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Abstract

The methods available in the literature for sediment concentration estimation are complicated and time
consuming and necessitate cumbersome parameter estimation procedures. In this study, artificial neural
networks (ANNs) are used to forecast and estimate sediment concentration values. The forecasting results
obtained using previously observed sediment values were close to the real ones. The sediment concentration
estimation, on the other hand, using only observed river flow values and the previous sediment value in a
nearby river as input, provided realistic approximations in terms of mean squared error (MSE) and total
sediment amount. The ANN estimates are compared also with corresponding classical regression ones and
found to be significantly superior.
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Introduction

Sediment yield is defined as the total sediment
outflow from a watershed measurable at a point of
reference during a specified period of time. The sed-
iment outflow from the watershed is induced by pro-
cesses of detachment, transportation, and deposition
of soil materials by rainfall and runoff. Estimates of
sediment yield are required in a wide spectrum of
problems such as the design of reservoirs and dams,
transport of sediment and pollutants in rivers, lakes
and estuaries, design of stable channels, dams and
debris basins, undertaking cleanup following floods,
protection of fish and wildlife habitats, determina-
tion of the effects of watershed management, and en-
vironmental impact assessment (Singh et al., 1988).
Fine sediment has long been identified as an impor-
tant vector for the transport of nutrients and con-
taminants such as heavy metals and micro-organics.
Suspended sediment is important in its own right,
since its presence or absence exerts an important
control on geomorphological and biological processes
in rivers and estuaries.

Sediment yield Y(t) at a given point in space (say,

a watershed outlet) can be represented as

Y (t) = Y (t) + ε(t) (1)

in which Y (t) is the mean value or deterministic com-
ponent of Y(t), and ε(t) is the deviation from or fluc-
tuation around the mean value or stochastic compo-
nent of Y(t). The relative contribution Y (t) or ε(t)
to Y(t) depends on the watershed and space –time
scales. Clearly, Y(t) encompasses the full range of
variability from being entirely deterministic to being
entirely stochastic. All sediment models are special
cases of (1).

The deterministic models can be distinguished
as empirical and conceptual. These models usu-
ally require long data records, so that average an-
nual sediment yield can be determined. The con-
ceptual models combine the mechanics of sediment
transport with empirical relationships. Both the em-
pirical and conceptual models approximate the phys-
ical processes controlling sediment yield (Singh et al.,
1988).
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Another way to represent the complex sediment
behaviour is to interpret a sequence of sediment yield
measurements as random. If the processes govern-
ing sediment yield are assumed to be stochastic, and
thus governed by the laws of probability, the sedi-
ment yield can be described by a stochastic process
and associated probability distributions (pdf).

The application of physics-based distributed pro-
cess complex computer software programs is often
problematic, due to the use of idealised sedimenta-
tion components, or the need for massive amounts
of detailed spatial and temporal environmental data
which is not available.

Many of the available techniques for time series
analysis assume linear relationships among variables.
In the real world, however, temporal variations in
data do not exhibit simple regularities and are dif-
ficult to analyse and predict accurately. Linear re-
currence and their combinations for describing the
behaviour of such data are often found to be inade-
quate.

It seems necessary that nonlinear models such as
artificial neural networks (ANNs), which are suited
to complex nonlinear models, be used for the analy-
sis of real world temporal data. ANN is a model in-
spired from the structure of the brain, is well suited
to such tasks as pattern recognition, combinatorial
optimisation, and discrimination. The ANN learns
to solve a problem by developing a memory capable
of associating a large number of input patterns with a
resulting set of outputs or effects. The ANN develops
a solution system by training on examples given to it.
These tools contain no preconceived ideas about the
manner in which a model ought to be structured or
work. It also provides a flexible approach, with the
power to provide different levels of generalisation,
and can produce a reasonable solution from small
data sets. The modeller has control over the data
inputs and irrelevant variables can be identified or
removed during the model building process.

There are numerous studies related to the appli-
cation of ANNs to various problems frequently en-
countered in water resources. The nonlinear ANN
approach was shown to provide a good representa-
tion of the rainfall-runoff relationship (Hsu et al.,
1995, Minns and Hall, 1996). The application of
the radial basis function type of ANNs to model
the rainfall runoff process has also been examined
(Fernando and Jayawardena, 1998, Mason et al.,
1996). Tokar and Johnson (1999) employed neu-
ral network methodology to forecast daily runoff as

a function of daily precipitation, temperature, and
snowmelt for the Little Patuxent River in Maryland.
Campolo et al. (1999 a,b) used ANNs to forecast
river flows during heavy rainfall and low-flow peri-
ods. ANNs were also considered to be a powerful
tool for use in various groundwater problems (Ran-
jithan et al., 1993, Rogers and Dowla, 1994). Ra-
man and Sunilkumar (1995) investigated the use of
ANNs in synthetic reservoir inflow series generation.
Boogaard et al. (1998) introduced Auto-Regressive
neural networks (ARNN) for the non-linear analysis
and modelling of time series whereas See and Open-
shaw (1998) outlined a methodology incorporating
the neural network and the fuzzy logic in forecasting
problem. ANNs were also used in unit hydrograph
derivation (Lange, 1998), regional flood frequency
analysis (Hall and Minns, 1998), estimation of sani-
tary flows (Djebbar and Alila, 1998) and modelling
hydraulic characteristics of severe contraction (Kheir
El-Din, 1998). Abrahart (1998) presented an embed-
ded solution for neural networks and the problem of
accumulated error.

The application of ANNs to sediment concentra-
tion estimation is, however, not available in the liter-
ature. In this study, initially, ANNs are used to fore-
cast the present or future sediment value using the
past sediment values as input. Then the river flow
values are used in the input layer to estimate the sed-
iment value. In this part of the study, the training
of the ANNs was carried out using the observed flow
and sediment values in a nearby river, and during the
testing stage the sediment values on other rivers were
estimated using the observed flows. Finally the ANN
estimation results were compared with the nonlinear
regression outputs. The term forecasting is used in
the study as in the case of having the same variable
in both input and output layers. If the input layer
contains variable(s) different than the output layer
from the term estimation is preferred.

The structure of ANNs

The learning process or training forms the inter-
connection between neurons. The strength of these
interconnections is adjusted using an error conver-
gence technique so that a desired output will be pro-
duced for a known input pattern.

Many training procedures are discussed in the lit-
erature. Error back propagation is one of the most
commonly used procedures. The processing units are
arranged in layers. The method is generally an iter-
ative nonlinear optimisation approach using a gra-
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dient descent search method. Mason et al. (1996)
and Fernando et al. (1998) have used radial basis
function networks for training. They concluded that
ANNs trained either using radial basis function or
error back propagation provided comparable estima-
tions.

Error back propagation provides a feed forward
neural network, giving the capacity to capture and
represent relationships between patterns in a given
data sample (Eberhart and Dobbins, 1990). De-
tailed information about the structure of the error
back propagation training procedure is provided in
the appendix.

Analysis of data

An extensive sediment monitoring network was
established within the LOIS programme, involving
the main tributaries of the River Humber (UK).
One of the key objectives of the Land-Ocean In-
teraction Study (LOIS) established in 1992, was to
quantify and characterise the flux of materials from
river basins to oceans (Wass and Leeks, 1999). This
provided an opportunity to deploy an extensive sus-
pended sediment river network within the rivers of
the study area, on a scale not previously attempted
in the UK. A turbidity monitoring system was de-
veloped to provide a continuous record of suspended
sediment concentration in the rivers, from which the
fluxes were calculated. Linear relationships were
established between suspended sediment concentra-
tion and turbidity to enable the conversion of neph-
elometric turbidity (NTU) to suspended sediment
concentration (mg/l). The measurements were un-
dertaken during the period October 1994-November
1997 (Wass and Leeks, 1999).

An overview of the river monitoring strategy is
given by Leeks et al. (1997). The related infor-
mation for the available flow and suspended data is
presented in Tables 1 and 2. The suspended data
is unfortunately not continuous throughout the ob-
servation period in all the five stations. The longest
concurrent continuous observation periods for sus-
pended sediment are from 07-11-1994, 21:15 to 22-

01-1995, 11:00, totally 6,900 values, and from 24-12-
1996, 12:45 to 20-02-1997, 08:00, totally 5,500 values,
in Swale Thornton Manor and Ouse Skelton. In all
the training and testing studies explained in the fol-
lowing sections, the data in this mentioned period
has been used.
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Figure 1. The structure of the artificial neural networks.

Since both sediment and flow values of the two
rivers are skewed, the first order correlation coef-
ficients for flow-sediment, flow-flow and sediment-
sediment pairs are computed for logged values. In
other words the logged sediment and flow values are
assumed to be normally distributed. The results are
presented in Table 3. The highest correlation, 0.98,
is for the Ouse Skelton flow and the Swale Crakehill
flow, whereas the lowest one, 0.64, is for the Ouse
sediment and the Ouse flow.

Figures 2 to 5 illustrate the relation between sus-
pended sediment and flow for the Ouse river and
Swale river, respectively, both for natural and logged
data. It is obvious that the relation between sed-
iment and flow becomes relatively linear for the
logged values. Double mass curves are obtained both
for cumulative flow (in million m3) and for cumula-
tive sediment (in tonnes) comparing corresponding
Swale River and Ouse River values (Figures 6 and
7). Both curves show clear homogeneity between
both stations.

Table 1. River flow data

River Station Observation period
Ouse Skelton from 01-09-93, 09:00 to 15-04-97, 03:45
Swale Crakehill from 01-09-93, 09:00 to 14-04-97, 03:00
Ure Westwick Lock from 01-09-93, 09:00 to 02-04-97, 08:00
Nidd Hunsingore Weir from 01-09-93, 09:00 to 14-04-97, 03:00

17



CIĞIZOĞLU

Table 2. Suspended sediment concentration data

River Station Observation period
Ouse Skelton from 03-10-94, 09:45 to 28-10-97, 16:00
Swale Thornton Manor from 17-10-94, 21:15 to 11-09-97, 21:00
Ure Westwick Lock from 09-06-94, 13:45 to 28-10-97, 14:00
Nidd Cowthorpe from 10-08-94, 11:00 to 28-10-97, 13:00
Swale Catterick Bridge from 13-10-94, 15:00 to 28-10-97, 15:00

Table 3. First order correlation coefficients (r1) between stations.

Swale flow- Swale sediment- Swale flow- Ouse sediment- Swale sediment-
Ouse flow Swale flow Ouse sediment Ouse flow Ouse sediment

r1 0.98 0. 77 0.66 0.64 0.77
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Figure 2. Suspended sediment versus logged flow data for
Ouse river.
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Figure 3. Suspended sediment versus logged flow data for
Swale river.
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Figure 4. Logged suspended sediment versus logged flow
data for Ouse river.
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Figure 5. Logged suspended sediment versus logged flow
data for Swale river.

Application of ANNs to the data

A code in FORTRAN language was written fol-
lowing the steps explained in the appendix. The
application of ANNs to forecast and estimate the
suspended sediment concentration consisted of two
steps. The first step was the training of the neural
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networks. The back propagation method was em-
ployed to train the ANNs. The determination of the
number of hidden layers and the number of nodes
both in the input layer in each hidden layer, which
provided the best the training results, were the pri-
mary considerations in training procedure. The cri-
teria for the evaluation of the training simulation was
the final MSE value computed as presented in the
appendix part. Initially randomly generated normal
values, between –3 and 3, are assigned for correlation
weights. The training input and output values are
scaled between 0 and 1 simply using

[(xi − xmin)/xmax − xmin)]

where xmin and xmax represent the minimum and
maximum of all the values in the input or the output
layer. If the variable in each layer is different, e.g. if
river flow is the input and the suspended sediment is
the output, the scaling is realised for each layer sep-
arately. In the case of having the same variable in
both input and output layers, i.e. in forecasting the
suspended sediment using the previous sediment val-
ues as input, all the values in both layers are scaled
together. During the training procedure the input
layers are selected randomly. Once the training stage
was completed, the testing stage began using the op-
timum values found for the number of nodes in each
layer, the number of hidden layers, the learning rate,
the momentum rate and the correlation weights.

The optimum learning, η, and the momentum,
α, rates were found after trying various values and
observing the MSE produced at the end of the test-
ing stage. It is seen that picking high values like 0.5
and 0.9 for η and α, as done by Raman and Sunilku-
mar (1995), throws the network into oscillations or
saturates the node outputs. Saturation occurs when
the net input to the function producing node out-
put is a large value (either positive or negative) and
variations in the input thus have little effect on the
output (Eberhart and Dobbins, 1990). It is seen that
η and α should be decreased if the number of input
and output layers are to be increased. The iteration
number, on the other hand, increases by decreasing η
and α values. In this study, 0.02 and 0.01 values are
found adequate for η and α, respectively. The test-
ing stage results using these parameter values are
presented in detail in the following part of the study.
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Figure 6. Double mass curve for river flow comparing
Swale flow with Ouse flow for a common pe-
riod of 75 days.
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Figure 7. Double mass curve for sediment comparing
Swale sediment with Ouse sediment for a com-
mon period of 75 days.

Initially, the applicability of the ANNs in sus-
pended sediment concentration forecasting is inves-
tigated. The efficiency of ANNs in forecasting the
suspended sediment concentration at present time t
and at time steps ahead was the subject of the study.
The first 5,900 suspended sediment values were con-
sidered for training the neural networks. The last
1,000 values (5,901th to 6,900th) covering a period
of 10 and half days (from 07-01-1995 to 18-01-95)
were then examined for testing. Different numbers
of input values are considered in the input layer to
forecast the unique sediment value at time t in the
output layer. The last consecutive i (t-i, .., t-1) sus-
pended sediment values consisted the input layer.
The MSE for the testing period was 36.4, 33.33,
27.60, 43.47 and 32.40, for 4, 5, 6, 7 and 8 input val-
ues, respectively. Since 27.60 was the lowest MSE,
the input layer node number was taken to equal 6
for the forecasting study. The optimum hidden layer
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node number is found 3, and increasing the hidden
layer number did not provide any improvement in
MSE during the testing stage. The forecasted val-
ues were very close to the observed ones (Fig. 8).
The total sediment amount estimated by ANNs for
this period was found to be 1,742 tonnes compared
with the observed 1,776 tonnes. The performance of
ANNs are compared with those of the classical Au-
toregressive Models. AR(1) and AR(??) models are
used for forecasting sediment values. The parameters
of these models are computed as mentioned by Box
and Jenkins (1976) using the first 5,900 suspended
sediment values. The forecasting was carried out for
the last 1,000 values (5,901th to 6,900th) as done
by ANNs. The obtained MSE values were 46.20 and
42.50 for AR(1) and Ar(??) models, respectively, be-
ing higher than the corresponding ANN results.

The same procedure is applied to forecast the sus-
pended sediment concentration ahead at time t+24
using ANNs (Fig. 9 ). The MSE increased to 53.65
while forecasting the suspended sediment at t+24
and the total estimated sediment amount was 1,711
tonnes. It is obvious that sl increasing the time step
ahead, the forecasting accuracy decreases.

Then ANNs are used to estimate the suspended
sediment concentration values using the flow values
as input. The first 5,900 flow and suspended sedi-
ment values observed in Ouse Skelton were used for
the training stage. Again here, 6 input values in
the input layer provided the minimum MSE during
the testing stage. The six consecutive flow values
(t-5, t-4, . . . , t) constituted the input layer to esti-
mate the unique suspended sediment value at time t.
The training was carried out for 13 to 5,900th value,
whereas the testing covered the 5901th to 6,900th val-
ues (from 07-01-1995 to 18-01-95). Examining the
results presented in Fig. 10 it can be said that the
ANN estimated suspended sediment concentration
time series does not capture the erratic behaviour
of the observed one but instead provides an average
approximation. The MSE and the ANN estimated
sediment total at the end of the testing period were
89.70 and 1,856 tonnes, respectively. The difference
between the estimated and observed sediment total
(1,776 tonnes) was 4.5% . This shows that if ANNs
are trained with river flow and suspended sediment
data for the same time period and the same station,
then the general behaviour of the suspended sedi-
ment time series in another time interval can be es-
timated using the available flow series as input. This
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Figure 8. The forecasted Ouse Skelton suspended sedi-
ment values at time t for time period 07-01-
1995 to 18-01-1995 using the last 6 (t-6, t-5,
...,t-1) values as input with a MSE=27.60.
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Figure 9. The forecasted Ouse Skelton suspended sedi-
ment values at time t+24 for time period 07-
01-1995 to 18-01-1995 using the last 6 (t-6, t-5,
...,t-1) values as input with a MSE=53.65.
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Figure 10. The estimated Ouse Skelton suspended sed-
iment values for time period 07-01-1995 to
18-01-1995 using the last 6 (t-6, t-5, ...,t-
1) Ouse Skelton flow values as input with a
MSE=89.70.
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is a significant conclusion since the sediment data
may be absent for some time intervals and a rough
estimation would really be of great significance.

It should be kept in mind that for the annual
sediment budget computations for the related reser-
voirs’ annual sediment totals are considered. There-
fore, the obtained results carry significance since the
ANN estimated suspended sediment values represent
the average behaviour providing a total sum close to
the original one.

The next step of the study was the estimation
of the suspended sediment concentration in a river
using the river flow and suspended sediment concen-
tration data in another river for training the neural
networks. This approach can be justified by the fact
that the catchments of two rivers show similar phys-
ical characteristics. The training period covered 70
days from 09-11-1994 to 18-01-1995 and 55 days from
25-12-1996 to 19-02-1997. Since the input layers were
selected randomly, the discontinuity between two pe-
riods did not cause a problem. After trying various
numbers of nodes in the input layer, it is seen that
6 input nodes produced the minimum MSE during
the testing stage. The sediment values in the Swale
River were used for training purposes with six con-
secutive flows at times t-5,.., t in the input layer to
forecast the sediment value at time t. The trained
neural networks were used to estimate the suspended
sediment value at Ouse Skelton at time t using the
Ouse River flows at time t-5, . . . , t as input. The
testing period covered 70 days from 09-11-1994 to

18-01-1995. The testing stage results for Ouse
Skelton suspended sediment values are presented in
Fig. 11. The MSE was 298 and the estimated sedi-
ment total, 22,319 tonnes, differed from the observed
one, 24,276 tonnes, by 8.0% . It can be said that the
ANN estimated the time series, underestimated the
observed peaks, but again provide an average repre-
sentation for the observed series. This is expected
because as long as the ANNs are not adaptive or dy-
namic they all yield average trends. The same study
has been carried out by adding a Swale sediment con-
centration value at time t to the input layer and de-
creasing the number of flow inputs from 6 to 5 in both
training and testing stages. Thus, training stage in-
put layer consisted of five Swale flows at times t-4,
t-3, . . . , t and a Swale sediment value at time t-1
making a total of 6 inputs in the input layer whereas
the testing stage input layer included the Ouse flows
at t-4, t-3, . . . , t and a Swale sediment value at time
t-1. The resulting ANN-estimated Ouse sediment se-

ries are closer to the original one, with a MSE equal
to 249, compared with the previous one, where only
flows were used in the input layer (Fig. 12). The
estimated sediment amount was 21,567 tonnes being
11% less than the observed 24,276 tonnes. The addi-
tion of a sediment value to the input layer provided
closer estimates, especially for the peaks, whereas
the total estimated sediment amount was not signifi-
cantly different from the previous case. The addition
of further Swale sediment values to the input layer
did not provide an improvement in estimation.

The same data set is used afterwards to estimate
Swale River sediment. In this case during the train-
ing stage, which covered again periods from 09-11-
1994 to 18-01-1995 and from 25-12-1996 to 19-02-
1997, Ouse sediment at time t is estimated using
Ouse flows at times t-4, t-3, . . . , t and an Ouse sed-
iment value at time t-1. During the testing stage
(from 09-11-1994 to 18-01-1995) Swale sediment is
estimated using Swale flows at times t-4, t-3, . . . , t
and an Ouse sediment value at time t-1. The MSE
was 1,230 and the estimated sediment sum, 6,745
tonnes, differed from the observed 7,000 tonnes by
3.6%.
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Figure 11. The estimated Ouse Skelton suspended sed-
iment values for time period 09-11-1994 to
18-01-1995 using the last 6 (t-6, t-5, . . . , t-
1) Ouse Skelton flow values as input with
a MSE=298.34 following the training us-
ing Swale Thornton sediment as output and
Swale flow as input for time periods 09-11-
1994 to 18-01-1995 and 25-12-1996 to 19-02-
1997 (the input layers are selected randomly).

21
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Figure 12. The estimated Ouse suspended sediment val-
ues for time period 09-11-1994 to 18-01-1995
using the last 5 (t-6, t-5, ...,t-1) Ouse flow
values and 1 previous Swale sediment value
as input with an MSE=249.00 following the
training using Swale sediment as output and
last 5 Swale flows and the previous Swale sed-
iment as input for time periods 09-11-1994 to
18-01-1995 and 25-12-1996 to 19-02-1997 (the
input layers are selected randomly).

This result is significant since it shows that a
rough approximation of the suspended sediment con-
centration values can be obtained using the flow and
suspended sediment data in another river in train-
ing ANNs, provided that the flow values for the sta-
tion without sediment concentration data are avail-
able. Since the installation of a sediment measure-
ment equipment is costly and, in general, the annual
sediment sum is desired, the ANN method can be
considered as a powerful tool in suspended sediment
estimation. It should be also taken into account that
in this study the rainfall data was not incorporated
in the input layer since it was not available. The in-
clusion of rainfall data would certainly increase the
accuracy of the estimation.

The next step of the study was to compare the
ANN estimation results with those obtained with re-
gression. The relation between sediment concentra-
tion and river flow is represented generally in the lit-
erature with the sediment rating curve as mentioned
by Clarke (1994),

C = aQb + ε (2)

where C and Q represent sediment concentration and
river flow, respectively, whereas a and b are coeffi-

cients and ε is the error term. This nonlinear re-
lationship can be converted into a regression form
taking logarithms of both parts:

x = d+ fy + ε (3)

where x and y represent the logged values of sediment
concentration and river flow, respectively, whereas d
and f are coefficients and ε∗ is the error term.

The data period from 25-12-1996 to 19-02-1997
is used to obtain the regression equation with Ouse
sediment as a dependent variable and Swale sedi-
ment, Swale flow and Ouse flow as independent vari-
ables. Considering the non linear relation between
variables, a nonlinear regression has been found ad-
equate. The equation is as follows,

x = −0.94− 0.02y1 + 0.33y2 + 0.75y3;R2 = 0.78
(4)

where x, y1, y2 and y3 represent the logged values of
Ouse sediment, Swale sediment, Swale flow and Ouse
flow, respectively. The obtained regression is applied
to the data period 09-11-1994 to 18-01-1995 to esti-
mate Ouse sediment using observed Swale sediment,
Swale flow and Ouse flow values. The results are pre-
sented in Fig. 14. The MSE was 674 and the regres-
sion estimated sediment sum had a value of 39,319
tonnes being 62% higher than the observed 24,276
tonnes. The results show that ANN estimations for
sediment concentration are far superior to classical
regression estimates in terms of both MSE and total
sediment amount. It should be also kept in mind
that, in the regression analysis the observed Ouse
sediment values were used as dependent variables to
obtain the regression equation, whereas during the
training stage of the ANNs only Swale sediment and
flow were used.

Discussion and conclusions

In the presented study ANNs have been used for
forecasting and estimating suspended sediment con-
centration. It has been shown that even in the ab-
sence of observed sediment data it was possible to
obtain reliable corresponding estimates by training
ANNs using the sediment and flow data in a nearby
river. The difference between the ANN estimated
total sediment amount and the corresponding ob-
served amount was either less than or close to 10%
. The ANNs are more versatile than the regression-
based models because of the freedom available with
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the choice of the number of hidden layers and the
nodes associated with each of these layers. The ANN
structure allows information to be processed along
multiple paths simultaneously, thereby offering op-
portunities for parallel implementation. The results
obtained are especially significant considering the ex-
pense of installing sediment measurement equipment
and the importance of providing realistic future es-
timates for a river’s potential sediment yield.
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Figure 13. The estimated Swale suspended sediment val-
ues for time period 25-12-1996 to 19-02-1997
using the last 5 (t-6, t-5, ...,t-1) Swale flow
values and 1 previous Ouse sediment value as
input with an MSE=1,230 following the train-
ing using Ouse sediment as output and last 5
Ouse flows and the previous Ouse sediment
as input for time periods 09-11-1994 to 18-01-
1995 and 25-12-1996 to 19-02-1997 (the input
layers are selected randomly).
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Figure 14. The regression estimated Ouse suspended
sediment values for time period 09-11-1994 to
18-01-1995 using the Ouse flow, Swale sedi-
ment and Swale flow values as independent
variables (MSE=674). The regression equa-
tion is obtained using the values for Ouse
Skelton sediment, Ouse flow, Swale Thornton
sediment and Swale flow for time period 25-
12-1996 to 19-02-1997.

Appendix

A neural network has an input layer, a hidden
layer and an output layer. Each layer is made up
of several nodes, and layers are interconnected by
sets of weights. The pattern of connectivity and the
number of neurons in each layer may vary within
some constraints. No communication is permitted
between the nodes within a layer, but the nodes in
each layer may send their output to the nodes in the
succeeding layers. The nodes receive input either
from the initial inputs or from the interconnections.

Error back propagation involves two phases: a
feed forward phase, in which the external input infor-
mation at the input nodes is propagated forward to
compute the output information signal at the output
unit, and a backward phase, in which modifications
to the connection strengths are made based on the
differences between the computed and observed in-
formation signals at the output units (Eberhart and
Dobbins, 1990).

At the beginning of a training process, the con-
nection strengths are assigned random values. The
learning algorithm modifies the strength in each iter-
ation until the successful completion of the training.
When the iterative process has converged, the col-
lection of connection strengths captures and stores
the knowledge and the information present in the
examples used in the training process.

When presented with a new input pattern, a feed
forward network computation results in an output
pattern which is the result of the generalisation and
synthesis of what ANN has learned and stored in its
connection strengths.

The neural network employed in this study pos-
sessed a three-layer learning network consisting of an
input layer, a hidden layer and an output layer, as
shown in Fig. 1.

There are N data input patterns, each having a
set of input values, xi, i=1, . . . ., k at the input nodes
with output values, Tn, n =1, . . . .., m at the output
nodes. The input values are multiplied by the first
interconnection weights, wij, j=1, . . . ,h at the hid-
den nodes, and the products are summed over the
index, i, and become the inputs of hidden layers i.e.,

Hj =
k∑
i=1

wijxi j = 1, . . .h

where Hj is the input to the jth hidden node, wij is
the connection weight from the ith neuron to the jth
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neuron. Each hidden node is transformed through a
sigmoid function to produce a hidden node output,
HOj , defined as

HOj = f(Hj) =
1

1 + exp [− (Hj + θj)]

where Hj is the input to the node, f(Hj) is the node
output, and θj is a threshold or bias. The thresh-
old, θj , will be learned in the same manner as the
weights. The output, HOj serves as the input to the
succeeding layer and its procedure is continued until
the output layer is reached. This is referred to as
forward activation flow. The input to the m output
nodes, IOn, is expressed as

IOn =
h∑
j=1

wjnHOjn n = 1, . . .m

These input values are processed through the sig-
moidal function defined earlier to give the neural
network output values, On. The subsequent weight
adoption or learning process is accomplished by the
back propagation learning algorithm.

The On at the output layer will not be the same
as the target value, Tn. For each input pattern, the
sum of the squares of error, ep, for the pth input
pattern is

ep =
m∑
n=1

(Tn −On)2

and the average system error or mean square error
(MSE), E, for all input patterns is

E =
1

2N

N∑
p=1

m∑
n=1

(Tpn −Opn)2

where Tpnis the target value, Tn, for the pth pattern
and Opn is the neural network output value, On, for
the pth pattern.

The aim of the back propagation algorithm is to
minimise iteratively the averaged square error. This
is accomplished by first computing the gradient (δn)
for each node on the output layer:

δn = On(1− On)(Tn − On)

The error gradient δj is then recursively de-
termined for the hidden layers by computing the
weighted sum of the errors at the previous layer:

δj = HOj(1 −HOj)
m∑
n=1

δnwjn

The error gradients are then used to update the
network weights:

∆wij(r) = ηδjxi

wij(r + 1) = wji(r) + ∆wji(r)

Generally, to assure rapid convergence, large step
sizes, which do not lead to oscillations, are used. The
weight change after the nth data presentation is:

∆wji(r) = ηδjxi + α∆wji(r − 1)

where α the a momentum rate term is used to im-
prove convergence, η is the learning rate which pro-
vides the step size during the gradient descent and r
is the iteration number.
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