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Abstract

Steady three-dimensional flow of a Walter’s B’ viscoelastic fluid between a porous elliptic plate and the
ground was considered. From a practical point of view, this problem corresponds to fluid-cushioned porous
sliders, which are useful in reducing the frictional resistance of moving objects. The basic equations governing
the flow were reduced to a set of ordinary differential equations by using the appropriate transformations
for the velocity components. Perturbation solutions of the velocity field were obtained by taking the cross-
flow Reynolds number as the perturbation parameter. The graphical presentation of the results readily
reveals the differences between the Newtonian and viscoelastic flow phenomena. In addition, with regard to
optimum efficiency, it is shown that it is more advantageous to move an elliptic plate with high eccentricity
along the major axis when a viscoelastic fluid is used.
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Introduction

Within the past fifty years, there has been remark-
able interest in the flow of Newtonian and non-
Newtonian fluids through channels with porous walls
owing to their applications in various branches of
engineering and technology. Familiar examples are
boundary layer control, transpiration cooling and
gaseous diffusion. In addition, blowing is used to
add reactants, prevent corrosion and reduce drag.
Suction is applied to chemical processes to remove
reactants. Much work has been done in order to
understand the effects of fluid removal or injection
through channel walls on the flow of Newtonian and
non-Newtonian fluids. Berman (1953) made an ini-
tial effort in this direction. His investigations pro-
vided a technique for solving the classical viscous
flow equations. Further contributions have been
made since then by Sellars (1955), Yuan (1956),
White et al. (1958), Proudman (1960), Terrill and
Shrestha (1965), Skalak and Wang (1978), Brady

(1984), Zaturska et al. (1988), and many others.
We refer the reader to the studies by Cox (1991)
and Choi et al. (1999), and references cited in the
above-mentioned articles regarding detailed analysis
of various results on this subject.

In this paper, we shall discuss the flow of a Wal-
ter’s B’ viscoelastic fluid between a porous elliptic
plate and the ground. From a technological point of
view, flows of this type correspond to porous slid-
ers, which are becoming increasingly important due
to their attractive performance and their application
in fluid-cushioned moving pads. It is a well-known
fact that fluid-cushioned porous sliders are useful in
reducing the frictional resistance between two solid
surfaces moving relative to each other. For New-
tonian fluids, previous studies include the porous
circular slider (Wang, 1974), the porous flat slider
(Skalak and Wang, 1975), and the porous elliptic
slider (Wang, 1978; Watson et al., 1978). Later, for
a second-order viscoelastic fluid, the fluid dynamics
of a porous flat slider was studied by Bhatt (1981)
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obtaining the first-order perturbation solution for
the case of a very low cross-flow Reynolds number.
However, Bhatt’s results seem to be in error, as also
pointed out by Ariel (1993). Recently, Ariel (1993)
has extended Skalak and Wang’s analysis (1975) to a
Walter’s B’ viscoelastic fluid, which is characterized
by two material constants. In his study, the per-
turbation and exact numerical solutions have been
obtained.

While a great deal of work has been done on the
flow between porous plates, it appears that very lit-
tle attention has been paid to the three-dimensional
flow cases where the fluids exhibit a non-Newtonian
character. Therefore, the present paper aims to solve
such a problem involving the porous elliptic slider by
introducing a Walter’s B’ viscoelastic fluid and to
assess qualitatively the effect of the elasticity of the
fluid on the components of velocity, the axial pres-
sure drop, lift and drag. The perturbation solutions
in this paper include those given by Ariel (1993) as
a special case, since our current results reduce to the
flat case when the square of the ratio of the minor
axis to the major axis (β) is equal to 0.

Constitutive equations

The inadequacy of the theory of Newtonian fluids
in predicting the behaviour of some fluids, especially
those with high molecular weight, leads to develop-
ments in non-Newtonian fluid mechanics. There are
numerous models of viscoelastic fluids suggested in
the literature. To get some insight into their flow be-
haviour, it is preferable to restrict oneself to a model
with a minimum number of parameters in the con-
stitutive equations. We chose the model of Walter’s
B’ viscoelastic fluid for our study as it involves only
one non-Newtonian parameter. The Cauchy stress
tensor T in such a fluid is related to the motion in
the following manner:

T = −pI + 2η0e− 2k0
δe
δt

(1)

In this equation, p is the pressure, I is the iden-
tity tensor, and the rate of strain tensor e is defined
by

2e = ∇v + (∇v)T {(∇v)ij =
∂vj
∂xi
}, (2)

where v is the velocity vector, ∇ is the gradient oper-
ator, and δ/δt denotes the convected differentiation

of a tensor quantity in relation to the material in
motion. The convected differentiation of the rate of
strain tensor is given by

δe
δt

=
∂e
∂t

+ v · ∇e− e · ∇v − (∇v)T · e (3)

Finally η0 and k0 are, respectively, the limiting
viscosity at a small rate of shear and the short mem-
ory coefficient which are defined through

η0 =

∞∫
0

N(τ )dτ, k0 =

∞∫
0

τN(τ )dτ, (4)

where N(τ ) is the distribution function with relax-
ation time τ . This idealized model is a valid approx-
imation of Walter’s B’ viscoelastic fluid taking very
short memory into account so that terms involving

∞∫
0

τnN(τ )dτ, n > 2 (5)

have been neglected. For a detailed description of
this model the reader should consult Beard and Wal-
ters (1964).

Formulation of the problem

Figure 1 shows the physical model and coordinate
system. A fluid is injected through an elliptic plate,
the boundary of which is described by x2 + βy2 =
D2(β < 1), z = d, where β is the square of the ratio
of the minor axis to the major axis. As in Wang’s
study (1978), the supply pressure is assumed to be
large enough to cause a nearly constant injection ve-
locity U3 through the elliptic plate. The porous ellip-
tic plate is moving laterally at velocities U1 and U2

along the negative x and y directions, respectively.
We have further assumed the gap width d between
the elliptic plate and the ground is small compared
with D, i.e. D >> d. Due to this assumption the
edge effects can be ignored.
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Figure 1. Sketch of flow geometry and coordinate system

In addition to Eq. (1), the basic equations of the
problem are the following:

Continuity equation:

∇ · v = 0, (6)

Equations of motion:

ρ(v · ∇v) = ∇ ·T, (7)

where ρ is the density. The assumptions made in
the above equations are as follows: (a) The flow is
steady and laminar; (b) The fluid is incompressible;
(c) The body forces are negligible.

Substituting the Cauchy stress tensor from Eq.
(1) into equations of motion (7), with the aid of Eqs.
(2) and (3), we get

ρ(v · ∇v) = −∇p+ η0∇2v − 2k0v · ∇∇2v

+k0∇2(v · ∇v).
(8)

In a reference frame translating with the porous
elliptic plate, let u, v, and w be the velocity compo-
nents corresponding to the x, y and z directions, re-
spectively. Following Wang (1978), we look for a so-
lution, compatible with the continuity equation (6),
of the form

u = U1f(η) +
U3x

d
h′(η), v = U2g(η) +

U3y

d
k′(η),

w = −U3{h(η) + k(η)},
(9)

where η = z/d and the prime denotes the differenti-
ation with respect to η.

The boundary conditions for the velocity field are

u(0) = U1, v(0) = U2, w(0) = 0, u(1) = 0,

v(1) = 0, w(1) = −U3

(10)

By using equations of motion (8) and similarity
transformation (9) it can be shown that the general
expression for the pressure distribution is

p(x, y, η) = C1y +C3x+ C2
y2

2 + C4
x2

2 −
1
2ρw

2

+η0
dw
dz

+ 2k0(dw
dz

)2 − k0w
d2w
dz2 + p0,

(11)

where the constants C1, C2, C3 and C4 are

C1 = η0U2
d2 (g′′ +R{(h+ k)g′ − k′g}

+RN{(h+ k)g′′′ − (k′ + 2h′)g′′

+(k′′ − h′′)g′ − k′′′g}),

(12)

C2 = η0U3
d3 (k′′′ +R{(h+ k)k′′ − k′2}

+RN{(h+ k)kIV − 2(h′ + k′)k′′′

−h′′k′′ + k′′2}),

(13)

C3 = η0U1
d2 (f ′′ +R{(h+ k)f ′ − h′f}

+RN{(h+ k)f ′′′ − (h′ + 2k′)f ′′

+(h′′ − k′′)f ′ − h′′′f}),

(14)

C4 = η0U3
d3 (h′′′ +R{(h+ k)h′′ − h′2}

+RN{(h+ k)hIV − 2(h′ + k′)h′′′

−k′′h′′ + h′′2}),

(15)
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and p0 is the constant of integration. In the above
equations, the cross-flow Reynolds number R and di-
mensionless measure of viscoelasticity of the fluid N
are defined through, respectively

R =
ρU3d

η0
, N =

k0

ρd2
. (16)

In view of the fact that the shape of the porous
plate makes the isobars similar ellipses, the constants
C1, ..., C4 must satisfy the following equations:

C1 = 0, C3 = 0, C2 = βC4 (17)

Substituting Eq. (17) into Eqs. (11) – (15), we
obtain

p(x, y, η) =
ρU2

3A

2d2R
(x2 + βy2)− 1

2
ρw2 + η0

dw

dz
+ 2k0(

dw

dz
)2 − k0w

d2w

dz2
+ p0, (18)

h′′′ + R{(h+ k)h′′ − h′2}+ RN{(h+ k)hIV − 2(h′ + k′)h′′′ − k′′h′′ + h′′2} = A, (19)

k′′′ +R{(h+ k)k′′ − k′2}+RN{(h+ k)kIV − 2(h′ + k′)k′′′ − h′′k′′ + k′′2} = βA, (20)

f ′′ + R{(h+ k)f ′ − h′f} +RN{(h+ k)f ′′′ − (h′ + 2k′)f ′′ + (h′′ − k′′)f ′ − h′′′f} = 0, (21)

g′′ + R{(h+ k)g′ − k′g} +RN{(h+ k)g′′′ − (k′ + 2h′)g′′ + (k′′ − h′′)g′ − k′′′g} = 0, (22)

The boundary conditions on velocity given by Eq. (10) require

h(0) = h′(0) = h′(1) = 0, k(0) = k′(0) = k′(1) = 0, h(1) + k(1) = 1,

f(0) = 1, f(1) = 0, g(0) = 1, g(1) = 0. (23)

It is recorded that for Newtonian fluid (N = 0)
Eqs. (18) – (23) are the same as those obtained by
Wang (1978).

Perturbation solution for small R

Equations (19) – (22) are a set of ordinary coupled
nonlinear differential equations, the order of which
exceeds the number of boundary conditions, and
which are very difficult to integrate numerically, so
we use a perturbation method to obtain an approx-
imate solution for the velocity components. Here it
is assumed that the cross-flow Reynolds number is
very small; then h(η), k(η), f(η), g(η) and A can be
expanded in terms of the small parameter R:

h = h0 + Rh1 + R2h2 + ...,

k = k0 +Rk1 +R2k2 + ...,

f = f0 + Rf1 +R2f2 + ...,

g = g0 + Rg1 + R2g2 + ...,

A = A0 +RA1 +R2A2 + ..., (24)

where h′ns, k′ns, f ′ns, g′ns and A are independent of R.
Inserting Eqs. (24) into Eqs. (19) – (22) and equat-
ing the coefficients of different powers of R to zero,
we get the system of differential equations
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h′′′0 = A0, k
′′′
0 = βA0, f

′′
0 = 0, g′′0 = 0, (25)

h′′′1 + (h0 + k0)h′′0 − h′20 + N{(h0 + k0)hIV0 − 2(h′0 + k′0)h′′′0 − k′′0h′′0 + h′′20 } = A1, (26)

k′′′1 + (h0 + k0)k′′0 − k′20 + N{(h0 + k0)kIV0 − 2(h′0 + k′0)k′′′0 − h′′0k′′0 + k′′20 } = βA1 , (27)

f ′′1 + (h0 + k0)f ′0 − h′0f0 + N{(h0 + k0)f ′′′0 − (h′0 + 2k′0)f ′′0 + (h′′0 − k′′0 )f ′0 − h′′′0 f0} = 0, (28)

g′′1 + (h0 + k0)g′0 − k′0g0 + N{(h0 + k0)g′′′0 − (k′0 + 2h′0)g′′0 + (k′′0 − h′′0)g′0 − k′′′0 g0} = 0, (29)

h′′′2 + (h1 + k1)h′′0 + (h0 + k0)h′′1 − 2h′0h
′
1 +N{(h1 + k1)hIV0 + (h0 + k0)hIV1

−2(h′1 + k′1)h′′′0 − 2(h′0 + k′0)h′′′1 + (2h′′1 − k′′1 )h′′0 − k′′0h′′1} = A2, (30)

k′′′2 + (h1 + k1)k′′0 + (h0 + k0)k′′1 − 2k′0k
′
1 + N{(h1 + k1)kIV0 + (h0 + k0)kIV1

−2(h′1 + k′1)k′′′0 − 2(h′0 + k′0)k′′′1 + (2k′′1 − h′′1)k′′0 − h′′0k′′1} = βA2, (31)

f ′′2 + (h1 + k1)f ′0 + (h0 + k0)f ′1 − h′1f0 − h′0f1 + N{(h1 + k1)f ′′′0 + (h0 + k0)f ′′′1

−(h′1 + 2k′1)f ′′0 − (h′0 + 2k′0)f ′′1 + (h′′1 − k′′1 )f ′0 + (h′′0 − k′′0 )f ′1 − h′′′1 f0 − h′′′0 f1} = 0, (32)

g′′2 + (h1 + k1)g′0 + (h0 + k0)g′1 − k′1g0 − k′0g1 +N{(h1 + k1)g′′′0 + (h0 + k0)g′′′1

−(k′1 + 2h′1)g′′0 − (k′0 + 2h′0)g′′1 + (k′′1 − h′′1)g′0 + (k′′0 − h′′0)g′1 − k′′′1 g0 − k′′′0 g1} = 0, (33)

The boundary conditions (23) are re-written as follows:

hn(0) = 0, h′n(0) = 0, h′n(1) = 0, kn(0) = 0, k′n(0) = 0, k′n(1) = 0,

h0(1) + k0(1) = 1, hm(1) + km(1) = 0, f0(0) = 1, fn(1) = 0, fm(0) = 0,

g0(0) = 1, gn(1) = 0, gm(0) = 0, (n = 0, 1, 2;m= 1, 2) (34)

Integrating Eqs. (25) – (33) with the boundary conditions (34), we have
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Zeroth-order solution:

h0 =
3η2 − 2η3

1 + β
, k0 =

β(3η2 − 2η3)
1 + β

, f0 = 1− η, g0 = 1− η, (35)

First-order solution:

h1 =
16 + (84N − 1)β + (37− 420N)β2

70(1 + β)3
η2 +

−27 + (504N − 18)β + (840N − 27)β2

70(1 + β)3
η3

− 12Nβ
(1 + β)2

η4 +
3(1− β + 16N)

10(1 + β)2
η5 +

2β − 1
5(1 + β)2

η6 +
2(1− 2β)
35(1 + β)2

η7, (36)

k1 =
(37− 420N)β + (84N − 1)β2 + 16β3

70(1 + β)3
η2 +

(840N − 27)β + (504N − 18)β2 − 27β3

70(1 + β)3
η3

− 12Nβ
(1 + β)2

η4 +
3β(β − 1 + 16N)

10(1 + β)2
η5 +

β(2 − β)
5(1 + β)2

η6 +
2β(β − 2)
35(1 + β)2

η7, (37)

f1 =
(20N − 3)(3 + β)

20(1 + β)
η − 3Nη2 +

1 + 2Nβ
1 + β

η3 +
β − 3

4(1 + β)
η4 +

2− β
10(1 + β)

η5, (38)

g1 =
(20N − 3)(1 + 3β)

20(1 + β)
η − 3Nη2 +

2N + β

1 + β
η3 +

1− 3β
4(1 + β)

η4 +
2β − 1

10(1 + β)
η5, (39)

Second-order solution:

h(η) =
11∑
m=2

amη
m, k(η) =

11∑
m=2

bmη
m, f(η) =

9∑
m=1

cmη
m, g(η) =

9∑
m=1

dmη
m, (40)

where

a2 = − 1
646800(1 + β)5

{761 + 4426β − 149640β2 + 103910β3 + 607β4 + 22176N2β(365 + 597β

+1275β2 + 35β3)− 1848N(75− 364β − 1846β2 + 1300β3 + 115β4)}, (41)

a3 =
1

323400(1 + β)5
{−2929 + 7584β − 64510β2 + 7584β3 − 2929β4 − 22176N2β(−75 − 479β

−565β2 + 175β3) + 616N(−180 + 1121β+ 3229β2 + 431β3 + 1095β4)}, (42)
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a4 =
Nβ

70(1 + β)4
{−289− 104β − 247β2 + 168N(15 + 16β + 25β2)}, (43)

a5 =
1

700(1 + β)4
{32 + (−55 + 1884N − 40320N2)β − 4(−19 + 36N + 21168N2)β2

+(−53 + 1716N − 60480N2)β3}, (44)

a6 =
1

2100(1 + β)4
{−113 + 237β − 51β2 + 247β3 + 40320N2β(2 + 5β + 3β2)

−42N(−15− 17β − β2 + 145β3)}, (45)

a7 = − 3
1225(1 + β)4

{2240N2β(2 + 5β + 3β2) + 3(−3 + 4β + β2 + 6β3)

−14N(−5− 12β + 89β2 + 120β3)}, (46)

a8 =
−3{1 + 8(1 + 4N)β + (512N − 9)β2}

560(1 + β)3
, a9 =

1 + (7 + 8N)β + (128N − 18)β2

210(1 + β)3
, (47)

a10 = −2(1 + 3β − 13β2)
525(1 + β)3

, a11 =
4(1 + 3β − 13β2)

5775(1 + β)3
, (48)

b2 =
β

646800(1 + β)5
{−607− 103910β+ 149640β2 − 4426β3 − 761β4 − 22176N2(35 + 1275β

+597β2 + 365β3) + 1848N(115 + 1300β− 1846β2 − 364β3 + 75β4)}, (49)

b3 =
β

323400(1 + β)5
{−2929 + 7584β− 64510β2 + 7584β3 − 2929β4 + 22176N2(−175 + 565β

+479β2 + 75β3)− 616N(−1095− 431β − 3229β2 − 1121β3 + 180β4)}, (50)

b4 =
Nβ

70(1 + β)4
{−247− 104β − 289β2 + 168N(25 + 16β + 15β2)}, (51)
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b5 =
β

700(1 + β)4
{−53 + 76β − 55β2 + 32β3 − 4032N2(15 + 21β + 10β2)

+12N(143− 12β + 157β2)}, (52)

b6 =
β

2100(1 + β)4
{247− 51β + 237β2 − 113β3 + 40320N2(3 + 5β + 2β2)

+42N(−145 + β + 17β2 + 15β3)}, (53)

b7 = − 3β
1225(1 + β)4

{2240N2(3 + 5β + 2β2) + 3(6 + β + 4β2 − 3β3)

+14N(−120− 89β + 12β2 + 5β3)}, (54)

b8 =
−3β{−9 + 8β + β2 + 32N(16 + β)}

560(1 + β)3
, b9 =

β{−18 + 7β + β2 + 8N(16 + β)}
210(1 + β)3

, (55)

b10 = −2β(−13 + 3β + β2)
525(1 + β)3

, b11 =
4β(−13 + 3β + β2)

5775(1 + β)3
, (56)

c1 =
1

6300(1 + β)3
{320 + 667β − 163β2 − 24β3 − 18N(515 + 983β + 41β2 + 5β3)

+1260N2(45 + 63β + 7β2 + 13β3)}, (57)

c2 =
N{59− 180β − 95β2 + 84N(−15 + 58β + 5β2)}

140(1 + β)2
, (58)

c3 =
16 + (354N − 1− 17640N2)β + (37− 114N − 20832N2)β2 − 24N(175N − 6)β3

210(1 + β)3
, (59)

c4 = − 1
1680(1 + β)3

{383 + 95β + 49β2 − 95β3 + 84N(−45− 149β − 147β2 + 5β3)

−20160N2β(5 + 7β + 2β2)}, (60)
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c5 =
1

700(1 + β)3
{90 + 57β − 3β2 − 24β3 + 14N(−75− 421β − 287β2 + 95β3)

−3360N2β(3 + 5β + 2β2)}, (61)

c6 =
−1− 7β + 2N(3 + 34β − 23β2)

20(1 + β)2
, c7 =

7 + (56− 104N)β + (−9 + 92N)β2

140(1 + β)2
, (62)

c8 =
−19− 100β + 33β2

560(1 + β)2
, c9 =

16 + 76β − 33β2

2520(1 + β)2
, (63)

d1 =
1

6300(1 + β)3
{−24− 163β + 667β2 + 320β3 − 18N(5 + 41β + 983β2 + 515β3)

+1260N2(13 + 7β + 63β2 + 45β3)}, (64)

d2 = −N{95 + 180β − 59β2 + 84N(−5− 58β + 15β2)}
140(1 + β)2

, (65)

d3 =
β(37− β + 16β2) + 6N(24− 19β + 59β2)− 168N2(25 + 124β + 105β2)

210(1 + β)3
, (66)

d4 =
1

1680(1 + β)3
{95− 49β − 95β2 − 383β3 + 84N(−5 + 147β + 149β2 + 45β3)

+20160N2(2 + 7β + 5β2)}, (67)

d5 = − 1
700(1 + β)3

{24 + 3β − 57β2 − 90β3 + 14N(−95 + 287β + 421β2 + 75β3)

+3360N2(2 + 5β + 3β2)}, (68)

d6 =
−β(7 + β) + 2N(−23 + 34β + 3β2)

20(1 + β)2
, d7 =

−9 + 56β + 7β2 − 4N(−23 + 26β)
140(1 + β)2

, (69)

d8 =
33− 100β − 19β2

560(1 + β)2
, d9 =

−33 + 76β + 16β2

2520(1 + β)2
, (70)
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In a similar manner, the higher order terms can
be obtained. But the calculations will become com-
plicated. Moreover, the solutions considered are
valid for small values of R. Therefore, we retain up
to second-order terms.

From Eq. (18), the pressure drop in the z-
direction can be written in non-dimensional form as
follows:

P ∗ = p(x,y,1)−p(x,y,η)
ρU2

3
= 1

2{(h+ k)2 − 1}

+ 1
R (h′ + k′)− 2N(h′ + k′)2

+N{(h + k)(h′′ + k′′) − h′′(1) − k′′(1)}
(71)

It is also of interest to determine the effect of the
non-dimensional elastic parameter N on the shear
stresses on the elliptic plate. From Eqs. (1) – (3)
and (9), we obtain

Tzx = U1η0
d
f ′(1) + k0U1U3

d2 f ′′(1) + η0U3x
d2 h′′(1)

+k0U
2
3x

d3 h′′′(1),
(72)

Tzy = U2η0
d
g′(1) + k0U2U3

d2 g′′(1) + η0U3y
d2 k′′(1)

+k0U
2
3y

d3 k′′′(1)
(73)

For the problem under consideration it is impor-
tant to find the lift L and drag components (Dx, Dy).
These physical quantities can be calculated by inte-
grating pressure and shear stress components on the
elliptic plate. The dimensionless expressions for the
lift and drag are given by

L∗ = 4η2
0

ρ3U4
3SD

2

∫
S

∫
(p− pA)dS = − 1

R3 (h′′′(0)

+RN{h′′(0)2 − h′′(0)k′′(0)}),
(74)

D∗x = − 1
ρSU1U3

∫
S

∫
TzxdS = −f

′(1)
R
−Nf ′′(1),

(75)

D∗y = − 1
ρSU2U3

∫
S

∫
TzydS = −g

′(1)
R
−Ng′′(1)

(76)

where pA is the ambient pressure at the edge of the
elliptic plate.

Numerical results and discussion

In the present analysis, the problem of three-
dimensional flow of a Walter’s B’ viscoelastic fluid
between a porous elliptic plate and the ground dis-
cussed. As in similar studies, the governing equa-
tions were reduced to a set of ordinary differential
equations by using the appropriate transformations
for the velocity components. The perturbation tech-
nique was used to obtain the solution for small values
of the cross-flow Reynolds number. Such solutions
are very practical from both the theoretical and tech-
nological points of view. From a theoretical point
of view, the effects of successive terms in the per-
turbation expansion decrease very rapidly. From a
technological point of view, the cross-flow Reynolds
numbers for currently used sliders are less than unity,
as pointed out by Wang (1978).

The major axis of the elliptic slider under consid-
eration is the segment of length 2D/

√
β between the

y-intercepts (0,±D/
√
β). The minor axis is the seg-

ment of length 2D between the x-intercepts (±D, 0).
Its eccentricity e =

√
1− β, which indicates the de-

gree of departure from circularity, may vary from 0 to
1. Note that our current results reduce the circular
case when e = 0 (i.e., β = 1), and the flat case when
e = 1 (i.e., β = 0). As a result, the perturbation so-
lutions presented in this research include the special
cases corresponding to a porous circular slider and a
porous flat slider. As far as practical applications are
concerned, it is important to know solutions relating
to the above-mentioned special cases. With the help
of Eqs. (35) to (70), these solutions are obtained as
follows:

Porous flat slider:

i) Newtonian solution (cf. Skalak and Wang, 1975)

hN (η) = 3η2 − 2η3 + R(
8
35
η2 − 27

70
η3 +

3
10
η5 − 1

5
η6 +

2
35
η7) + R2(− 761

646800
η2 − 2929

323400
η3
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+
8

175
η5 − 113

2100
η6 +

27
1225

η7 − 3
560

η8 +
1

210
η9 − 2

525
η10 +

4
5775

η11) +O(R3),

fN (η) = 1− η +R(− 9
20
η + η3 − 3

4
η4 +

1
5
η5) + R2(

16
315

η +
8

105
η3 − 383

1680
η4 +

9
70
η5 − 1

20
η6

+
1
20
η7 − 19

560
η8 +

2
315

η9 +N(−103
70

η +
59
140

η2 +
9
4
η4 − 3

2
η5 +

3
10
η6) + O(R3),

gN (η) = 1− η + R(− 3
20
η +

1
4
η4 − 1

10
η5) +R2(− 2

525
η +

19
336

η4 − 6
175

η5 − 9
140

η7

+
33
560

η8 − 11
840

η9) +O(R3). (77)

ii) Viscoelastic solution (cf. Ariel, 1993)

h(η) = hN(η) +R2N(
3
14
η2 − 12

35
η3 +

3
10
η6 − 6

35
η7),

f(η) = fN (η) + 3RNη(1− η)(1 + 3RN) + R2N(−103
70

η +
59
140

η2 +
9
4
η4 − 3

2
η5 +

3
10
η6),

g(η) = gN(η) +RN(η − 3η2 + 2η3) + R2N(− 1
70
η − 19

28
η2 +

24
35
η3 − 1

4
η4 +

19
10
η5

−23
10
η6 +

23
35
η7) +R2N2(

13
5
η + 3η2 − 20η3 + 24η4 − 48

5
η5). (78)

Porous circular slider:

i) Newtonian solution (cf. Wang, 1974)

hN(η) =
3
2
η2 − η3 +R(

13
140

η2 − 9
70
η3 +

1
20
η6 − 1

70
η7) +R2(

26
13475

η2 − 23
4312

η3 +
1

105
η6

− 9
2450

η7 − 1
168

η9 +
3

700
η10 − 3

3850
η11) +O(R3), fN(η) = 1− η +R(− 3

10
η +

1
2
η3 − 1

4
η4 +

1
20
η5)

+R2(
1
63
η +

13
420

η3 − 9
280

η4 +
3

140
η5 − 1

10
η6 +

27
280

η7 − 43
1120

η8 +
59

10080
η9) + O(R3). (79)
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ii) Viscoelastic solution (it does not exist in the literature)

h(η) = hN (η) + RN(−21
35
η2 +

12
5
η3 − 3η4 +

6
5
η5) + R2N(− 9

140
η2 +

178
525

η3 − 4
7
η4

+
54
175

η5 − 7
50
η6 +

72
175

η7 − 51
140

η8 +
17
210

η9) + R2N2(−426
175

η2 +
354
175

η3 +
42
5
η4 − 414

25
η5

+12η6 − 24
7
η7), f(η) = fN (η) + RN(2η − 3η2 + η3) + R2N(−193

350
η − 27

70
η2 +

8
35
η3 +

21
10
η4 − 43

25
η5

+
7
20
η6 − 3

140
η7) +R2N2(

16
5
η +

36
5
η2 − 127

5
η3 + 21η4 − 6η5). (80)

The fact that the results presented above are in
complete agreement with those obtained previously
by a number authors gives us confidence regarding
our algebraic calculations.

0.5β =

0.2 0.4 0.6 0.8 1
η

0

0.2

0.4

0.6

0.8

1

f

N= 0

N= 0.1

N= 0.2

R= 0 .4

R= 0.8

Figure 2. Lateral velocity profiles in the x direction

The predictions based on the foregoing analysis
are displayed graphically for various values of the pa-
rameters in Figures 2 to 5. For a porous flat plate,
the exact numerical integration shows that the per-
turbation solution gives acceptable results for values
of R up to unity, only for small values of elastic pa-
rameter N (6 0.2) (Ariel, 1993). We also expect our
results to be valid only for small values of R and
N. For this reason, the variations of R and N are

limited to the ranges 0.0 to 0.8 and 0.0 to 0.2, re-
spectively. In addition, the effect of the eccentricity
is insignificant on the velocity components and axial
pressure drop at low cross-flow Reynolds numbers,
so the graphs are drawn only for β = 0.5.

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g

N 0

N 0.2

R 0.4

R 0.8

=

=

=

=

η

β = 0.5

Figure 3. Lateral velocity profiles in the y direction

Figures 2 to 4 show the velocity profiles corre-
sponding to the x, y and z directions, respectively.
We observe from these figures that the elastic ele-
ments in the viscous fluid increase the lateral veloc-
ity components along the x and y axes, whereas they
decrease the velocity component in the z direction
slightly. These changes in the values of the velocity
components are more pronounced with an increase in
the cross-flow Reynolds number. Figure 5 represents
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the pressure drop in the z direction for different val-
ues of R and N. From this figure, it is clear that with
the decrease in the cross-flow Reynolds number, the
axial pressure drop increases and the elasticity of the
fluid increases it further at any point.

0.2 0.4 0.6 0.8 1

η

0

0.2

0.4

0.6

0.8

1
N=0

N=0.2

R= 0.80.5β =

h + k

Figure 4. Vertical velocity profiles

For a porous slider, the important physical quan-
tities are lift and drag. Table 1 illustrates the non-
dimensional lift and drag components for various val-
ues of the parameters. From this table, we arrive at
the conclusion that for a Newtonian and viscoelas-
tic fluid both lift and drag increase rapidly, although

at different rates, as the cross-flow Reynolds number
decreases. Physically this can be explained as fol-
lows: if everything else is held fixed, the decrease in
the value of the cross-flow Reynolds number results
only from the decrease in the gap width. In this case,
since the changes in the values of the velocity com-
ponents occur in the smaller distance, velocity gra-
dients become larger. It is for this reason that both
stress components in the fluid layer and lift and drag
on the porous elliptic slider increase considerably as

0.5β =

0.2 0.4 0.6 0.8 1
η

0

1

2

3

4

5

*P

N= 0
N=0.1

N= 0.2
R= 0.4

R= 0.8

Figure 5. Axial pressure drop

Table 1. Lift and drag

R = 0.2 R = 0.5
β e L∗ D∗x D∗y L∗ D∗x D∗y N

1558.129 4.481 4.659 105.366 1.527 1.673 0
0 1 1466.344 4.738 4.538 90.209 1.720 1.533 0.1

1374.460 5.053 4.413 74.945 2.055 1.412 0.2
1289.430 4.510 4.628 86.344 1.550 1.645 0

0.2 0.894 1220.750 4.704 4.571 74.887 1.687 1.563 0.1
1150.910 4.943 4.514 63.053 1.934 1.497 0.2
1027.320 4.539 4.598 68.414 1.573 1.619 0

0.5 0.707 975.992 4.670 4.604 59.738 1.655 1.593 0.1
923.280 4.833 4.618 50.577 1.815 1.594 0.2
855.068 4.559 4.578 56.853 1.588 1.604 0

0.8 0.447 813.162 4.648 4.626 49.725 1.634 1.613 0.1
769.956 4.761 4.689 42.101 1.739 1.665 0.2
769.446 4.568 – 51.149 1.596 – 0

1 0 731.822 4.637 – 44.740 1.623 – 0.1
692.984 4.724 – 37.845 1.701 – 0.2
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Table 2. Coefficients of sliding friction

R = 0.2 R = 0.5
β e µx µy µx µy N

0.00287 0.00299 0.01449 0.01587 0
0 1 0.00323 0.00309 0.01906 0.01699 0.1

0.00367 0.00321 0.02742 0.01884 0.2
0.00349 0.00358 0.01795 0.01905 0

0.2 0.894 0.00385 0.00374 0.02252 0.02087 0.1
0.00429 0.00392 0.03067 0.02374 0.2
0.00418 0.00447 0.02299 0.02366 0

0.5 0.707 0.00478 0.00471 0.02770 0.02666 0.1
0.00523 0.00500 0.03588 0.03151 0.2
0.00533 0.00535 0.02793 0.02821 0

0.8 0.447 0.00571 0.00568 0.03286 0.03243 0.1
0.00618 0.00608 0.04131 0.03954 0.2
0.00593 – 0.03120 – 0

1 0 0.00633 – 0.03627 – 0.1
0.00681 – 0.04494 – 0.2

the cross-flow Reynolds number decreases. On the
other hand, for a Newtonian fluid, the lift is of or-
der R−3 whereas the drag components are of order
R−1 (see Eqs. (74)-(76)). Thus, the coefficients of
sliding friction, namely µx and µy, in the x- and y-
directions, which are respectively defined as D∗x/L

∗

and D∗y/L
∗ ratios, are proportional to R2. Since it

is aimed to reduce the frictional resistance in the x-
and y-directions for a porous slider, the ratio of drag
to lift must be made very small. In light of this ar-
gument, Table 2 leads us to conclude that the fact
that the porous sliders should be operated at small
values of cross-flow Reynolds number still remains
valid even when a viscoelastic fluid is used. Again
from Table 2, in the case of Newtonian fluid, we no-
tice that the ratio of drag to lift in the x direction
increases with the decrease in the eccentricity, and
that µx < µy. Hence, as far as optimum efficiency
is concerned, it is more advantageous to move an el-
liptic slider with high eccentricity along the minor
axis. Contrary to the Newtonian fluid, for a vis-
coelastic fluid, it is more efficient to move an elliptic
slider with high eccentricity along the major axis.

Conclusions

In this paper, we are concerned with a theoretical in-
vestigation of the steady three-dimensional flow of a
Walter’s B’ viscoelastic fluid between a porous ellip-
tic plate and the ground. By means of appropriate
similarity transformations, the governing equations

are reduced to a set of ordinary differential equa-
tions. Approximate solutions to these equations are
obtained by employing a perturbation method tak-
ing the cross-flow Reynolds number as a perturbation
parameter. The graphical and tabular presentation
of the results reveals the effect of the elasticity of the
fluid on the velocity distribution, and axial pressure
drop as well as lift and drag. Some of the quali-
tatively interesting conclusions which can be drawn
from this analysis are summarized as follows:

1. The elasticity of the fluid increases the lateral
velocity components, whereas it decreases the
axial velocity component.

2. The above-mentioned changes in the velocity
components are more noticable for the case of
a large cross-flow Reynolds number.

3. Axial pressure drop increases with the decrease
in cross-flow Reynolds number and the elastic
elements in the viscous fluid increase it further
at any point.

4. The effect of the eccentricity is insignificant
on the velocity components and axial pressure
drop at low cross-flow Reynolds numbers.

5. For both Newtonian and viscoelastic fluids,
porous sliders should be operated at small val-
ues of cross-flow Reynolds number with a view
to reducing the coefficients of sliding friction in
the lateral directions.
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6. From the optimum efficiency point of view, for
a Newtonian fluid it is more advantageous to
move an elliptic slider with high eccentricity
along the minor axis, whereas in the case of
viscoelastic fluid, to move it along the major
axis.
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Nomenclature

d distance between the elliptic plate and the
ground, L

Dx, Dy drag components , MLT−2

D∗x, D
∗
y nondimensional drag components

e eccentricity, dimensionless
e rate of strain tensor, T−1

I identity tensor, dimensionless

k0 short memory coefficient, ML−1

L lift , MLT−2

L∗ non-dimensional lift
N elastic number, dimensionless
p pressure, ML−1T−2

pA ambient pressure, ML−1T−2

P ∗ axial pressure drop, dimensionless
R cross-flow Reynolds number, dimensionless
T Cauchy stress tensor, ML−1T−2

t time, T
U1, U2 constant lateral velocity components,

LT−1

U3 uniform injection velocity, LT−1

u, v, w components of the velocity vector, LT−1

v velocity vector, LT−1

β square of the ratio of minor axis to major
axis, dimensionless

η normalized axial coordinate, dimensionless
η0 limiting viscosity at small rate of shear,

ML−1T−1

µx, µy coefficients of sliding friction, dimension-
less

ρ density, ML−3

τ relaxation time, T
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