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Abstract

The solution is given for the problem of a frictionless rigid parabolic stamp in nonlocal elasticity. In-
terestingly enough, none of the classical singularities exist in the nonlocal solutions. Classical and nonlocal
elasticity solutions are compared with each other. The superiority of nonlocal theory is depicted.
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Yerel Olmayan Yarım Düzlemde Rijit Parabolik Zımba

Özet

Bu çalışmada sürtünmesiz rijit parabolik zımba problemi yerel olmayan elastisite teorisi çerçevesinde in-
celenmiştir. Bu amaçla önce yerel olmayan teorinin temel denklemleri verilmiştir. Klasik elastisite teorisinin
tekillik gösterdiği noktalarda, yerel olmayan teorinin sonlu değerler verdiği gösterilmiş ve yerel olmayan
teorinin üstünlükleri vurgulanmıştır.

Anahtar Sözcükler: Yerel Olmayan Elastisite, Zımba, Temas Problemi, Elastik Yarım Düzlem.

Introduction

Nonlocal effects are especially important in deal-
ing with microscopic phenomena, for example, crack
initiation, fracture at sharp geometrical discontinu-
ities and concentrated forces. Nonlocal theory brings
to the surface the importance of the scale effect in the
applicability region of various mathematical models.
This is borne out by the physics of matter. Classical
theories lack such a scale. As a result, many criti-
cal phenomena cannot be explained and predicted by
means of these classical theories. Conventional elas-
ticity fails to predict a reasonable solution to certain
problems. For example, the stress field in a medium
weakened by a line crack predicted by conventional
elasticity goes to infinity like 1/

√
(r). Another ex-

ample would be dislocation problems. The stress

field and the elastic energy in a medium with a single
dislocation goes to infinity in the core of the disloca-
tion. And finally, conventional elasticity predicts no
dispersion for wave propagation which is shown to be
incorrect in various ways. The nonlocal elastic solu-
tions of these problems not only eliminate such phys-
ically unacceptable predictions, but also give results
which are in excellent agreement with the results pre-
dicted by atomic theories and experiments (See Ar-
tan 1996a, Artan 1996b, Eringen 1972, Eringen and
Balta 1979). In nonlocal elasticity, the stress at a
point is regarded as functional of the strain tensor.
For linear homogeneous solids, this introduces mate-
rial moduli which are functions of distance (Eringen
and Edelen 1972, Eringen 1987). The nonlocal the-
ory of elasticity is also of recent origin, and differs
from the local one in fundamental hypotheses. As
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is well known, in the classical theory of elasticity,
the balance law is postulated to be valid only on the
whole of the body. As a result of this approach, the
constitutive equations of nonlocal elasticity appear
as integral equations in terms of the strain tensor

tij(x) =
∫
V

α(|x′ − x|){λekk(x′, t)δij

+ 2µεij(x′, t)}dv(x′) (1)

for linear, isotropic and homogeneous materials. The
advantage of nonlocal elasticity over the conven-
tional one has been indicated by the solution of cer-
tain problems (see, for example, Artan 1996a, Artan
1997, Eringen 1976). The essentials of nonlocal the-
ory were established by Eringen, Edelen Kunin and
Kroner (For a brief introduction to the subject see
Eringen 1972, Eringen 1974, Eringen 1967, Kröner

1967, Kunin 1967). The problem of a frictionless
parabolic stamp on a linearly elastic half plane was
solved by Muskhelishvili in 1963, and the solution
displays the unexplainable infinite stresses at the
ends of the stamp. In this article, the problem is
remodeled using nonlocal constitutive law for a lin-
ear elastic medium. Nonlocal theory remedies this
defect of classical theory. The programs Mathemat-
ica, Derive and Latex are used throughout.

The Classical Elasticity Solution a Parabolic
Stamp

The stress distribution under a frictionless stamp
can be found as

σ(t) = Φ+(t) −Φ−(t) (2)

where

Φ(z) =
2µ

π(κ+ 1)
√

(z − a)(b − z)

b∫
a

√
(t − a)(b− t)f ′(t) dt

t− z

+
D√

(z − a)(b − z)
(3)

where a = −l and b = l, 2l is the width of the base,
and P0 is the given magnitude of the forces applied to
the stamp. The solution will be physically possible
if

P0 ≥
2πµ

R (κ+ 1)
l2 (4)

f(x) is the profile of the stamp (see Figure 1). For
parobolical stamp f(t) becomes

f(t) =
t2

2R
(5)

where the radius R is very large.

κ =
λ+ 3µ
λ+ µ

; λ ≥ 0, µ ≥ 0, 1 ≤ κ ≤ 3 (6)

where λ and µ are Lamé constants. The constant D
is determined by the condition

b∫
a

σ(t) dt = P0 (7)

The stress distribution under the frictionless stamp
becomes (see for full details Muskhelishvili 1963)

σ(t) =
2µ(l2 − 2t2)

R(κ+ 1)
√
l2 − t2

+
P0

π
√
l2 − t2

(8)

Figure 1. Parobolical stamp on an elastic half plane
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The Basic Equations of Nonlocal Elasticity

The governing equations of the nonlocal theory
of elasticity are

tkl,k = 0 (9)

tkl =
∫
V

{λ′(|x′ − x|)e′jj(x′)δkl

+ 2µ′(|x′ − x|)e′kl(x′) dv(x′) (10)

e′kl =
1
2

(u′k,l + u′l,k); u′k = uk(x′) (11)

where tkl is the nonlocal stress tensor, uk is the dis-
placement vector, ekl is the strain tensor and the
comma as a subscript denoting the partial deriva-
tive, that is

tkl,m =
∂tkl
∂xm

; u′k,l =
∂uk′

∂xl′
(12)

We use the Einstein summation convention for re-
peated indices. (9) and (11) are the same, both in
local and nonlocal elasticities. (10) expresses the fact
that the stress at arbitrary point x depends on the
strains at all the points x′ of the body. λ′ and µ′ are

Lamé constants of the nonlocal medium and they de-
pend on the distance between x and x′. They can
be taken as

λ′ = α(|x′ − x|)λ; µ′ = α(|x′ − x|)µ (13)

where λ and µ are the Lamé constants of the local
case. α(|x′ − x|) is called the kernel function and is
the measure of the effect of the strain at x′ on the
stress at x. It can be easily shown that (See Eringen
1976)

tkl(x) =
∫
V

α(|x′ − x|)σkl(x′) dx′ (14)

where σkl(x′) is a local stress field.

The Solution of a Parabolic Stamp on a Non-
local Elastic Half Plane

In this article, the kernel function will be chosen
as (see Figure 2)

Figure 2. Kernel function

α(|x′ − x|) =

 B

{
1− |x

′ − x|
a

}
|x′ − x| < a

0 |x′ − x| > a

 (15)

where

B =
1
a

; a = 0.00000004cm (16)

a is called atomic distance (See Artan 1996a, Artan
1996c, Artan 1997).

The nonlocal stress field under a parabolic stamp
can be calculated by using (14).

t(x) =

x+a∫
x−a

(
1− |x− x

′|
a

)(
2µ(l2 − 2x2)

R(κ+ 1)
√
l2 − x2

+
P0

π
√
l2 − x2

)
dx′ (17)
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After tedious calculations the nonlocal stress field becomes

t(x) =
(P0
a
− P0 x

a2 ) arcsin(a−x
l

)
π

+
(P0
a

+ P0 x
a2 ) arcsin(a+x

l
)

π

−
2P0 x arcsin(xl )

a2 π
− (−3 (1 + κ)P0R (−2

√
l2 − x2

+
√
−a2 + l2 − 2 a x− x2 +

√
−a2 + l2 + 2 a x− x2)

+ 2µπ (−2 (l2 − x2)
3
2 + (−a2 + l2 − 2 a x− x2)

3
2

+ (−a2 + l2 + 2 a x− x2)
3
2 ))/(3 a2 (1 + κ)π R);

−l+ a ≤ x ≤ l − a (18)

In the limit a = 0, the nonlocal stress field reverts to the classical field. That is

lim
a→0

t(x) =
2µ(l2 − 2x2)

R(κ+ 1)
√
l2 − x2

+
P0

π
√
l2 − x2

(19)

In the boundaries, the stress field is calculated as

t(x) =

l∫
x−a

(
1− |x− x

′|
a

)(
2µ(l2 − 2x2)

R(κ+ 1)
√
l2 − x2

+
P0

π
√
l2 − x2

)
dx′

=
P0 (a+ x)

2a2
+

(P0
a −

P0 x
a2 ) arcsin(a−xl )

π

−
2P0 x arcsin(xl )

a2 π
− (−3 (1 + κ)P0R (−2

√
l2 − x2

+
√
−a2 + l2 + 2 a x− x2) + 2µπ (−2 (l2 − x2)

3
2

+ (−a2 + l2 + 2 a x− x2)
3
2 ))/(3 a2 (1 + κ)π R);

(l− a) ≤ x ≤ l (20)

t(x) =

x+a∫
−l

(
1− |x− x

′|
a

)(
2µ(l2 − 2x2)

R(κ+ 1)
√
l2 − x2

+
P0

π
√
l2 − x2

)
dx′

=
(P0
a + P0 x

a2 ) arcsin(a+x
l )

π
−

2P0 x arcsin(xl )
a2 π

− (−6 (1 + κ)P0R (−2
√
l2 − x2 +

√
−a2 + l2 − 2 a x− x2)

+ π (−3 a (1 + β)P0 R+ 3P0Rx+ 3 β P0Rx− 8µ (l2 − x2)
3
2

+ 4µ (−a2 + l2 − 2 a x− x2)
3
2 ))/(6 a2 (1 + β)π R)

−l ≤ x ≤ (−l + a) (21)

The stresses at the boundaries become

t(l) = t(−l) =
l P0

a2
+

(
P0
a
− l P0

a2

)
arcsin(a−l

l
)

π

−
(
− 6 (1 + κ)

√
− (a (a− 2 l))P0 R

+ π
(

4 (− (a (a− 2 l)))
3
2 µ− 3 (1 + κ) (a+ l) P0R

))
/ (6 a2 (1 + κ) π R) (22)
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Conclusion

It has been clearly indicated by the founders of
nonlocal continuum mechanics that nonlocal theories
of continua take place between discrete theories (such
as quantum mechanics, or lattice dynamics) and con-
ventional continuum theories. More precisely, nonlo-
cal theories are continuum theories which take into
account the discrete nature of the matter via far-
reaching interactive internal forces. Therefore, a
characteristic length which can be interpreted as
the quantification of microstructure, plays an im-
portant role in nonlocal theories. For an isotropic
solid, the characteristic length is naturally the dis-
tance between atoms (in this paper, this parame-
ter is called the nonlocality parameter). It is also
well known that for phenomena with a large enough
(large enough compared to the microstructural char-
acteristic length), characteristic length (let’s say, the
wave length in a wave propagation problem), con-
ventional theories and nonlocal theories will yield
quite close results. On the other hand, solutions to
phenomena having a small characteristic length, es-
pecially those with severe strain gradients, will be
remarkably different in both theories. The solution
will especially differ around the region where severe
strain gradients occur. As a natural consequence of
this qualitative discussion on nonlocal theories, the
solutions for the displacement and the stress field
in a half space loaded by a parabolic stamp will be
very close if R (which plays the role of characteristic
length for external effects) is large. In other words, if
the stamp is “blunt” then the nonlocal theory of elas-
ticity will not provide new insight in to the problem.
But, if the stamp is “sharp” enough, in other words,
if R is small compared to the microstructural charac-
teristic length, then the difference between solutions
obtained in both theories cannot be ignored. Con-
sidering the fact that nanoindenters, indenters with
a “very sharp tip” (it is not rare lately to see stud-
ies performed with an indenter having a tip radius
of a few hundered nanometers) have been becoming
more popular, it is clear that this study will help
researchers interpret their work.

The following results are observed (see Figure 3
and Figure 4)
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Figure 3. Local and nonlocal stresses far from the ends

Nonlocal stresses

Local stresses

Figure 4. Local and nonlocal stresses at the front end

a) The nonlocal stress field is finite for all the points.
b) In the limit a→ 0, the nonlocal stress field reverts
to the classical stress field.
c) The nonlocal stress field has a maximum, but the
maximum stress does not occur at the boundary but
further down.
Similar results have already been obtained in other
papers (See Artan 1996a, Artan 1997)
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