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Abstract

The analysis of the flow of a viscoelastic fluid near a corner point finds its application in the design of
extrusion dies of technological importance. This paper discusses a problem of this type corresponding to
the steady flow of a viscoelastic fluid simulated by the Oldroyd 4-constant fluid model in a corner region
formed by two planes. The aim of this study is to investigate theoretically whether or not fluid elasticity is
responsible for the formation of circulating cells near the corner, which has been observed experimentally in
various polymer processes. Since such circulating cells are detrimental in equipment for polymer processing,
it is important to understand and be able to predict the conditions under which circulating cells appear.
Using series expansions proposed by Strauss (1974) for the stream function and stress components, the
governing equations of the problem are reduced to ordinary differential equations. These equations have
been solved by employing a numerical technique. The effects of the viscoelastic parameters on the flow
pattern are carefully delineated. There is, unlike the case of Newtonian fluid, a secondary flow near the
corner point.
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4 Sabitli Oldroyd Akışkanının İki Düzlem Tarafından Oluşturulan Bir Köşe
İçindeki Daimi Akımı

Özet

Viskoelastik akışkanların bir köşe noktası civarındaki akışının analizi teknolojik bir öneme sahip olan
ekstrüzyon kalıplarının tasarımında uygulama alanı bulmaktadır. Bu makale, 4 sabitli Oldroyd akışkan
modeliyle temsil edilen viskoelastik bir akışkanın iki düzlem tarafından oluşturulan bir köşe içindeki daimi
akımıyla ilgili olan böyle bir problemi tartışmaktadır. Çalışmanın amacı ; çeşitli polimer proseslerinde
köşe noktası civarında oluştukları deneysel olarak gözlemlenmiş olan sirkülasyon halkalarına akışkanın
elastisitesinin neden olup olmadığını teorik olarak araştırmaktır. Sözü edilen sirkülasyon halkaları polimer
prosesinde kullanılan teçhizata zarar verebileceği için bunların hangi koşullar altında meydana gelebileceğini
anlamak ve tahmin edebilmek önem kazanmaktadır. Akım fonksiyonu ve gerilme bileşenleri için Strauss
(1974) tarafından önerilen seri açılımları kullanılarak problemi yöneten denklemler adi diferansiyel denklem-
lere indirgenmiştir. Bu diferansiyel denklemler nümerik bir metot kullanılarak çözülmüştür. Viskoelastik
parametrelerin akım çizgileri üzerindeki etkisi dikkatli bir şekilde incelenmiştir. Newtonian akışkandan farklı
olarak , köşe noktası civarında ikincil akımların oluştuğu görülmüştür.

Anahtar Sözcükler: Radyal olmayan akım, 4 sabitli Oldroyd akışkanı, viskoelastisite, sirkülasyon hal-
kaları.
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Introduction

Theoretical investigations on steady converging
flows of viscoelastic fluids were initiated by Lan-
glois and Rivlin (1959), who carried out perturba-
tion analyses about the slow flow of a Newtonian
fluid through a wedge and cone. They found that
the stresses developed by the viscoelastic properties
of the fluid were incompatible with radial flow, and
vortices were predicted in the perturbation solutions.
Strauss (1974) was the first to present the solution
for the steady, two-dimensional, and inertial flow of
an incompressible Maxwell fluid between intersect-
ing planes by using a series expansion in terms of de-
creasing powers of r. In his subsequent study (1975),
he considered the stability of the same flow problem.
Yoo and Han (1981) carried out experiments on the
converging slow flow of a polymer between intersect-
ing planes and tried to explain the data in terms of
the second-grade fluid model. They found that the
theoretical analysis corroborates qualitatively deter-
mined experimental stress distributions.

In the case of most non-Newtonian fluids a purely
radial flow is not possible if inertial terms are to
be retained in the equations of motion. Kaloni and
Kamel (1980) have shown that there cannot be a
purely radial flow of Cosserat fluids in convergent
channels. Later, Hull (1981) studied the non-inertial
flow of a general linear viscoelastic fluid in this ge-
ometry. He showed that radial flow is obtained for a
wedge of 900 and no others. Similar results are valid
for Rivlin-Ericksen fluids (Mansutti and Rajagopal,
1991).

Mansutti and Rajagopal (1991) studied the non-
inertial flow of a shear thinning fluid between inter-
secting planes. They showed that sharp and pro-
nounced boundary layers develop adjacent to the
solid boundaries, even at zero Reynolds number.
Recently, Bhatnagar et al. (1993) have extended
the analysis of Strauss (1974) to an Oldroyd-B fluid
which is characterized by viscosity and two mate-
rial constants with units of time. In their work, the
effects of the much higher values of the Reynolds
number than in Strauss’ work (1974) and the elastic
parameter on the streamline patterns was discussed.

In this paper, the flow of an Oldroyd 4-constant
fluid in a convergent channel is examined using series
expansions in terms of decreasing powers of r given
by Strauss (1974) for stream function and stress com-
ponents. It is shown that the non-Newtonian param-
eter τ3, which does not appear in previous studies,

affects the streamlines of the secondary flow near
the corner point in a significiant way. Our results
are similar to those of Strauss (1974) and Bhatna-
gar et al. (1993), but differ in some details. Also,
it is thought possible to establish a relationship with
their works.

Formulation of the problem and its solution

The steady, two-dimensional, incompressible,
laminar flow of the Oldroyd 4-constant fluid through
a converging channel bounded by two non-parallel
planes is schematically illustrated in Fig. 1.

v

u

r

O
X

Y

2

π+α−=θ

2

π=θ2

π+α=θ

θ

Figure 1. Basic geometry of the problem.

The viscoelastic fluid model used here is the
Oldroyd 4-constant model, constitutive equation of
which is given as follows (Bird et al.,1987):

T = −p I + S (1)

S + Λ1
δ S
δ t

+ Λ3 (t r S) A1 = µ (A1 + Λ2
δA1

δ t
) (2)

where T is the Cauchy stress tensor, p is the pres-
sure, I is the identity tensor, S is the extra stress
tensor, and µ is the coefficient of viscosity, while
Λ1, Λ2, andΛ3 are the material constants. A1 is the
first Rivlin-Ericksen tensor and δ / δ t the contravari-
ant convected derivative defined as follows, respec-
tively

A1 = L + LT

L = ∇v, Li j = vj ; i
(3)
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δ S
δ t

=
∂ S
∂ t

+ v · ∇S− S ·L− LT · S (4)

where v is the velocity vector, ∇ is the gradient
operator, the superscript T denotes a transpose op-
eration, and the semicolon stands for covariant dif-
ferentiation.

When Λ1 = Λ2 = Λ3 = 0, the model (2) reduces
to the classical linearly viscous Navier Stokes fluid
(Newtonian fluid). Also, it should be noted that this
model includes the Maxwell fluid for Λ1 6= 0, Λ2 =
Λ3 = 0 and the Oldroyd-B fluid for Λ1 6= 0, Λ2 6=
0, Λ3 = 0.

In addition to Eqs. (1) and (2), the field equations
consist of the equations of motion and the continu-
ity equation. In the case of steady flow, the former
equations in the absence of body forces take the form

ρ (v · ∇v) = ∇ ·T (5)

where ρ is the (constant) density. The continuity
equation is

trA1 = 0. (6)

We shall assume a velocity field in a plane polar
coordinate system (r, θ) of the form

v (r, θ) = u (r, θ) er + v(r, θ) eθ (7)

where u and v denote the velocity components in the
directions of r and θ respectively.

We shall now write the field equations in terms
of a set of dimensionless variables and, for this pur-
pose, we shall choose Λ1, µ and Q as characteristic
units. If f is used to denote the dimensionless form
of a quantity f, it follows that

r = r√
QΛ1

, u =
√

Λ1
Q u, v =

√
Λ1
Q v,

p = Λ1
µ p, S i j = Λ1

µ S i j
(8)

where Q is the volume flux per unit distance normal
to the plane of flow and has dimensions of L2 T−1.
We suppose that the flow is driven steadily with
flux Q. Thus, Eqs. (1), (2), (5), and (6) in non-
dimensional form become

T = −p I + S (9)

S +
δS
δ t

+ τ3 (t r S) A1 = A1 + τ2
δA1

δ t
(10)

Re (v · ∇v) = ∇ ·T (11)

trA1 = 0 (12)

where

Re =
ρQ

µ
, τ2 =

Λ2

Λ1
, τ3 =

Λ3

Λ1
, (13)

where A1 satisfies the above dimensionless equations
obtained from Eq. (3) by replacing A1 by A1. In this
section, henceforth for convenience, we shall drop the
bars that appear over the dimensionless quantities.

We now turn our attention to the equations of
motion (11). After the pressure is eliminated by
cross-differentiating Eqs. (11), one obtains the fol-
lowing governing equation:

Re

{
∂ u

∂ r

(
∂ u

∂ θ
− r ∂ v

∂ r
− v

)
+

1
r

∂ v

∂ θ

(
∂ u

∂ θ
− 2 v − r ∂ v

∂ r

)
+ u

(
∂2u

∂ r ∂ θ
− 2

∂ v

∂ r
− r ∂

2v

∂ r2

)

+v
(

1
r

∂2u

∂ θ2
− ∂2v

∂ r ∂ θ

)}
=

1
r

∂2

∂ r ∂ θ

{
r
(
S r r − S θ θ

) }
− ∂

∂ r

{
1
r

∂

∂ r

(
r2 S r θ

)}
+

1
r

∂2S r θ

∂ θ2
. (14)
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We shall express stream function and extra stress
components as a series expansion of the following
form (Strauss, 1974):

ψ (r, θ) =
∞∑
n= 0

ψn(θ)
rn

(15)

S r r (r, θ) =
∞∑
n= 0

an(θ)
rn

,

S r θ (r, θ) =
∞∑
n= 0

bn(θ)
rn

,

S θ θ (r, θ) =
∞∑
n= 0

cn(θ)
rn

(16)

Here, we take into account the first five terms of
the series expansion (15).

By defining a stream function ψ (r, θ), such that

u =
1
r

∂ ψ

∂ θ
, v = −∂ ψ

∂ r
(17)

the continuity equation is satisfied automatically.
The adherence boundary conditions of the prob-

lem are as follows:

u (r,±α) = 0, v (r,±α) = 0 (18)

which by virtue of Eqs. (15) and (17) implies that

ψ′n(±α) = 0, (n = 0, 1, 2, ...) (19)

ψn(±α) = 0, (n = 1, 2, 3, ...) (20)

Furthermore we use two additional boundary
conditions. For this reason, the volumetric flow rate
through the channel used is:

+α∫
−α

urd θ = ψ (r,+α)− ψ (r,−α) = −1 (21)

Here the minus sign denotes the flow of a conver-
gent channel. Assuming the flow is symmetric about
θ = 0, then

ψ (r,±α) = ∓1
2

(22)

and using the series expansion (15), we have

ψ0(±α) = ∓1
2
. (23)

The functions an(θ), bn(θ), and cn(θ) may be
expressed in terms of the ψn(θ) functions in the
series expansion (15) by substituting Eqs. (3)
and (16) into Eqs. (10). Next, inserting
an’ s, bn’ s, and cn’ s (upto n = 6) into Eq. (16) and
substituting these expressions for S r r, S r θ andS θ θ

into Eq. (14), a very long and tedious calculation
yields the equations at various orders of r−n. Here,
we carry out our analysis up to order n=4.

The zeroth-order problem is governed by

ψIV0 + 4ψ′′0 + 2Reψ′0 ψ
′′
0 = 0, (24)

ψ0(±α) = ∓1
2
, ψ′0(±α) = 0. (25)

The differential equation of the zeroth-order
problem is non-linear, and the only parameter is the
Reynolds number. This equation, subject to (25), is
solved numerically.

The differential equation and boundary condi-
tions governing ψ1 (θ) are as follows:

ψIV1 + (10 + 3Reψ′0)ψ′′1 + (2Reψ′′0 )ψ′1+

(9 + Re { 3ψ′0 − ψ′′′0 })ψ1 = 0,
(26)

ψ1(±α) = 0, ψ′1(±α) = 0. (27)

Eq. (26) is a linear homogeneous ordinary differ-
ential equation subject to boundary conditions (27),
and its solution is

ψ1 (θ) ≡ 0. (28)

The differential equation and boundary condi-
tions governing ψ2 (θ) are as follows:

ψIV2 + (20 + 4Reψ′0)ψ
′′
2 + (2Reψ′′0 )ψ′2+
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(64 + Re { 16ψ′0 − 2ψ′′′0 })ψ2

= −4 (1− τ2) (ψIV0 + 4ψ′′0 )ψ′0, (29)

ψ2(±α) = 0, ψ′2(±α) = 0. (30)

The right hand side of Eq. (29) represents the
non-Newtonian character of the fluid. In the case
of slow motion (Re <<1 ) the right hand side of
Eq. (29) is equal to zero due to Eq. (24). Then it
becomes a linear homogeneous ordinary differential
equation and gives a zero solution under boundary
conditions (30), i.e. ψ2 (θ) ≡ 0. For inertial flow Eq.
(29) subject to (30) is solved numerically.

Differential equation and boundary conditions
governing ψ3 (θ) are as follows:

ψIV3 + (34 + 5Reψ′0)ψ′′3 + (2Reψ′′0 )ψ′3
+(225 + Re { 45ψ′0 − 3ψ′′′0 })ψ3 = 0,

(31)

ψ3(±α) = 0, ψ′3(±α) = 0. (32)

Eq. (31) is a linear homogeneous ordinary differ-
ential equation subject to boundary conditions (32),
and its solution is

ψ3 (θ) ≡ 0. (33)

The differential equation and boundary condi-
tions governing ψ4 (θ) are as follows:

ψIV4 + (52 + 6Reψ′0)ψ
′′
4 + (2Reψ′′0 )ψ′4 + (576 +Re { 96ψ′0 − 4ψ′′′0 })ψ4

= Re (−8ψ2 ψ
′
2 − 4ψ′2 ψ

′′
2 + 2ψ2 ψ

′′′
2 ) + (1− τ2) (−384ψ′0 ψ2 − 144ψ′′0 ψ

′ 2
0

−16ψ′′0 ψ
′
2 + 12ψ′′ 30 − 120ψ′0 ψ

′′
2 + 8ψ′′′0 ψ2 − 24ψ′0 ψ

′′
0 ψ
′′′
0 − 24ψIV0 ψ′ 20

− 4ψIV0 ψ′2 − 6ψ′0 ψ
IV
2 + 2ψV0 ψ2) + 2 τ3 (1− τ2) (144ψ′′0 ψ

′ 2
0 + 4ψ′′ 30

+64ψ′0 ψ
′′
0 ψ
′′′
0 + 6ψ′′0 ψ

′′′ 2
0 + 4ψIV0 ψ′ 20 + 3ψIV0 ψ′′ 20 ), (34)

ψ4(±α) = 0, ψ′4(±α) = 0. (35)

Eq. (34) subject to (35) is solved numerically.

Results and Discussion

The same problem as that investigated in the
present paper has been solved previously by Strauss
(1974) for Maxwell fluid, and Bhatnagar et al. (1993)
for Oldroyd-B fluid. In those special cases cor-
responding to Maxwell fluid (τ2 = τ3 = 0) and
Oldroyd-B fluid (τ2 6= 0, τ3 = 0), there is, as ex-
pected, an overlap between their governing equations

and ours.
We solved the governing differential equations as

a system of first-order differential equations by using
the shooting method. For given values of parameters,
the conditions ψ′′n(−α) andψ′′′n (−α) are roughly es-
timated and differential equations are processed by
using the fourth-order Runge-Kutta procedure. The
mathematical problem is to find the correct values of
ψ′′n(−α) andψ′′′n (−α) which yield the known values
of ψn(+α) andψ′n(+α) at the terminal point. Since
for Re=0 the analytic solution provides exact ini-
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tial values for ψ′′n(−α) andψ′′′n (−α), then a succes-
sive numerical solution can be generated as Re is
increased. The systematic way used here to find the
values of the missing initial conditions is equivalent
to a modified Newton’s method for finding the roots
of equations in several variables. The accuracy of the
missing initial conditions at θ = −α which yield the
known values at the terminal point (θ = +α) is 10−5

at least.
The results presented here are in complete agree-

ment with those given by the present authors (cf.
Strauss (1974) , Bhatnagar et. al (1993)) for the
specific values of the Reynolds number Re and the
elastic parameter τ2 for which they have given re-
sults. This gives us confidence regarding the numer-
ical work.

The predictions based on the foregoing analysis
are displayed graphically in Figs. 2 to 9. To draw the
streamlines presented in these figures, the first thing
to do is to give a constant value to the dimensionless
stream function of the form

ψ (r, θ) = ψ0(θ) +
ψ2(θ)
r2 +

ψ4(θ)
r 4 .

ψ =
ψ

Q
, ψ0 =

ψ0

Q
,

ψ2 =
ψ2

Q2 Λ1
, ψ4 =

ψ4

Q3 Λ2
1

.

(36)

For this constant value, the proper values of r
are calculated from Eq. (36) for various values of
θ in the interval −α + π/2 ≤ θ ≤ α + π/2. Af-
ter this, the non-dimensional cartesian coordinates
(X, Y ) can be found from the non-dimensional polar
coordinates (r, θ) by using the relations X = r Cos θ
and Y = r Sin θ. If this process is repeated for
different values of constants given the dimensionless
stream function, the streamlines in Figs. 2 to 9 are
obtained. We would prefer (X, Y ) coordinates to
(r, θ) coordinates in order to depict the streamline
patterns more easily.

Our main purpose is to delineate the effect of
the parameter τ3, which does not appear in previ-
ous studies, on flow patterns. In Figs. 3 and 5, we
have plotted the streamlines related to the Oldroyd-4
constant fluid with the intention of investigating the
contribution of this new parameter to the flow field.
From these figures, it is evident that the parameter
τ3 does affect the streamlines of the secondary flow
near the corner in a significant way.
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Figure 2. Streamline patterns for Re = 11.42, α = 300,
τ2 = 0.5, τ3 = 0.
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Figure 3. Streamline patterns for Re = 11.42, α = 300,
τ2 = 0.5, τ3 = 0.02.

As the parameter τ3 is increased from 0 to 0.02,
while keeping Re fixed at 11.42 and τ2 = 0.5, the flow
still has a four-cell structure as in Oldroyd-B fluid
but the size of the circulating cells adjacent to the
stationary plates are bigger and the others smaller
(see Figs. 2 and 3).

On comparing Fig. 5 with Fig. 4, we arrive at
the conclusion that the streamlines of the secondary
flow near the corner corresponding to τ3 6= 0 changes
from a two-cell structure into a four-cell structure.
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Figure 4. Streamline patterns for Re = 100, α = 300,
τ2 = 0.5, τ3 = 0,
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Figure 5. Streamline patterns for Re = 100, α = 300,
τ2 = 0.5, , τ3 = 0.036.

Finally, we shall discuss the reliability of the so-
lutions near the apex of the wedge. The series ex-
pansions used for the stream function and stress
components are not appropriate for a perturbation
for r < 1. This is why the solutions based upon
this approximation cannot be reliable when r < 1.
Of course, this also depends on the nature of func-
tions ψn(θ), that is, if ψn(θ) are not identically zero
for large n, the solution cannot be trusted as being
meaningful for r < 1. In addition, as a result of sin-
gularity at r = 0, the solutions are expected to be
valid only in converging (or diverging) nozzles rather
than between two intersecting planes having a source
(or sink) at r = 0.
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Figure 6. Streamline patterns for Re = 11.42, α = 300,
τ2 = τ3 = 0 for 0.8 < Y < 1.6.
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Figure 7. Streamline patterns for Re = 11.42, α = 300,
τ2 = τ3 = 0 for 0 < Y < 1.

On the other hand, for r ≥ 1, since the effect of
successive terms are less significant, the solution is
probably quite reliable as n increases. This gives us
adequate information in the flow dom ain r < 1 from
the tendencies suggested by the results at r ≥ 1. For
instance, the streamlines depicted in Fig. 6 indicate
the presence of two-cells in Fig. 7, whereas Fig. 8
suggests a four-cell structure in Fig. 9. Of course,
the streamlines of the secondary flow illustrated in
the figures for r < 1 may not have a precise struc-
ture.
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Figure 8. Streamline patterns for Re = 19.67, α = 300,
τ2 = τ3 = 0 for 0.8 < Y < 1.6.
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Figure 9. Streamline patterns for Re = 19.67, α = 300,
τ2 = τ3 = 0 for 0 < Y < 1.

Nomenclature

A1 Rivlin-Ericksen tensor of rank one,
T−1

I Identity tensor, dimensionless
p Pressure, M L−1 T−2

Q Volumetric flow rate, L2 T−1

r, θ Polar coordinates, dimensionless
Re Reynolds number, dimensionless
S Extra stress tensor, M L−1 T−2

T Cauchy stress tensor, M L−1 T−2

u, v Components of the velocity vector,
LT−1

v Velocity vector, LT−1

X, Y Cartesian coordinates, dimensionless
α Half angle of corner, dimensionless
µ Coefficient of viscosity, M L−1 T−1

Λi Material constants, T
ρ Density, M L−3

τi Ratio of two material constants, di-
mensionless

ψ Stream function, L2 T−1

ψ0, ψ2, ψ4 Stream function componenets, dimen-
sionless
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