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Abstract

The methods available for sediment concentration and flux estimation are largely empirical, with sedi-
ment rating curves being the most widely applied. In this study, a comparison is made between artificial
neural networks (ANNs) and sediment rating curves for two rivers with very similar catchment areas and
characteristics in the north of England. Data from one river are used to estimate sediment concentrations
and flux in the other for both estimation techniques. A more traditional, split-sample approach is also used,
in which part of the available data from a site is used to develop a predictive relationship, which is then
tested with the remaining data from the same site. The results of the two estimation techniques and the two
approaches for the derivation of predictive capability are compared and discussed. The potential advantages
of ANNSs in sediment concentration and flux estimation are highlighted. In particular, an ANN approach
can give information about the structure of events (e.g., hysteresis in the sediment concentration - water
discharge relationship, and the effect of antecedent conditions) which is impossible to achieve with sediment

rating curves.
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Introduction

Sediment yield is defined as the total sediment
outflow from a watershed measurable at a point of
reference during a specified period of time. The sed-
iment outflow from the watershed is induced by pro-
cesses of detachment, transportation, and deposition
of soil materials by rainfall and runoff. Estimates of
sediment yield are required in a wide spectrum of
problems such as the design of reservoirs and dams;
transport of sediment and pollutants in rivers, lakes
and estuaries design of stable channels, dams and
debris basins; undertaking cleanup following floods
protection of fish and wildlife habitats; determina-
tion of the effects of watershed management; and
environmental impact assessment. Fine sediment
has long been identified as an important vector for
the transport of nutrients and contaminants such as
heavy metals and micro-organics. Suspended sedi-
ment is important in its own right, since its presence

or absence exerts an important control on geomor-
phological and biological processes in rivers and es-
tuaries.

Sediment yield Y(t) at a given point in space (say,
watershed outlet) can be represented as

Y(t) =Y (t) + () (1)

in which Y (¢) is the mean value or deterministic com-
ponent of Y(t), and e(t) is the error from or fluctu-
ation around the mean value or stochastic compo-
nent of Y(t). The relative contribution Y (¢) or £(t)
to Y(t) depends on the watershed and space-time
scales. Clearly, Y(t) encompasses the full range of
variability from being entirely deterministic to being
entirely stochastic. All sediment models are special
cases of (1).

Deterministic models can be distinguished as em-
pirical and conceptual. Most of the empirical mod-
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els are related to the Universal Soil Loss Equation
(USLE) and its latter modifications. These models
usually require long data records, so that average
annual sediment yield can be determined. The con-
ceptual models combine the mechanics of sediment
transport with empirical relationships. Both the em-
pirical and conceptual models approximate the phys-
ical processes controlling sediment yield.

Another way to represent the complex sediment
behaviour is to interpret a sequence of sediment yield
measurements as random. If the processes govern-
ing sediment yield such as soil particle detachment,
entrainment, transport, and deposition are assumed
to be stochastic and thus governed by the laws of
probability, the sediment yield can be described by
a stochastic process and associated probability dis-
tributions (pdf).

Some sediment yield models contain both deter-
ministic and stochastic elements. A classic example
is the relationship between sediment yield and runoff,
represented by a line in the logarithmic plot. This
is the deterministic part, Y (¢), of the model. When
the measurements are plotted, they encircle this line
and most often will not lie directly on it. Thus the
line represents only the mean trend of the sediment
yield-runoff relationship, and fluctuations e(t) above
and below may be considered stochastic. A success-
ful model will have to include a deterministic com-
ponent or fluctuations around it.

Stochastic models of sediment yield can be
grouped as regression models, time series models, en-
tropy models and probability models. The regression
models relate Y(t) empirically to rainfall R(t) and
runoff Q(t). The spatial variability of these mod-
els is not considered. Stochasticity is represented by
variations around the mean trend. In time series
models a watershed is considered a spatially lumped
system. Deterministic relationships between R(t),
Q(t) and Y(t) are represented by a transfer function
and stochasticity is modelled as an autoregression
process. In entropy models the pdf of Y(t) is ob-
tained using constraints based on the observed val-
ues of Y(t) and/or Q(t). Spatial variability of the
variables is not accounted for. Probability models
consider sediment yield Y(t) as a stochastic process,
and so may the rainfall R(x,y,z,t) and runoff Q(t).
The behaviour of Y(t) is described by its pdf or its
joint probability density function with other stochas-
tic sequences.

The application of physics-based distributed pro-
cess computer simulation offers one possible method
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of prediction to assess the outcome of different man-
agement actions and long term management strate-
gies. But the application of these complex soft-
ware programs is often problematic, due to the use
of idealised sedimentation components, or the need
for massive amounts of detailed spatial and tempo-
ral environmental data which is not available. Sim-
pler approaches are therefore required in the form of
‘conceptual‘ solutions or ‘black-box‘ modelling tech-
niques. Neurocomputing provides one possible an-
swer to the problematic task of sediment transfer
prediction.

Many of the available techniques for time series
analysis assume linear relationships among variables.
In the real world, however temporal variations in
data do not exhibit simple regularities and are dif-
ficult to analyse and predict accurately. Linear re-
currence and their combinations for describing the
behaviour of such data are often found to be in-
adequate. It seems necessary that nonlinear mod-
els such as artificial neural networks (ANNs), which
are suited to complex nonlinear models, be used for
the analysis of real world temporal data. ANN is a
model inspired from the structure of the brain, and
is well suited to such tasks as pattern recognition,
combinatorial optimisation, and discrimination. The
ANN learns to solve a problem by developing a mem-
ory capable of associating a large number of input
patterns with a resulting set of outputs or effects.
The ANN develops a solution system by training on
examples given to it. These tools contain no pre-
conceived ideas about the manner in which a model
ought to be structured or work. It also provides a
flexible approach, with the power to provide different
levels of generalisation, and can produce a reasonable
solution from small data sets. The modeller has con-
trol over the data inputs and irrelevant variables can
be identified or removed during the model building
process.

There are numerous studies related to the appli-
cation of ANN’s to various problems frequently en-
countered in water resources. The nonlinear ANN
approach was shown to provide a good representa-
tion of the rainfall-runoff relationship (Hsu et al.,
1995; Minns and Hall, 1996). The radial basis func-
tion type of ANNs was used to model the rainfall
runoff process (Fernando and Jayawardena, 1998,
Mason et al., 1996). Tokar and Johnson (1999) em-
ployed neural network methodology to forecast daily
runoff as a function of daily precipitation, tempera-
ture, and snowmelt for the Little Patuxent River in
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Maryland. Campolo et al. (1999a,b) used ANNs to
forecast river flows during heavy rainfall and low-flow
periods. ANNs were also considered a powerful tool
in various groundwater problems (Ranjithan et al.,
1993; Rogers and Dowla, 1994). Raman and Sunilku-
mar (1995) investigated the use of ANNs in synthetic
reservoir inflow series generation. Boogaard et al.
(1998) introduced Auto-Regressive neural networks
(ARNN) for the nonlinear analysis and modelling of
time series, whereas See and Openshaw (1998) out-
lined a methodology incorporating the neural net-
work and fuzzy logic in forecasting problems. ANNs
were also used in unit hydrograph derivation (Lange,
1998), regional flood frequency analysis (Hall and
Minns, 1998), estimation of sanitary flows (Djebbar
and Alila, 1998) and modelling hydraulic character-
istics of severe contraction (Kheireldin, 1998). Abra-
hart (1998) presented an embedded solution for neu-
ral networks and the problem of accumulated error.
There is no application example of ANNSs to the esti-
mation or forecasting of sediment concentration data
in the literature. Since the installation of sediment
concentration measurement instruments are costly,
the results of this study are of significance.

The term forecasting is used in the study as in
the case of having the same variable in both input
and output layers. If the input layer contains vari-
able(s) different from those of the output laye then
the term estimation is preferred.

The Structure of the ANNSs

The learning process, or training, forms the in-
terconnection between neurons and is accomplished
by known inputs and outputs, and presenting these
to the ANN in some ordered manner. The strength
of these interconnections is adjusted using an error
convergence technique so that a desired output will
be produced for a known input pattern.

Many training procedures are discussed in the lit-
erature. Error back propagation is one of the most
commonly used procedures. The processing units are
arranged in layers. The method is generally an iter-
ative nonlinear optimization approach using a gra-
dient descent search method. Mason et al. (1996)
and Fernando et al. (1998) have used radial basis
function networks for training. They concluded that
ANNSs trained either using radial basis function or
error back propagation provided comparable estima-
tions.

Error back propagation provides a feed forward
neural network, giving the capacity to capture and

represent relationships between patterns in a given
data sample.

A neural network has an input layer, a hidden
layer and an output layer. Each layer is made up of
several nodes, and layers are interconnected by sets
of correlation weights.

The pattern of connectivity and the number of
processing units in each layer may vary within some
constraints. No communication is permitted be-
tween the processing units within a layer, but the
processing units in each layer may send their output
to the processing units in the succeeding layers. The
nodes receive input either from the initial inputs or
from the interconnections.

Error back propagation involves two phases: a
feed forward phase in which the external input in-
formation at the input nodes is propagated forward
to compute the output information signal at the out-
put unit, and a backward phase in which modifica-
tions to the connection strengths are made based on
the differences between the computed and observed
information signals at the output units.

At the beginning of a training process, the con-
nection strengths are assigned random values. The
learning algorithm modifies the strength in each iter-
ation until the successful completion of the training.
When the iterative process has converged, the collec-
tion of connection strengths captures and stores the
knowledge and the information present in the exam-
ples used in the training process. Such a trained
neural network is ready to be used.

When presented with a new input pattern, a feed
forward network computation results in an output
pattern which is the result of the generalisation and
synthesis of what ANN has learned and stored in its
connection strengths.

The neural network employed in this study pos-
sessed a three-layer learning network consisting of an
input layer, a hidden layer and an output layer. Er-
ror back propagation is used as training procedure
throughout the study. The equations related to this
training procedure are available in all standard ANN
text books.

Analysis of Data

In this study, flow and sediment concentration
data of two stations are used. The first one is the
Low Moor station on the River Tees. The River Tees
is one of the principal rivers of north-east England.
It rises in the North Pennines at Tees Head, at an al-
titude of 893 masl, and flows into the North Sea some
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85 km to the east, at Teesmouth. The total catch-
ment area is approximately 2400 km?; the catchment
area above the Low Moor Gauging Station is 1264
km?2. Broadly speaking, the catchment upstream of
Low Moor may be divided into a steep upland head-
water area underlain by Carboniferous geology in the
west, and a lowland area underlain by Permian and
Triassic geology in the east. A strong west-east pre-
cipitation gradient follows the topographic gradient:
while the headwaters receive up to 2000 mm of pre-
cipitation annually, this drops to around 600 mm
near the coast at Middlesbrough. As a consequence,
the landscape of the upper Tees is characterised by
peaty soils, moorland and rough grazing, while land
use in the lower Tees is dominated by improved pas-
ture and arable farming.

Extensive upland headwaters with high rainfall,
low storage capacity and high drainage density give
rise to an extremely flashy river regime. Snowmelt
can also be an important component of runoff dur-
ing the winter and spring. The Tees data considered
in this study cover the period from 21-01-2000 to
30-03-2000 (Table 1).

The second station with sediment data is the
Thornton Manor station on the Swale River in the
Humber catchment. Since no was flow data observed
at this station the flow data of Crakehill station on
the Swale River is considered. The data was obtained
during the LOIS study. An extensive sediment moni-
toring network was established within the LOIS pro-
gramme, involving the main tributaries of the River
Humber (UK). One of the key objectives of the Land-
Ocean Interaction Study (LOIS) established in 1992,
was to quantify and characterise the flux of mate-
rials from river basins to oceans (Wass and Leeks,
1999). This provided an opportunity to deploy an
extensive suspended sediment river network within
the rivers of the study area, on a scale not previously
attempted in the UK. A turbidity monitoring system
was developed to provide a continuous record of sus-
pended sediment concentration in the rivers, from
which the fluxes were calculated. Linear relation-
ships were established between suspended sediment
concentration and turbidity to enable the conver-
sion of nephelometric turbidity (NTU) to suspended
sediment concentration (mg/1). The measurements
were undertaken during the period October 1994-
November 1997.

The Humber drains over one-fifth of the area of
England, an area that is characterised by a wide
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range of geology, climate, soils and land use. In
general, the north-western part of the catchment
is dominated by Carboniferous millstone grits and
limestones forming the upland headwaters. Towards
the south and east, the land is relatively low lying
with the Permo-Triassic sandstone and Cretaceous
chalk aquifers comprising the solid geology, which is
often overlain by superficial glacial and alluvial de-
posits (Wass and Leeks, 1999). Annual precipitation
ranges from 600 mm in the east to over 1600 mm
on the Pennine Hills, the majority of which falls as
frontal rain associated with the prevailing westerly
airstreams. In the Humber catchment the largest
suspended sediments come from the biggest catch-
ments, with the River Trent contributing 33% , the
River Ouse 31% , the River Aire 16% , the River Don
14% and the River Wharfe 6% . These rivers are in
turn comprised of smaller subcatchments. The load
of the main rural Ouse is dominated by sediment de-
rived from River Swale (53%) and River Ure (38%)
with the River Nidd contributing around one tenth
of the load. The primary considerations when locat-
ing the sediment monitoring equipment were, firstly,
that the network should mirror the manual sampling
network as a whole; secondly, that fluxes should be
monitored close to the tidal limit or at major catch-
ment outlets and, thirdly, that there should be river
flow monitoring stations nearby. An overview of the
river monitoring strategy is given by Leeks et al.
(1997). The related information for the available
flow and suspended data is presented in Tables 1 and
2. The suspended data is unfortunately not continu-
ous throughout the observation period in all five sta-
tions. The continuous observation period for Swale
sediment and flow data considered in this study cov-
ers the period from 10-11-1994 to 25-12-1994 (Table
1).

The catchments providing sediment to the River
Swale and the River Tees have similar characteristics
justifying the utilisation of the data for both rivers
during the training and testing stages of the ANNs.
The data for both rivers correspond to different years
but to the winter season.

The first order correlation coefficient for Swale
Crakehill flow - Swale Thornton Manor sediment
is 0.57 whereas it is 0.86 for Tees Low Moor flow-
sediment.

Figures 1 and 2 illustrate the relation between
suspended sediment and flow for River Swale and
River Tees, respectively.
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Table 1. River flow and suspended sediment data

River Station Observation period
Flow Swale Crakehill from 01-09-93, 09:00 to 14-04-97, 03:00
(Time step: 15 min; unit: m®/s)
Tees Low Moor from 21-01-2000, 11:30 to 30-03-2000, 19:45
Sediment Swale Thornton from 01-09-93, 09:00 to 14-04-97, 03:00
(Time step: 15 min; unit: m?3/s) Manor
Tees Low Moor from 21-01-2000, 11:30 to 30-03-2000, 19:45
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Figure 1. Plotting of River Swale Thornton Manor sus-  Figure 2. Plotting of River Tees Low Moor suspended

pended sediment values versus River Swale
Crakehill flow values for the period from 10-
11-1994 to 25-12-1994.

Application of ANNs to the Data

A code in FORTRAN was written following the
steps explained in part 2.

The application of the ANNs to estimate the
suspended sediment concentration consisted of two
steps. The premiere step was the training of the
neural networks. The back propagation method was
employed to train the ANNs. The determination
of the number of hidden layers and the number of
nodes both in the input layer and in each hidden
layer which provided the best training results was
the primary consideration in the training procedure.
The criterion for the evaluation of the training simu-
lation was the final MSE value computed as given by
Raman and Sunilkumar (1995). Initially randomly
generated normal values between -3 and 3 are as-
signed for correlation weights. The training input
and output values are scaled simply using the equa-
tion:

L — Tmin (2)

Tmax — Lmin

sediment values versus the flow values for the
period from 21-01-2000 to 30-03-2000.

where X,.in and X,,q. represent the minimum and
maximum of all the values in the input or the out-
put layer throughout all patterns. Different values
can be assigned for the scaling factors ¢ and d. If
¢ and d are equal to 1 and 0, respectively, the scal-
ing is linear. Since linear scaling prevents extrapola-
tion, ¢ and d can take values like 0.8 and 0.1 or 0.6
and 0.2, respectively. If the variable in each layer is
different, e.g. if river flow is the input and the sus-
pended sediment is the output, the scaling is realised
for each layer separately. In the case of having the
same variable in both input and output layers, i.e.
in forecasting the suspended sediment using the pre-
vious sediment values as input, all the values in both
layers are scaled together. In this study the scaling
parameters ¢ and d are taken as 0.6 and 0.2, respec-
tively. Once the training stage was completed, the
testing stage began using the optimum values found
for the number of nodes in each layer, the number of
hidden layers, the learning rate, the momentum rate
and the correlation weights.
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After finalising the training stage it is seen that
one hidden layer was sufficient to capture the com-
plexity of the problem and that an addition of a fur-
ther layer(s) did not provide an improvement. The
optimum node numbers are found as 6 for the in-
put layer and 3 for the hidden layer, respectively,
after trying the various combinations. The optimum
learning, 7, and the momentum, «, rates were found
after trying various values and observing the MSE
produced at the end of the testing stage. It is seen
that picking high values like 0.5 and 0.9 for n and «
as done by Raman and Sunilkumar (1995) throws the
network into oscillations or saturates the neurones.
Saturation occurs when the net input to a neurone is
a large value (either positive or negative) and varia-
tions in the input thus have little effect on the out-
put (Eberhart and Dobbins, 1990). It is seen that
1 and « should be decreased if the number of input
and output patterns increased. The iteration num-
ber, on the other hand, increases decreasing 1 and «
values. In this study 0.02 and 0.01 values are found
adequate for 1 and «, respectively. The testing stage
results using these parameter values are presented in
detail in the following part of the paper.

The estimation and forecasting of suspended
sediment using the previous observed data on
the same station

In this part of the study, the efficiency of ANNs
in estimating the future sediment data using the pre-
vious observed flow and sediment data during the
training stage was investigated. For this purpose,
15 minutes flow and suspended data observed at the
River Tees Low Moor station between 23"% January
and 26" February 2000 are used for training ANNs.
Initially the ANN’s are used for forecasting the sed-
iment concentration values at time t using the pre-
vious sediment values at times t-4, t-8, ... .;t-24 as
input. The time interval between input values was
1 hour and therefore the input layer covered a total
period of 6 hours. The testing stage covered the fol-
lowing time period between 26" February and 17"
March 2000. The mean square error (MSE) obtained
at the end of the testing stage was 13.20. Increasing
or decreasing the number of inputs did not provide
an improvement in The MSE. For example, the MSE
was equal to 16.60 and 17.20 for 8 inputs and 3 in-
puts, respectively. Similarly increasing the number
of hidden layers from one to two or three did not de-
crease the MSEs. The performance of the ANNs are
compared with those of the classical Autoregressive
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Models. The parameters of the AR(1) and AR(2)
models are computed with the data used at the train-
ing stage of the ANNs and the forecasting is car-
ried out for the testing period data. The obtained
MSE were 22.10 and 20.18, respectively, being higher
than the corresponding ANN results. The AR(1)
and AR(2) models were also employed for the logged
sediment values providing MSE values like 20.10 and
18.70, respectively.

The input layer consisted of six flow values at
times t-4, t-8, ... , t-24 and the output layer had the
unique suspended sediment concentration at time t.
The testing stage covered the following time period
between 26" of February and 17t" of March 2000.
The ANN estimated time series were close to the ob-
served one but the peaks were underestimated (Fig-
ure 3). Sediment rating curves were employed for
the purpose of comparison with the corresponding
ANN ones. The sediment rating equation between
flow and sediment concentration values for the Low
Moor station for the period between between 237¢
January and 26" February 2000, i.e. the training
period of the ANN process, was as follows:
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Sediment concentration (NTU)

0 500 1000 1500 2000
Time (15 min)

Figure 3. Comparison of observed sediment concentra-
tion values, (1), with the ones estimated by
ANNS, (2), and sediment rating equation, (3),
for Tees River Low Moor station for the period
from 26-02-2000 to 17-03-2000.

SC =1.13Q%™ (3)

where SC and Q represent the sediment concentra-
tion and flow values, respectively. This relation was
used to estimate the sediment concentration values
within the period from 26t February to 17" March
2000, i.e. the testing period of theANN process, and
the results are presented in Figure 3 (Curve 3). It is
clear that the ANN estimations are closer to the ob-
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served ones in comparison with the ones obtained us-
ing the sediment rating relation. The observed peaks
are approximated by ANNSs significantly better than
with the the sediment rating relation. The total sed-
iment amount estimated by ANNs and by sediment
rating relation was 3710 tons and 2080 tons, respec-
tively, being 12% and 50% lower than the observed
4202 tons.

The same study was repeated for the River Swale.
River Swale Crakehill station flow values were used
as input during both the training and testing stages
of the ANNs to estimate the River Swale Thornton
Manor station sediment concentration values. The
training and testing stages included values within the
period from 10" November to 2"¢ December 1994
and from 14** December to 25" December 1994, re-
spectively. The ANN estimations are compared with
the corresponding sediment rating ones obtained us-
ing

SC = 0.007Q*% (4)

relation in Figure 4. Again here the ANN estima-
tions are closer to the corresponding observed ones.
The total estimated sediment amount for ANNSs,
958t, and the sediment rating relation, 627t, was 20%
and 48% less than the observed 1207t, respectively.

To be able to test whether the ANN approach
can give information about the structure of events
the hysteresis in the sediment concentration obtained
by ANNs and sediment rating relation are compared
with the corresponding observed one in Figures 5 and
6 for both stations. It is seen that the turn direction
of the hysteresis estimated by ANNSs is the same with
the observed one in both cases.

The estimation of suspended sediment using
the data in the nearby river

In this part of the study the ANNs are used to
estimate the suspended sediment concentration val-
ues using the flow values as input. The 15 minutes
flow and suspended sediment concentration values
observed in the River Swale within the period from
10" November 1994 to 25" December 1994 were
used for the training stage. The six flow values (t-4,
t-8, ..., t-24) constituted the input layer to estimate
the unique suspended sediment value at time t. The
time interval between input values was 1 hour and
therefore the input layer covered a total period of 6
hours. The testing of the trained ANNs was accom-
plished with the 15 minutes flow and suspended data

of the River Tees Low Moor station for the period be-
tween 23"¢ January and 7" March 2000. Examining
the results presented in Figure 7 the ANN estimated
suspended sediment concentration time series gener-
ally approximates the observed one underestimating
the peaks. The MSE and the ANN estimated sedi-
ment totals at the end of the testing period were 377
and 3946 tons, respectively. The difference between
the estimated and observed sediment total (5664t)
was 30% due to the underestimation of the peaks.
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Figure 4. Comparison of observed sediment concentra-
tion values, (1), with the ones estimated by
ANNS, (2), and sediment rating curve, (3), for
River Swale Thornton Manor station for the
period from 14-12-94 to 25-12-94.
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Figure 5. Comparison of the observed Hystheresis ,(1),
with the ones estimated by ANNs, (2), and
by sediment rating relation, (3), for Tees Low
Moor station for the period between 26th of
February and 17th of March 2000.
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Figure 6. Comparison of the observed hysteresis, (1),
with the ones estimated by ANNs, (2), and by
sediment rating relation, (3), for Swale Thorn-
ton Manor station for the period between 14th
December and 25th December 1994.
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Figure 7. The estimated River Tees Low Moor suspended
sediment values for period from 23-01-2000 to
07-03-2000 using the 6 (t-4,..,t-24) Low Moor
flow values as input with an MSE=377. For
the training of ANN'‘s the sediment and flow
data of River Swale Thornton Manor station
was used.

The study is repeated afterwards, replacing the
training data with the testing data and vice versa,
i.e. the River Tees data was for training and the
River Swale data for testing. The time periods of the
data considered during both stages were the same as
the previous one. The results presented in Figure
8 show that the ANN estimated series capture the
general behaviour of the observed Swale series un-
derestimating the peaks in general. However, the
ANN estimated sediment total, 8233 tons, is just
3.3% higher than the observed 7970 tons with an
MSE equal to 607. The small difference shows that
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the underestimation of peaks is compensated for by
overestimation of low flows.

These results show that if river flow and sus-
pended sediment data from a nearby river with sim-
ilar catchment characteristics are available, the gen-
eral behaviour of the suspended sediment time se-
ries can be estimated using the available flow series
for the corresponding time interval. The data time
periods for the Rivers Swale and Tees were differ-
ent, though both being from winter. It should be
considered that the results are obtained by training
ANNSs for a very limited period. It is clear that with
the availability of longer continuous data the ANNs
would be trained for more input and output patterns,
increasing the accuracy during the testing stage.

It should be kept in mind that for the annual sedi-
ment budget computations for the related reservoirs
the annual sediment totals are considered. There-
fore the obtained results are of significance since the
ANN estimated suspended sediment values represent
the average behaviour, providing a total sum close to
the original one.
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Figure 8. The estimated River Swale Thornton Manor
suspended sediment values for period from
10-11-1994 to 25-12-1994 using 6 (t-4,..,t-24)
Thornton Manor flow values as input with an
MSE=607. For the training of ANNs the sed-
iment and flow data of River Tees Low Moor
station was used.

Conclusions

In the presented study ANNs are used for es-
timating suspended sediment concentrations. It is
shown that even in the absence of observed sediment
data from was possible to obtain reliable correspond-
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ing estimates by training ANNs using the sediment
and flow data in a nearby river. The estimations ob-
tained by ANN’s were significantly superior to the
corresponding classical sediment rating curve ones.
It is seen that an ANN approach can provide infor-
mation about the structure of events (e.g., hysteresis
in the sediment concentration - water discharge re-
lationship, and the effect of antecedent conditions)

which is impossible to achieve with sediment rating
curves.
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