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Abstract

Steady three-dimensional flow of a Walter’s B′ fluid in a vertical channel was investigated. It is assumed
that the fluid is injected into the channel through one side of the channel. The combined effects of vis-
coelasticity and inertia are considered. By using the appropriate similarity transformations for the velocity
components and temperature, the basic equations governing flow and heat transfer are reduced to a set of
ordinary differential equations. These equations were solved approximately subject to the relevant boundary
conditions with a numerical technique. The effect of the elasticity of the fluid on the flow and heat transfer
on the walls of the channel are discussed.
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Introduction

The flow of Newtonian and non-Newtonian fluids in
a porous surface channel has always attracted the
interest of many investigators in view of its appli-
cations in engineering practice. Examples of these
are the cases of boundary layer control, transpira-
tion cooling, and gaseous diffusion. In boundary
layer control, the decelerated fluid particles in the
boundary layer are removed through slits in the wall
into the interior of the body. With sufficiently strong
suction, separation can be prevented. An alternative
method of preventing separation consists in supply-
ing additional energy to the particles of fluid which
are being retarted in the boundary layer. This result
can be achieved by discharging fluid from the interior
of the body with the aid of a special blower (Schlicht-
ing, 1968). In transpiration cooling, the walls of a
channel carrying a hot fluid are made of a porous
material through which fluid is injected to form a
protective layer of cooler fluid near the wall. In
separating U235 from U238 by gaseous diffusion, the
uranium is first converted to the gas UF6. The gas

is then forced through a porous wall by a pressure
gradient. The difference in the molecular weights
causes differences in the rates of diffusion through
the porous material. This results in a concentration
of the desired component (Skalak and Wang, 1978).
In addition to applications mentioned above, blow-
ing is used to add reactants, prevent corrosion and
reduce drag. Suction is applied to chemical processes
to remove reactants.

In view of its importance, the flow of New-
tonian and non-Newtonian fluids through porous
channels has been investigated by numerous au-
thors. The case of a two-dimensional, incompress-
ible, steady, laminar suction flow of a Newtonian
fluid in a parallel-walled porous channel was stud-
ied by Berman (1953). He solved the Navier-Stokes
equations by using a perturbation method for very
low cross-flow Reynolds numbers. After his pioneer-
ing work, this problem has been studied by many re-
searchers considering various variations in the prob-
lem, see, e.g., Cox (1991) and Choi et al. (1999) and
references cited in these articles.

Wang and Skalak (1974) were the first to present
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the solution for a three-dimensional problem of fluid
injection through one side of a long vertical channel
for Newtonian fluid. They obtained a series solu-
tion valid for small values of the cross-flow Reynolds
number and a numerical solution for both small and
large cross-flow Reynolds numbers. Huang (1978)
re-examined Wang and Skalak’s problem using a
method based upon quasilinearization. The same
flow problem was solved for large cross-flow Reynolds
numbers by Ascher (1980) using a spline-collocation
method. Sharma and Chaudhary (1982) reconsid-
ered the above-mentioned problem by introducing a
second order viscoelastic fluid. They obtained the
second order perturbation solution by assuming that
the cross-flow Reynolds number is small. However,
their results seem to be in error; their expression
for pressure does not satisfy the equations of mo-
tion. In a recent paper, Barış (2001) investigated
Wang and Skalak’s problem by replacing Newtonian
fluid by thermodynamically compatible fluid of sec-
ond grade. In his study, perturbation solutions of the
velocity field have been obtained by taking the elas-
tic number as the perturbation parameter. From a
technological point of view, flows of this type are al-
ways important, especially in transpiration cooling,
which is a very effective process to protect certain
structural elements in turbojet and rocket engines,
like combustion chamber walls, or gas turbine blades,
from the influence of hot gases (Singh, 1999).

A literature survey clearly indicates that little at-
tention has been paid to the three-dimensional flows
of non-Newtonian fluids in a vertical channel. In
view of the increasing importance of viscoelastic flu-
ids in engineering practice, such a problem involv-
ing the steady three-dimensional flow of an idealized
elastico-viscous fluid (more specifically such a fluid
is called a Walter’s B′ fluid) in a vertical channel is
investigated here. Our main purpose is to examine
qualitatively the effect of elasticity of the fluid on the
flow and heat transfer on the walls of the channel for
the problem under discussion.

Formulation of the Problem

There are numerous models of viscoelastic fluids sug-
gested in the literature. To get some insight into
their flow behaviour, it is preferable to restrict to a
model with a minimum number of parameters in the
constitutive equations. We have chosen the model
of Walter’s B′ fluid for our study as it involves only
one non-Newtonian parameter. The Cauchy stress

tensor T in such a fluid is related to the motion in
the following manner (Beard and Walters, 1964):

T = −pI + 2η0e− 2k0
δe
δt

(1)

In this equation, p is the pressure, I is the iden-
tity tensor, and the rate of strain tensor e is defined
by

2e = ∇v + (∇v)T (2)

where v is the velocity vector, ∇ is the gradient oper-
ator, and δ/δt denotes the convected differentiation
of a tensor quantity in relation to the material in
motion. The convected differentation of the rate of
strain tensor is given by

δe
δt

=
∂e
∂t

+ v · ∇e− e · ∇v − (∇v)T · e (3)

Finally η0 and k0 are, respectively, the limiting
viscosity at small rate of shear and the short memory
coefficient which are defined through

η0 =

∞∫
0

N(τ )dτ, k0 =

∞∫
0

τN(τ )dτ (4)

where N(τ ) is the distribution function with relax-
ation time τ . This idealized model is a valid approxi-
mation of Walter’s B′ fluid taking very short memory
into account so that terms involving

∞∫
0

τnN(τ )dτ, n > 2 (5)

have been neglected. For a detailed description of
this model the reader should consult Beard and Wal-
ters (1964).

Figure 1 shows the physical model and coordinate
system. A fluid is injected through a vertical porous
plate at y = d with uniform velocity U. The fluid
strikes another vertical impermeable plate at y = 0.
It flows out through the opening of the plates, due
to the action of gravity along the z-axis. We have
further assumed the distance between the walls, d,
is small compared to the dimensions of the plates,
i.e. L >> B >> d. Due to this assumption the edge
effects can be ignored and the isobars are parallel to
the z-axis.
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Figure 1. Sketch of flow geometry and coordinate system

In addition to Eq. (1), the basic equations of the
problem are the following:

Continuity equation:

∇ · v = 0, (6)

Equations of motion:

ρ(v · ∇v) = ∇ ·T + ρg, (7)

Energy equation:

ρcp(v · ∇T ) = k∆T, (8)

where ρ is the density, g the gravitational accelera-
tion vector, T the temperature, cp the specific heat
at constant pressure, k the thermal conductivity and
∆ the Laplacian operator. The assumptions made in
the above equations are as follows: (a) The flow is

steady and laminar; (b) The fluid is incompressible;
(c) The body force per unit mass is taken to be equal
to the gravitational acceleration; (d) All the physical
properties, e.g. viscosity, specific heat and thermal
conductivity of the fluid, remain invariable through-
out the fluid; (e) The heat flux vector can be rep-
resented by Fourier’s law; (f) The effects of radiant
heating and viscous dissipation are negligible.

Substituting Cauchy stress tensor from Eq. (1)
into equations of motion (7), with the aid of Eqs. (2)
and (3), we get

ρ(v · ∇v) = −∇p+ ρg + η0∇2v

−2k0v · ∇∇2v + k0∇2(v · ∇v)
(9)

The velocity components corresponding to the x,
y and z directions are respectively denoted by u, v
and w. Following Wang and Skalak (1974), we look
for a solution, compatible with the continuity equa-
tion (6), of the form

u =
U

d
xf ′(η), v = −Uf(η), w =

d2gρ

η0
h(η), (10)

where η = y/d and the prime denotes the differenti-
ation with respect to η.

The boundary conditions for the velocity field are

η = 0 : f(0) = 0, f ′(0) = 0, h(0) = 0,

η = 1 : f(1) = 1, f ′(1) = 0, h(1) = 0.
(11)

It follows from Eq.(10) and the equation of mo-
tion (9) that

∂p

∂x
=

Ux

d2

(
−Uρf ′2 + Uρff ′′ +

Uk0

d2
f ′′2 +

η0

d
f ′′′

−2Uk0

d2
f ′f ′′′ +

Uk0

d2
ffIV

)
,

(12)

∂p

∂η
= −U2ρff ′ − Uη0

d
f ′′ +

3U2k0

d2
f ′f ′′ − U2k0

d2
ff ′′′,

(13)

h′′ +Refh′ + ReS(fh′′′ − f ′′h′ − 2f ′h′′) + 1 = 0,
(14)
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where the cross-flow Reynolds number, Re, and the
elastic number, S, are defined through, respectively

Re =
Udρ

η0
, S =

k0

ρd2
. (15)

Integrating Eq. (13) with respect to η, we get

p(x, η) = −1
2
ρU2f2 − Uη0

d
f ′ + 2U2k0

d2 f ′2

−U
2k0

d2
ff ′′ + φ(x),

(16)

where φ(x) is an arbitrary function of x. Differenti-
ation of the above equation with respect to x yields

∂p

∂x
=
dφ

dx
. (17)

Combining Eqs. (12) and (17), we obtain

dφ

dx
=

Uxη0

d3

{
f ′′′ + Re(ff ′′ − f ′2)

+ReS(ffIV + f ′′2 − 2f ′f ′′′)
}
.

(18)

It is apparent that the quantity in parentheses in
Eq. (18) must be independent of η. Hence, we have
the following equation for f:

f ′′′+ Re(ff ′′ − f ′2) + ReS(ffIV + f ′′2 − 2f ′f ′′′)= C,
(19)

where C is an arbitrary constant which takes the
value

C = f ′′′(0) + ReSf ′′2(0). (20)

Now we differentiate Eq. (19) with respect to η
to eliminate the constant C. This gives

fIV +Re(ff ′′′ − f ′f ′′) +ReS(ffV − f ′fIV ) = 0.
(21)

By using Eq. (19), φ(x) can now be written as

φ(x) =
Uη0C

2d3
x2 + p0, (22)

where p0 is the constant of integration.

Inserting φ(x) from Eq. (22) into Eq. (16) , we
have

p(x, η) = −1
2
ρU2f2 − Uη0

d
f ′ +

2U2k0

d2
f ′2

−U
2k0

d2
ff ′′ +

Uη0C

2d3
x2 + p0.

(23)

If one can solve Eq. (21) under the related bound-
ary conditions, Eq. (23) gives the pressure at any
point.

From Eq. (23), the pressure variations in the x
and y directions can be written in non-dimensional
form as follows:

Px =
p(0, η)− p(x, η)

ρU2
= −{f

′′′(0) +ReSf ′′2(0)}
2Re

(x
d

)2

,

(24)

Py =
p(x, 0)− p(x, η)

ρU2
=
f2

2
+
f ′

Re
+ S(ff ′′ − 2f ′2)

(25)

It is also interesting to determine the effect of
the elastic parameter S on the shear stresses on the
walls of the channel. From Eqs. (1)-(3) and (10), we
obtain

τxy(0) =
Txy(0)d2

η0Ux
= f ′′(0), τxy(1) =

Txy(1)d2

η0Ux

= f ′′(1) + ReSf ′′′(1),
(26)

τzy(0) =
Tzy(0)
ρgd

= h′(0), τzy(1) =
Tzy(1)
ρgd

= h′(1) + ReSh′′(1)
(27)

The terms in Eqs. (14) and (21) having Re S
factor represent the non-Newtonian character of the
fluid. It is noticed that the presence of elasticity
in the fluid yields third- and fifth-order differential
equations, whereas in the Newtonian case (S = 0)
the orders of Eqs. (14) and (21) are two and four, re-
spectively. It would thus appear that the additional
boundary conditions must be imposed to obtain a so-
lution. In order to overcome this diffuculty, we seek
a solution of Eqs. (14) and (21) of the form
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f = f0 + Sf1 + O(S2), (28)

h = h0 + Sh1 +O(S2), (29)

valid for sufficiently small S. Inserting Eqs. (28) and
(29) into Eqs. (14) and (21), and equating the corre-
sponding coefficient of S up to first order, the follow-
ing set of ordinary differential equations is obtained

fIV0 + Re(f0f
′′′
0 − f ′0f ′′0 ) = 0, (30)

fIV1 +(Ref0)f ′′′1 − (Ref ′0)f ′′1 − (Ref ′′0 )f ′1

+(Ref ′′′0 )f1 = Re(f ′0fIV0 − f0f
V
0 ),

(31)

h′′0 + (Ref0)h′0 = −1, (32)

h′′1 + (Ref0)h′1 = Re(f ′′0 h
′
0 + 2f ′0h

′′
0 − f0h

′′′
0 − f1h

′
0),

(33)

In a similar manner, the higher order terms can
be obtained, but the calculations will become compli-
cated. Moreover, the solutions considered are valid
for small values of S. Therefore, we retain up to first
order terms. From Eqs. (11), (28) and (29) it follows
that the boundary conditions for Eqs. (30)-(33) are

f0(0) = 0, f ′0(0) = 0, f0(1) = 1, f ′0(1) = 0, (34)

f1(0) = 0, f ′1(0) = 0, f1(1) = 0, f ′1(1) = 0, (35)

h0(0) = 0, h0(1) = 0, (36)

h1(0) = 0, h1(1) = 0, (37)

It is recorded that for Newtonian fluid (S = 0)
Eqs. (30) and (32) together with the associated
boundary conditions (34) and (36) are the same as

those obtained by Wang and Skalak (1974). In ad-
dition, Eq. (30) with different boundary conditions
represents the two-dimensional flow of a Newtonian
fluid in a channel with porous walls (White et al.,
1958; Terrill and Shrestha, 1965).

The integration of Eqs. (30)-(33) subject to the
related boundary conditions (34)-(37) has been per-
formed numerically.

Next, we introduce a temperature field of the
form

T = T0 + (T1 − T0)θ(η), (38)

where T0 and T1 are temperatures (constant in value)
of the impermeable and porous plates, respectively.
Substituting Eqs. (10) and (38) into Eq. (8) leads
to the ordinary differential equation

θ′′ + Pefθ′ = 0, (39)

where Pe = ρUdcp/k is the Peclet number. Equa-
tion (39) is to be solved subject to the boundary
conditions

θ(0) = 0, θ(1) = 1. (40)

In order to solve Eq. (39), f0 and f1 functions
are first determined from Eqs. (30) and (31) and it
can be then solved numerically.

Numerical Results and Discussion

Several numerical methods can be used to solve the
above differential equations. One convenient and ac-
curate method, which we will use here, is the so-
called shooting method. Firstly, these equations, to-
gether with the associated boundary conditions, are
reduced to first-order differential equations. Later,
for given values of the parameters, the unknown ini-
tial conditions at the initial point (η = 0) are roughly
estimated and the differential equation is processed
by using the fourth-order Runge-Kutta procedure
from η = 0 to η = 1, as though we had an initial
value problem. The mathematical problem is to find
the correct values of the unknown initial conditions
which yield the known values of the functions under
consideration at the terminal point (η = 1). Since
for Re = 0 the analytical solution provides exact ini-
tial values for these functions, successive numerical
solutions can be generated as Re is increased. The
accuracy of the assumed missing initial conditions
are checked by comparing the calculated values of
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the above-mentioned functions at the terminal point
with their given values there. If a difference exists,
the computations with new and improved initial val-
ues are repeated. This process is continued until the
agreement between the calculated and known values
at the terminal point is within the specified degree of
accuracy. The systematic way used here for finding
values of the missing initial conditions is equivalent
to a modified Newton’s method for finding the roots
of equations in several variables. The accuracy of
missing initial conditions which yield the known val-
ues at the terminal point is at least 10−6. The results
are summarized in Table 1.

Since our perturbation analysis is valid only for
small values of elastic number S, the variation of S is
limited to the range from 0.0 to 0.025. In addition,
the numerical solutions obtained for the problem un-
der consideration point to the conclusion that the
perturbation solutions, even though obtained with-
out making any assumption on the size of the cross-
flow Reynolds number Re, give acceptable results
only when Re 6 20. For S > 0.025 and Re > 20,
since the effects of successive terms in the perturba-
tion expansion are more significant, i.e. |Sf1 | > |f0|
and |Sh1| > |h0|, the perturbation solutions fail to
give satisfactory results, that is, the solutions cannot
be trusted to be meaningful.
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Figure 2. Normal velocity profiles for Re = 10

In Figures 2 to 7, the functions which correspond
to the velocity components are plotted versus η for
two different values of the cross-flow Reynolds num-
ber Re, with the elastic number S as a parameter.
For low values of the cross-flow Reynolds number,

e.g. Re = 1, the velocity profiles in the viscoelas-
tic fluid case, are indistinguishable from those in the
Newtonian fluid case and so they are not presented.
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Figure 3. Normal velocity profiles for Re = 20
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Figure 4. Tangential velocity profiles for Re = 10

Figures 2 and 3 depict the normal velocity com-
ponent for various values of the elastic number keep-
ing Re fixed at 10 and 20, respectively. It is clear
from these figures that the elastic elements of the
fluid increase the normal velocity at any point. The
tangential velocity profiles are presented in Figures
4 and 5 for the same values of cross-flow Reynolds
number and the elastic number. It is interesting to
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Table 1. Missing initial conditions

Re f′′0 (0) f′′′0 (0) f′′1 (0) f′′′1 (0) h′0 (0) h′1(0)
1 6.454264 -14.365855 0.519324 - 2.540334 0.490902 0.565135

10 10.036772 -38.102419 78.281028 -525.642416 0.393128 4.747072

20 13.003869 -65.348653 273.285181 -2360.004261 0.326508 6.576279

η
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0 0.2 0.4 0.6 0.8 1
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0.4
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Figure 5. Tangential velocity profiles for Re = 20
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Figure 6. Axial velocity profiles for Re = 10

note that the tangential velocity increases with an in-
crease in the elastic number S, up to approximately
η = 0.4, and thereafter decreases with increasing S.
Again from these figures we observe that with an in-
crease in the value of the cross-flow Reynolds num-

ber, the point at which maximum velocity occurs
moves away from the porous plate. Moreover, the
elastic elements of the fluid make this point closer to
the impermeable wall. On comparing Figure 2 with
Figure 3, or Figure 4 with Figure 5, we arrive at the
conclusion that the flow behaviour remains the same,
but the difference in magnitudes of Newtonian and
viscoelastic velocity profiles goes on increasing.

η
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Figure 7. Axial velocity profiles for Re = 20

The axial component of velocity is due to the ac-
tion of gravity along the z-axis. This velocity com-
ponent is shown in Figures 6 and 7. It is obvious
from these figures that the velocity profiles decrease
with the increase in the cross-flow Reynolds num-
ber. On the other hand, the elasticity of the fluid,
i.e. S, affects the axial velocity profiles in different
ways, depending on the chosen values of the cross-
flow Reynolds number. For instance, when Re = 10,
we notice that the axial velocity for a viscoelastic
fluid is more than that for a Newtonian fluid. How-
ever, when Re = 20, the curves of the axial compo-
nent of velocity for different values of elastic number
intersect at a common point, say at about η = 0.5.
Up to this point, elastic elements of the fluid increase
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the axial velocity. But an opposite effect is observed
beyond this point, that is, the axial velocity slightly
decreases with an increase in the elasticity of the
fluid.
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Figure 8. Pressure variation in the x direction for
Re = 10

Figures 8 and 9 represent the pressure variations
in the x and y directions, respectively. An examina-
tion of these figures shows that the elasticity of the
fluid decreases the pressure variations in both direc-
tions. In Table 2, the shear stresses on the walls
of the channel are listed for various combinations of
cross-flow Reynolds number and elastic number. We
observe from this table that the main effect of elas-
tic number on the shear stresses in the x and z di-
rections on the impermeable wall is to increase their
values, whereas it is to decrease those on the porous
plate. Furthermore, it is evident that as the cross-

flow Reynolds number increases, the change in shear
stresses on the walls is much more noticeable.

Py
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Figure 9. Pressure variation in the y direction for
Re = 10

In order to investigate the effect of the elasticity
of the fluid on the heat transfer on walls, we have pre-
sented the values of θ′(0) and θ′(1) in Table 3 for dif-
ferent values of cross-flow Reynolds number, Peclet
number, and elastic number. For high Peclet num-
bers, the heat transfer on the impermeable plate at
η = 0 is considerably higher than that on the porous
plate at η = 1 in both cases, i.e. Newtonian and
non-Newtonian fluid. Again from Table 3, we notice
that with an increase in the elastic number, the heat
transfer increases for the impermeable plate, whereas
it decreases for the porous plate. This change in heat
transfer on the walls is more pronounced for the case
of large cross-flow Reynolds number and Peclet num-
ber.

Table 2. Shear stresses on walls

Re τxy(0) τzy(0) τxy(1) τzy(1) S
10 10.036772 0.393128 -3.684423 -0.103703 0

10.976144 0.450093 -3.567867 -0.089773 0.012
11.993797 0.511805 -3.397018 -0.068475 0.025

20 13.003869 0.326508 -3.241770 -0.050438 0
16.283291 0.405424 -2.989399 -0.045924 0.012
19.835998 0.490915 -2.683713 -0.045746 0.025
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Table 3. Heat transfer on walls

Pe = 1 Pe = 8 Pe = 15
Re θ′(0) θ′(1) θ′(0) θ′(1) θ′(0) θ′(1) S
1 1.153104 0.693849 2.025087 0.034803 2.571836 0.001262 0

1.153159 0.693810 2.025475 0.034781 2.572416 0.001261 0.012
1.153219 0.693768 2.025895 0.034756 2.573044 0.001259 0.025

10 1.177354 0.677910 2.198961 0.026567 2.834805 0.000719 0
1.183094 0.674514 2.240930 0.025015 2.898132 0.000633 0.012
1.189325 0.670843 2.286138 0.023424 2.965693 0.000552 0.025

20 1.189583 0.671447 2.294248 0.023636 2.984769 0.000561 0
1.203184 0.664659 2.400935 0.020822 3.150682 0.000429 0.012
1.218006 0.657335 2.515618 0.018103 3.325191 0.000319 0.025

Conclusions

The present paper is concerned with the steady
three-dimensional flow of a Walter’s B′ fluid between
two parallel vertical walls. By means of similar-
ity transformations, the governing equations are re-
duced to set of ordinary differential equations. Nu-
merical calculations have been carried out for various
values given to the non-dimensional parameters Re,
S and Pe and qualitatively significant contribution of
the elastic parameter S to the velocity components,
pressure variations in the x and y directions, shear
stresses and heat transfer on the walls of the channel
have been pointed out. From the present investiga-
tions, we may conclude the following:

1. Elasticity of the fluid increases the normal ve-
locity at any point and the cross-flow Reynolds
number increases it further.

2. Tangential velocity increases with an increase
in the elastic number S, up to approximately
η = 0.4, and thereafter decreases with increas-
ing S.

3. Elastic elements in the viscous fluid affect the
axial velocity component in different ways, de-
pending on the values given to the cross-flow
Reynolds number.

4. Pressure variations in the x and y directions
decrease with an increase in the value of elas-
tic number.

5. For a Newtonian fluid, the shear stresses on the
impermeable wall are less than corresponding
shear stresses for a viscoelastic fluid. The re-
verse is true for the porous wall.

6. Presence of viscoelasticity leads to an increase
in heat tranfer on the impermeable wall, but a
decrease in heat transfer on the porous wall.

7. For a high Peclet number, heat tranfer on the
impermeable wall is considerably higher than
that on the porous wall.

8. The above-mentioned changes in tangential ve-
locity, shear stresses and heat transfer are
much more noticable for the case of a large
cross-flow Reynolds number.
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Nomenclature

cp specific heat at constant pressure,
L2T−2ϑ−1

e rate of strain tensor, T−1

g gravitational acceleration vector,
LT−2

I identity tensor, dimensionless
k thermal conductivity, MLT−3ϑ−1

k0 short memory coefficient, ML−1

L, B, d dimensions of the channel, L
Pe Peclet number, dimensionless
p pressure, ML−1T−2

Px, Py pressure variations in the x and y
directions, dimensionless

Re cross-flow Reynolds number, dimen-
sionless

S elastic number, dimensionless
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T temperature, ϑ
T Cauchy stress tensor, ML−1T−2

T0, T1 temperatures of the walls, ϑ
t time, T
U uniform injection velocity, LT−1

u, v, w components of the velocity vector,
LT−1

v velocity vector, LT−1

η0 limiting viscosity at small rate of
shear, ML−1T−1

ρ density, ML−3

τ relaxation time, T
τxy, τzy shear stresses on walls, dimension-

less
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