(r, θ) = u(r, θ)er + v(r, θ)eθ (8)

where u and v denote the velocity components in the
directions of r and θ respectively.

We shall now write the field equations in terms
of a set of dimensionless variables and, for this pur-
pose, we shall choose Λ1, µ and U as characteristic
units. If f is used to denote the dimensionless form
of a quantity f , it follows that

r =
r

UΛ1
, u =

u

U
, v =

v

U
,

p =
Λ1

µ
p, Sij =

Λ1

µ
Sij . (9)

Thus the Eqs. (2), (3), (6), and (7) in non-
dimensional form become

T = −pI + S (10)

S +
DS
Dt + τ3(S ·A1 + A1 · S)+

τ5(trS)A1 + τ6[tr(S ·A1)]I =

A1 + τ2
DA1

Dt + τ4A
2
1 + τ7[tr(A

2
1)]I (11)

Re(v · ∇v) = ∇ ·T (12)

trA1 = 0 (13)

where

Re =
ρU2Λ1

µ
, τi =

Λi
Λ1

(i = 2, 3, ..., 7), (14)

where A1 satisfies the above dimensionless equations
obtained from Eq. (4) by replacing A1 by A1.

By defining a dimensionless stream function
ψ(r, θ), such that

u =
1
r

∂ψ

∂θ
, v = −∂ψ

∂r
, ψ =

ψ

U2Λ1
(15)

the continuity equation is satisfied automatically.
We also introduce the dimensionless volumetric flow
rate

Q =
Q

U2Λ1
=

+α∫
−α

urdθ = ψ(r,+α)− ψ(r,−α) (16)

then we can use

ψ(r,±α) = ±Q
2
. (17)

We shall use the truncated series expansion (1)
for the first three dimensionless stream function com-
ponents defined as follows:

ψ(−1) =
ψ(−1)

U
, ψ(0) =

ψ(0)

U2Λ1
, ψ(1) =

ψ(1)

U3Λ2
1

. (18)

In this section, henceforth for convenience, we
shall drop the bars that appear over the dimension-
less quantities.

The adherence boundary conditions of the prob-
lem are as follows:

u(r,−α) = −1, u(r,+α) = 0, v(r,±α) = 0 (19)

which by virtue of Eqs. (1) and (15) implies that

ψ′(−1)(−α) = −1
ψ′n(−α) = 0, (n = 0, 1, ...)
ψ′n(+α) = 0, (n = −1, 0, 1, ...)
ψn(±α) = 0, (n = −1, 1, ...).

(20)

Also, using Eqs. (1) and (17) we have

ψ(0)(±α) = ±Q
2
. (21)

We now turn our attention to the equations of
motion (12). For Re << 1, neglecting inertial terms
compared with the viscous forces and eliminating the
pressure by cross-differentiating Eqs. (12), one ob-
tains the following governing equation:
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1
r

∂2

∂r∂θ

{
r
(
Srr − Sθθ

)}
− ∂

∂r

{
1
r

∂

∂r

(
r2Srθ

)}
+

1
r

∂2Srθ

∂θ2
= 0. (22)

We shall express Srr , Srθ and Sθθ as a truncated
series expansion of the form (Strauss, 1975)

Srr(r, θ) =
N∑
n=1

an(θ)
rn

,

Srθ(r, θ) =
N∑
n=1

bn(θ)
rn

, Sθθ(r, θ) =
N∑
n=1

cn(θ)
rn

. (23)

The functions an(θ), bn(θ), and cn(θ) may be ex-
pressed in terms of the ψn(θ) functions in the series
expansion (1) by substituting Eqs. (4) and (23) into
Eqs. (11). Next, inserting an ’s, bn ’s, and cn ’s (up
to n = 3) into Eq. (23) and substituting these ex-
pressions for Srr , Srθ and Sθθ into Eq. (22), a very
long and tedious calculation yields the equations at
various orders of r−n. Here, we carry out our analysis
up to order n=4.

Equating the coefficients of r−2, r−3 and r−4 to
zero, we get the following differential equations, re-
spectively

ψIV(−1) + 2ψ′′(−1) + ψ(−1) = 0 (24)

ψIV(0) + 4ψ′′(0) = 0 (25)

ψIV(1) + 10ψ′′(1) + 9ψ(1) + δ1
(
30ψ(−1)ψ

′2
(−1) + 6ψ

2

(−1)ψ
′′
(−1) + 32ψ′′(−1)ψ

′2
(−1) + 5ψ(−1)ψ

′′2
(−1)

−3ψ′′3(−1) + 28ψ(−1)ψ
′
(−1)ψ

′′′
(−1) + 8ψ′(−1)ψ

′′
(−1)ψ

′′′
(−1) + 2ψ(−1)ψ

′′′2
(−1) + 7ψ

2

(−1)ψ
IV
(−1)

+12ψ′2(−1)ψ
IV
(−1) + 8ψ(−1)ψ

′′
(−1)ψ

IV
(−1) + 8ψ(−1)ψ

′
(−1)ψ

V
(−1) +ψ

2

(−1)ψ
V I
(−1)

)
+ δ2

(
−6ψ

3

(−1)

+12ψ(−1)ψ
′2
(−1) − 12ψ

2

(−1)ψ
′′
(−1) + 12ψ′2(−1)ψ

′′
(−1) − 6ψ(−1)ψ

′′2
(−1) + 24ψ(−1)ψ

′
(−1)ψ

′′′
(−1)

+24ψ′(−1)ψ
′′
(−1)ψ

′′′
(−1) + 12ψ(−1)ψ

′′′2
(−1) + 12ψ′′(−1)ψ

′′′2
(−1) + 6ψ

2

(−1)ψ
IV
(−1) + 12ψ(−1)ψ

′′
(−1)ψ

IV
(−1)

+6ψ′′2(−1)ψ
IV
(−1)

)
= 0 (26)

where δ1 and δ2 being the viscoelastic parameters given by

δ1 = 1− τ2, 2δ2 = 2(τ3 + τ5)(τ2 + 2τ3 + 2τ6 − τ4 − 2τ7)− 4τ3 + τ4 + 2(τ7 − τ6 − τ5). (27)

These equations (24)-(26) have to be solved sub-
ject to the following boundary conditions (see Eqs.
(20) and (21)):

ψ(−1)(±α) = 0, ψ′(−1)(−α) = −1, ψ′(−1)(+α) = 0 (28)

ψ(0)(±α) = ±Q
2
, ψ′(0)(±α) = 0 (29)

ψ(1)(±α) = 0, ψ/(1)(±α) = 0. (30)

Eq. (24) represents the two-dimensional flow of
Newtonian fluid in a corner due to one rigid plane
sliding on another (Batchelor, 1970). The solution

of this differential equation satisfying the boundary
conditions (28) is

ψ(−1)(θ) = C1 sin θ +C2 cos θ+

C3θ sin θ+ C4θ cos θ (31)

where

C1 = − α cosα
2α− sin 2α

, C2 = − α sinα
2α+ sin 2α

,

C3 =
cosα

2α+ sin 2α
, C4 =

sinα
2α− sin 2α

. (32)

It is readily shown that the solution of Eq. (25)
which satisfies (29) is

ψ(0)(θ) = D1θ +D2 sin 2θ (33)
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where

D1 = − Q cos 2α
sin 2α− 2α cos 2α

,

D2 =
Q

2 (sin 2α− 2α cos 2α)
. (34)

Using the solution given above for ψ(−1)(θ) in Eq.

(26), it is simplified to yield

ψIV(1) + 10ψ′′(1) + 9ψ(1) = A1 sin θ +A2 cos θ+

A3 sin 3θ + A4 cos 3θ+ A5θ sin θ

+A6θ cos θ +A7θ sin 3θ + A8θ cos 3θ. (35)

The general solution of Eq. (35) is of the form

ψ(1)(θ) = K1 sin θ +K2 cos θ + K3 sin 3θ+ K4 cos 3θ +B1θ sin θ +B2θ cos θ + B3θ sin 3θ

+B4θ cos 3θ+ B5θ
2 sin θ +B6θ

2 cos θ + B7θ
2 sin 3θ+ B8θ

2 cos 3θ. (36)

The constants B1, B2, B3, · · · , B8 can be ex-
pressed in terms of the constants A1, A2, A3, · · · , A8.
Also, the constants K1, K2, K3 and K4 can be ob-
tained with the aid of boundary conditions (30). The
expressions for these constants are lengthy, and are
not presented here in order to conserve space. Read-
ers interested in these coefficients may write to the
author.

Results and discussion

The same problem as that investigated in the
present paper has been solved previously by Strauss
(1975) for the Maxwell fluid, and Huang et. al (1993)
for the Oldroyd-B fluid. In the special cases cor-
responding to Maxwell fluid (τ2 = δ2 = 0) and
Oldroyd-B fluid (τ2 6= 0, δ2 = 0), there is, as ex-
pected, an overlap between their governing equations
and ours (see Eqs. (24) - (26)). This gives us confi-
dence regarding the analytical work.
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Figure 2. Radial velocity u as a function of θ for fixed radial positions for α = 600 and Q = −0.5, (a) Newtonian fluid,
(b) Oldroyd 8-constant fluid for δ1 = 0.75 and δ2 = 0.02.
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Figs. 2a and 2b show the radial component of
the velocity vector, as a function of θ for Newtonian
and Oldroyd 8-constant fluid respectively. The ve-
locity profiles are plotted at the fixed radial positions
r = 0.15, 0.25, 0.45. It is seen that the sign of radial
velocity is always negative for Newtonian fluid, while
the non-Newtonian parameters δ1 and δ2 change its
sign from negative to positive in the region between
θ = 0 and θ = −α. This change in the radial velocity
is more pronounced near the corner and causes the
formation of circulating cells adjacent to the moving
plane (see Fig. 4). It is to be noted that such cir-
culating cells have not been observed in Newtonian
fluid (see Fig. 3).
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1.8

2.4
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X
Figure 3. Streamline patterns for α = 600 and Q = −0.5

(Newtonian fluid).
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Figure 4. Streamline patterns for α = 600, Q = −0.5,

δ1 = 0.75 and δ2 = 0.02.

To draw the streamlines presented in Figs. 3 to
8, the first thing to do is to give a constant value to
the dimensionless stream function of the form

ψ (r, θ) = rψ(−1) (θ) + ψ(0) (θ) +
ψ(1) (θ)

r
. (37)

For this constant value, the proper values of r
are calculated from Eq. (37) for various values of

θ in the interval −α + π/2 ≤ θ ≤ α + π/2. Af-
ter this, the non-dimensional cartesian coordinates
(X, Y ) can be found from the non-dimensional polar
coordinates (r, θ) by using the relations X = r cos θ
and Y = r sin θ. If this process is repeated for dif-
ferent values of constants given the dimensionless
stream function, the streamlines in Figs. 3 to 8 are
obtained. We would prefer (X, Y ) coordinates to
(r, θ) coordinates in order to depict the streamline
patterns more easily.

Figs. 4 to 6 provide the streamline patterns
for α = 600 and various values of δ1 and δ2 with
Q = −0.5. It is clear from these figures that the
size of the circulating cells decreases with increases
in δ2 and keeping δ1 fixed, whereas it increases with
increasing δ1 and while keeping δ2 fixed.
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Figure 5. Streamline patterns for α = 600, Q = −0.5,

δ1 = 0.75 and δ2 = 0.16.
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Figure 6. Streamline patterns for α = 600, Q = −0.5,

δ1 = 0.25 and δ2 = 0.02

Finally, we shall discuss the reliability of solutions
near the apex of the wedge. The differential consti-
tutive equations used in this paper are not limited
to small, slowly changing deformation rates as in the
Rivlin-Ericksen fluids, a subclass of differential type
fluids. Note that the flow in a corner formed by two
planes, one of which is moving, is considered to be
in rapid motion and the gradients of velocity become
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very large near the corner. It should be pointed out
clearly that the sole purpose of using Eq. (3) is to ex-
amine, qualitatively at least, whether or not the fluid
elasticity (via the material constants) is responsible
for the formation of circulating cells near the corner.
However, the truncated series expansion (37) is not
appropriate to a perturbation, for r < 1. This is
why the solutions based upon series expansion (37)
cannot be reliable when r < 1. Of course, this also
depends on the nature of the functions ψn(θ), that
is, if ψn(θ) are not identically zero for large n, the
solution cannot be trusted as being meaningful for
r < 1.

Y
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-2 -1 0 1 2

0.6

0.9

1.2

1.5

X
Figure 7. Streamline patterns α = 600, Q = −0.5 (New-

tonianfluid) for 0.5 < Y < 1.6.
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Figure 8. Streamline patterns α = 600, Q = −0.5, δ1 =

0.75 and δ2 = 0.02 for 0.5 < Y < 1.6.

On the other hand, for r ≥ 1, since the effects of
successive terms are less significant, the solution is
probably quite reliable as n increases. This gives us
adequate information in the flow domain r < 1 from
the tendencies suggested by the results at r ≥ 1. For

instance, the streamlines depicted in Fig. 8 indicate
the presence of circulating cells in Fig. 4, whereas
Fig. 7 suggests the flow without circulating cells in
Fig. 3. Of course, the streamlines of the secondary
flow illustrated in Figs. 4 to 6 for r < 1 may not
have a precise structure.

Nomenclature

A1 Rivlin-Ericksen tensor of rank
one, T−1

I Identity tensor, dimensionless
p Pressure, ML−1T−2

Q Volumetric flow rate, L2T−1

r, θ Polar coordinates, dimensionless
Re Reynolds number, dimensionless
S Extra stress tensor, ML−1T−2

T Cauchy stress tensor, ML−1T−2

U Velocity of moving plane, LT−1

u, v Components of the velocity vec-
tor, LT−1

v Velocity vector, LT−1

X, Y Cartesian coordinates, dimen-
sionless

α Half angle of corner, dimension-
less

δ1, δ2 Viscoelastic parameters, dimen-
sionless

µ Coefficient of viscosity,
ML−1T−1

Λi Material constants, T
ρ Density, ML−3

τi Ratio of two material constants,
dimensionless

ψ Stream function, L2T−1

ψ(−1), ψ(0), ψ(1) Stream function components, di-
mensionless
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