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Abstract

Numerical solutions for laminar heat transfer of a non-Newtonian fluid in the thermal entrance region
for triangular, square, sinusoidal, etc. ducts are presented for constant wall temperature. The continuity
equation and parabolic forms of the energy and momentum equations in Cartesian coordinates are trans-
formed by the elliptic grid generation technique into new non-orthogonal coordinates with the boundary of
the duct coinciding with the coordinate surface. The effects of axial heat conduction, viscous dissipation
and thermal energy sources within the fluid are neglected. The transformed equations are solved by the
finite difference technique. As an application of the method, flow and heat transfer results are presented for
ducts with triangular, square, sinusoidal and four-cusped cross sections and square cross sections with four
indented corners. The results are compared with the results of previous works.
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Introduction

In food, polymer, petrochemical, rubber, paint
and biological industries, fluids with non-Newtonian
behavior are encountered. The investigation of heat
transfer problems non-Newtonian fluids’ heating and
cooling in heat exchangers can have economic bene-
fits. The most common heat exchangers employed in
these industries use circular and rectangular ducts,
which are easy to maintain. The other arbitrarily
shaped cross-section ducts are not preferred, because
of the difficulty of manufacturing and cleaning. It
is important to have knowledge of the characteris-
tics of the forced convective heat transfer in steady
laminar non-Newtonian flow through ducts with ar-
bitrarily shaped cross-sections in order to exercise
proper control over the performance of the heat ex-
changer and to economize the process. There is in-
sufficient research on laminar non-Newtonian fluid
flow through irregular boundary ducts as compared
to that on regular boundary ducts, because of the
difficulty in describing non-Newtonian fluid behav-
ior in irregular boundary ducts. Although studies of

non-Newtonian fluid flow in circular, rectangular, tri-
angular, trapezoidal and pentagonal ducts are avail-
able in the literature, sinusoidal ducts, four-cusped
ducts and square ducts with four indented corners
have not been studied previously.

Laminar flow solutions for Newtonian fluids were
compiled by Shah and London (1971) and Porter
(1971) in an exhaustive manner. While Porter con-
sidered a very general problem, the report by Shah
and London is much more exhaustive in a limited
area.

Shah (1975) solved the fully developed problem
for Newtonian laminar heat transfer by using the
Golub method Montgomery and Wilbulswas (1966)
solved the thermal entry length problem for rect-
angular ducts by using the explicit finite difference
method. Entrance region heat transfer in rhom-
bic ducts has been studied by Asako and Faghri
(1988) for a Newtonian fluid by algebraic coordi-
nate transformation. Hydrodynamically developed
channel flow and heat transfer to power-law fluids
have been studied by Ashok and Sastri (1977) for
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a square duct under three thermal boundary con-
ditions. Entrance region non-isothermal flow and
heat transfer to power-law fluids have been studied
by Lawal (1989) with rectangular coordinates trans-
formed into new orthogonal coordinates and the fi-
nite difference technique for arbitrary cross-section
ducts. The fully developed laminar flow of power-
law non-Newtonian fluid in a rectangular duct has
been studied by Syrjala (1995) by the finite element
method. Laminar heat transfer in the entrance re-
gion of a circular duct and parallel plates has been
studied by Nguyen (1992) by ADI and QUICK meth-
ods.

In this study, a computer algorithm was devel-
oped for both non-Newtonian and Newtonian fluid
flow through the duct geometries mentioned above.
Numerical results are presented for a square duct,
a sinusoidal duct, a triangular duct, a four-cusped
duct, a rhombic duct, and a square duct with four in-
dented corners. Figures 1a-1d show the special duct
geometries discussed in this study.
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Figure 1. Ducts of arbitrary cross-sections a) triangu-
lar; b) sinusoidal; c) square duct with indented
four-corners; d) four-cusped duct.

Governing Equations

In this study, steady, fully developed, laminar
and purely viscous non-Newtonian fluid flow and
heat transfer in power-law fluids in horizontal ducts
of arbitrary cross section are studied. The duct con-
figurations and coordinate system are shown in Fig-
ure 2. Both the velocity and temperature profiles
are assumed to be uniform at the entrance, and hy-
drodynamically developed and thermally developing
laminar flow is analyzed for a non-Newtonian fluid
flow through a duct of arbitrary but constant cross
section.
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Figure 2. The transformation duct geometry from phys-
ical (x-y) plain to the computational plain
(ξ − η).

The numerical solution technique takes advan-
tage of the marginal ellipticity of the physical prob-
lem by neglecting the axial diffusion terms in the
equations of conservation of momentum and energy.
The resulting equations are parabolic, and a two-
dimensional computational mesh can be constructed
at each of the cross sections, which are stacked to-
gether to form a three-dimensional domain. The
strategy for dealing with the arbitrary shape of the
duct cross section consists of transforming the physi-
cal domain into a rectangular duct using a coordinate
transformation technique.

For the hydrodynamically developed and ther-
mally developing flow, there is only one nonzero com-
ponent of velocity (u), and the constitutive equations
of motion reduce to a single nonlinear partial differ-
ential equation of the form

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
=
dp

dz
(1)

where (u) is the velocity component in the flow di-
rection, (p) is pressure and (µ) is local viscosity coef-
ficient at a point in the channel (Ashok, 1977). The
power-law model is used in this work to describe
the non-Newtonian behavior of the fluid, and con-
sequently the expression for the local dimensionless
viscosity (equations 2-4) at a point in the channel is
given by

µ = m

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
](n−1)/2

(2)

where

∂u

∂x
= ξx

∂u

∂ξ
+ ηx

∂u

∂η
(3)
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∂u

∂y
= ξy

∂u

∂ξ
+ ηy

∂u

∂η
(4)

with (n) being the power-law index and (m) the con-
sistency factor.

The dimensionless momentum equation (5) in
transformed coordinates can be written as

Jn+1 = (αUξξ − 2βUξη + γUηη).S (5)

The function (S) is a variable viscosity and is
given by equation (6).

S =
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(6)

The energy equation for constant property flow,
neglecting axial conduction and viscous dissipation
in Cartesian coordinates, is

[
∂

∂x

(
∂T

∂x

)
+

∂

∂y

(
∂T

∂y

)]
= u

dT

dz
. (7)

Energy equation (7) can be written in dimension-
less form:

[
∂

∂X

(
∂θ

∂X

)
+

∂

∂Y

(
∂θ

∂Y

)]
=

U

Um

dθ

dZ
. (8)

where

[
∂

∂X

(
∂θ

∂X

)
+

∂

∂Y

(
∂θ

∂Y

)]
=

(αTξξ − 2βTξη + γTηη )
J2

(9)

With the transformation of the physical domain,
the boundaries now coincide with coordinate sur-
faces. The initial and boundary conditions of con-
stant wall temperature are given as follows:

θ (0,η,ξ)=1
θ (z,0,ξ)=0
θ (z,η,0)=0
Velocity in entrance and boundary conditions is

given as follows:
U=1.0 Z=0
U=0.0 ξ=1 and ξ=I for all η
U=0.0 η=1 and η=J for all ξ

Numerical Solution Method

The transformed energy, momentum and conti-
nuity equations are solved in a rectangular compu-
tational domain using finite difference formulation.
The momentum and continuity equations are solved
only in transverse directions at the first cross section
in the axial direction. The energy equation is lin-
earized by setting the unknown to its value at the
previous axial step. The indices i, j and k indicate
positions in the ξ, η and z directions respectively.
The origin is designated by i=j=k=1, which is at the
bottom left corner of the computational plain. The
direction number (ξ, η and Z) of mesh spaces are is
taken as equal to 1/NI, 1/NJ and 1/NK respectively.
The dimensionless transverse step sizes, ∆ξ and ∆η,
are taken as equal but axial mesh space ∆Z was not.
The axial step size ∆Z was taken as 5x10−5. Starting
with this value, subsequent step sizes are gradually
increased using the relation ∆Zn+1=(1.1)x(∆Zn) un-
til ∆Z>1.0x10−3.

The following finite difference representation
(equations 10-16) are written with the indices given
above.

Uηη =
Ui,j+1 − 2Ui,j + Ui,j−1

(∆η)2 (10)

Uξξ =
Ui+1,j − 2Ui,j + Ui−1,j

(∆ξ)2
(11)

Uξη =
Ui+1,j+1 − Ui+1,j−1 − Ui−1,j+1 + Ui−1,j−1

(4.∆ξ.∆η)
(12)

θξη =
θi+1,j+1,k − θi+1,j−1,k − θi−1,j+1,k + θi−1,j−1,k

(4.∆ξ.∆η)
(13)

θξξ =
θi+1,j,k − 2θi,j,k + θi−1,j,k

(∆ξ)2 (14)

θηη =
θi,j+1 − 2θi,j + θi,j−1

(∆η)2 (15)

θz =
θi,j,k+1 − θi,j,k

∆Z
(16)
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The flow behavior index, n, is required to ob-
tain velocity (U) and temperature (θ) distribution.
This index number was started at 0.1 and increased
by increments of 0.1 until it was equal to 1.0. The
velocity and temperature values were computed for
the selected index number. The velocity values were
computed only for the first step (k=1) but tempera-
ture values were computed at every step (k=1 thru
NK+1) in the axial direction for all index numbers.

The temperature variable (θ) is known on the
θi,j,k plane, while the variable θi,j,k+1 is to be de-
termined in the axial direction. The overrelaxation
technique, which is an iterative procedure, was used
in computing velocity and temperature values. This
procedure requires initial estimates of the variables
at each node. Therefore, the results from the pre-
ceding axial position (k) are substituted as initial
estimates for the variables at the (k+1)th position.

Once the fully developed velocity and develop-
ing temperature distributions are obtained, the bulk
mean temperature θb, the local Nusselt number NuT ,
and the mean Nusselt number Num, are computed
by employing the following equations (17-19) at the
axial position.

θb =
1

Z.Um

∫
U.θ.dZ (17)

Nu(Z) =
dθb
dZ

1
−4.θb

(18)

Num =
1
Z

∫
k=n
k=1Nu(Z)k.dZk (19)

Results and Discussion

Reliable data for laminar fully developed flow in
square and rhombic ducts are available in the liter-
ature. Several test calculations were carried out in
order to verify the performance of the solution proce-

dure. Firstly the flow of Newtonian fluid was consid-
ered because numerical results are already available
in previous studies. The numerical results were pre-
sented for comparison. In addition, numerical com-
parison of the elliptic grid generation technique and
other methods are also included. Excellent agree-
ment was found between this work and the others.
The mean Nusselt numbers for developing flow of a
power-law fluid in square duct agreed with the con-
stant property results of Ashok and Sastri (1977),
despite the differences in the numerical solution tech-
niques. And also there was excellent agreement with
the results of Asako and Faghri (1988) for rhombic
ducts with various angles Uzun and Unsal, (1997).

The limiting Nusselt number NuT for Newtonian
fluids for a square duct is presented in Table 1. The
results of other works are also included. The limiting
Nusselt numbers (NuT ) for 0.5≤n≤1.0 for hydrody-
namically and thermally developed laminar flow of
non-Newtonian fluid in triangular and square ducts
are presented in Table 3. It is clear from Tables 1-3
that the differences between the NuT values given in
this study and those in previous investigations are
less than 1-5% . The actual values of Num and NuT
selected at axial locations for different values of the
power law index (n=1, n=0.5) are presented in Ta-
bles 4-6.

Three-dimensional fully developed velocity pro-
files for four-cusped and triangular ducts are pre-
sented in Figures 3a and 3b, respectively. As ex-
pected triangular dimensionless velocitiy values (U
and Umax) are greater than those of the four-cusped
duct. Representative contours of axial fully devel-
oped velocity U are presented in Figures 4a-c for tri-
angular, four-cusped and trapezoidal ducts, respec-
tively. Figures 5a and 5b depict the effect of the
power law index (n) on the axial velocity profiles
at selected axial location for triangular and four-
cusped ducts respectively. As expected on physical
grounds, pseudoplastic (n<1) fluids are character-
ized by steeper velocity gradients near the wall and
flatter profiles close to the core of the duct.

Table 1. NuT for Newtonian fluid for a square duct.

Investigations NuT
Shah and London (1971) 2.976
Montgomery and Wilbulswas (1966) 2.650
Ashok and Sastri (1977) 2.975
Asako and Faghri (1988) 2.976
Present Study 2.971
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Table 2. Nusselts numbers for fully developed velocity and temperature profiles in triangular and square ducts for
pseudoplastic fluids.

NuT NuT
Power law Present Study Square Triangular
index, n Triangular Square Ashok (1977) Shah (1975)

1.0 2.353 2.971 2.975 2.34
0.9 2.373 2.997 2.997 -
0.8 2.400 3.034 3.030 -
0.7 2.435 3.037 3.070 -
0.6 2.481 3.135 3.120 -
0.5 2.543 3.208 3.184 -

Table 3. NuT and Num Nusselt numbers (NuT and Num) for fully developed velocity and temperature profiles in a
four-cusped duct and a square duct with four indented corners.

Square duct with four
Power law Four-cusped duct indented corners
index, n NuT Num NuT Num

1.0 1.0747 1.1363 2.0635 2.1236
0.9 1.0848 1.1467 2.0812 2.1414
0.8 1.0981 1.1595 2.1052 2.1650
0.7 1.1140 1.1754 2.1348 2.1952
0.6 1.1340 1.1956 2.1724 2.2332
0.5 1.1586 1.2219 2.2207 2.2820

Table 4. NuT and Num versus axial direction for a pseudoplastic fluid in sinusoidal ducts.

n=1.0 n=0.5
Z NuT Num NuT Num

0.6050E-05 18.495 18.495 21.523 21.523
0.1121E-03 13.697 15.304 15.390 17.495
0.1101E-02 7.808 10.215 8.2932 11.164
0.1252E-01 3.384 4.933 3.5991 5.2432
0.1024E+00 2.151 2.704 2.3229 2.8987
0.5024E+00 2.102 2.228 2.2740 2.4045
0.9774E+00 2.102 2.167 2.2739 2.3411

Table 5. NuT and Num versus axial direction for a pseudoplastic fluid in triangular ducts.

n=1.0 n=0.5
Z NuT Num NuT Num

0.6050E-05 26.44 26.44 26.11 26.11
0.1121E-03 18.53 21.56 18.87 21.64
0.1101E-02 8.641 12.34 9.060 12.77
0.1252E-01 3.739 5.513 3.966 5.796
0.1024E+00 2.412 3.021 2.603 3.228
0.5024E+00 2.535 2.494 2.543 2.687
0.9774E+00 2.535 2.524 2.543 2.617
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Table 6. NuT and Num versus axial direction for a pseudoplastic fluid (n=0.5) in a four-cusped duct and a square duct
with four indented corners.

Square duct with four
Z Four-cusped duct indented corners

NuT Num NuT Num
0.6050E-05 12.725 12.725 22.339 22.339
0.1121E-03 9.2064 10.381 15.416 17.729
0.1101E-02 5.2554 6.8633 8.0849 11.045
0.1252E-01 2.2847 3.3975 3.4795 5.1965
0.1024E+00 1.2505 1.7155 2.2599 2.8064
0.5195E+00 1.1569 1.2777 2.2204 2.3389
0.9995E+00 1.1586 1.2219 2.2207 2.2820
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Figure 3a. Three-dimensional fully developed velocity
profiles in a four-cusped duct (n=0.5).

Figure 3b. Three dimensional fully developed velocity
profiles in triangular duct (n=1.0).
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Figure 4b. Axial velocity contours in a four-cusped duct
(n=0.5).
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Figure 4c. Axial velocity contours in a trapezoidal duct
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Results for NuT and Num as a function of the
Graetz number are plotted in Figures 6a and 6b for
triangular and trapezoidal ducts. The broken lines
in these figures indicate the local peripheral average
Nusselt number NuT . The fully developed Nusselt
number values are also plotted in these figures. As
expected, NuT and Num decrease with (z) and ap-
proach the fully developed values. The bulk tem-
perature values are also plotted in these figures. An
extremely good agreement is obtained for fully de-
veloped values for triangular and square ducts.
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Conclusions

The hydrodynamically fully developed and ther-
mally developing laminar flow of non-Newtonian
fluid in arbitrary cross-sectional ducts was analyzed
in this study. In order to eliminate the disadvantage
of the non-uniform mesh and to improve the numer-
ical accuracy, the elliptic grid generation technique
was used. The partial differential equations in Carte-
sian coordinates were transformed into the computa-
tional ξ−η domain. Then, the transformed equations
were solved by means of the finite difference method
using the overrelaxation iterative procedure. Square
ducts, triangular ducts, sinusoidal ducts, rhombic
ducts, square ducts with four indented corners and
four-cusped ducts were investigated in this study.

Inspection of the numerical solutions shows that
a non-Newtonian fluid with a flow behavior index of
less than one gives a higher heat transfer coefficient
than a Newtonian fluid. For example, the Nusselt
number was found to be 2.543 for n=0.5 and 2.353
for n=1 in triangular ducts. Due to the reduction in
friction power requirement and the increase in heat
transfer rates, pseudoplastic fluids seem to be better
working fluids in a heat exchange equipment than
Newtonian fluids.

Nomenclature

A duct cross-sectional area
Dh hydraulic diameter, 4A/P
Gz Graetz number (1/Z)

J Jacobian J = yηxξ − xηyξ
Nu Nusselt number, (h.Dh) / k
p fluid static pressure
P perimeter of cross section
Re Reynolds number for the duct based on hy-

draulic diameter, (u.Dh)/ν
T temperature (◦C)
u axial fluid velocity in duct
U dimensionless axial fluid velocity in duct,

[u/{(-dP/dz.µ)(Dh)2}]
x,y,z rectangular Cartesian coordinates
X,Y dimensionless transverse coordinates, X=x

/ Dh, Y=y / Dh

Z dimensionless axial coordinate, [Z=z
/(Dh.Re.Pr)]

α, β, γ dimensionless transform functions, (α =
xηxη + yηyη , β = xξxη + yξyη, γ = xξxξ +
yξyξ)

η, ξ dimensionless transformed coordinates,
(η=η / Dh, ξ=ξ / Dh )

µ dynamic viscosity
ν kinematic viscosity
θ dimensionless temperature (T − Tw)/(Ti−

Tw).

Subscripts

b bulk mean
T fully developed flow
i initial
m mean
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Uzun, İ. and Ünsal, M., “A Numerical Study of
Laminar Heat Convection in Ducts of Irregular
Cross-Sections”, Int. Comm. H.M.T., 24, 835-848,
1997

14


