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Abstract

The problems dealing with some simple flows of a mixture of two incompressible Newtonian fluids have
been analysed. By using the theory of binary mixtures of Newtonian fluids, the equations governing the
velocity fields are reduced to a system of coupled ordinary differential equations. In the case of non-inertial
flow the analytical solutions of these equations have been obtained for the following three problems: (i) the
parallel flow with a free surface; (ii) the flow between intersecting planes, one of which is moving; (iii) the
flow between two coaxial moving cylinders.
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Introduction

Recently, there has been remarkable interest in flows
of fluid mixtures due to the occurrence of these flows
in industrial processes, particularly in lubrication
practice. A familiar example is an emulsion, which
is the dispersion of one fluid within another fluid.
Typical emulsions are oil dispersed within water or
water within oil. Such emulsions are of consider-
able practical interest because synthetic fluids are
more toxic than mineral oils and are uneconomical
to use in applications requiring large quantities of
lubricant, for example, metal working, mining, cut-
ting and hydraulic fluids. Several problems relating
to the mechanics of oil and water emulsions have
been considered within the context of the mixture
theory by Al-Sharif et al. (1993), Chamniprasart et
al. (1993), and Wang et al. (1993). Another exam-
ple where fluid mixtures play an important role is in
multigrade oils. In order to enhance the lubrication

properties of mineral oils, such as the viscosity index,
polymeric type fluids are added to the base oil (Dai
and Khonsari, 1994).

The origin of the modern formulation of con-
tinuum thermomechanical theories of mixtures goes
back to papers written by Truesdell (1957). He pre-
sented a comprehensive treatment of the thermome-
chanics of interacting continua which discussed the
appropriate forms for the balance of mass, momen-
tum, energy and also the possible structure for the
second law of thermodynamics. This work gave im-
petus to many studies on the theory of interacting
continua and a rigorous and firm mathematical foun-
dation has been developed. We refer the reader
to the works of Bowen (1976), Atkin and Craine
(1976b), Bedford and Drumheller (1983), and Ra-
jagopal and Tao (1995) regarding the historical de-
velopment of the theory and detailed analysis of var-
ious results on this subject.

In the present paper a binary mixture, each con-
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BARIŞ, DOKUZ

stituent of which is an incompressible inert Newto-
nian fluid, is considered. In the following section the
balance laws and relevant constitutive equations are
briefly presented and then the equations governing
the motion of the binary mixture are stated for the
case of non-inertial flow. In the subsequent sections,
we obtain the exact solutions for some simple flows
of the binary mixture under consideration.

Basic theory

(i) Kinematics and balance laws
The governing equations are summarized in this

section, for more details the reader should consult
Craine (1971) and Atkin and Craine (1976a,b). Con-
sider a mixture of two continua, in motion relative to
each other. Let Xβ represent the position of a mate-
rial point of the β th constituent <β in its reference
configuration. At any time t each spatial point x in
the mixture is occupied simultaneously by one par-
ticle from each <β. The motion of a binary mixture
< of components <β is denoted by

x = φβ(Xβ , t), t ≥ 0, β = 1, 2 (1)

where the function φβ is called the deformation func-
tion for the β th constituent and is assumed to be
sufficiently smooth so as to make the necessary math-
ematical operations correct. Throughout this paper
the subscript β takes the values 1, 2.

If vβ denotes the velocity of the β th constituent,
the material derivative Dβ/D t is defined by

Dβ
Dt

=
∂

∂ t
+ vβ · ∇ (2)

where ∇ is the gradient operator.
Let the density of the β th constituent, after mix-

ing, be ρβ , then the total density ρ of the mixture is
given by

ρ =
∑
β

ρβ (3)

and the mean velocity, w, of the mixture is defined
by

w =
1
ρ

∑
β

ρβvβ . (4)

The basic equations for a binary mixture in which
the constituents have a common temperature = and
do not interact chemically are the following:

Continuity equations

D1ρ1

Dt
+ ρ1 (∇ · v1) = 0,

D2ρ2

Dt
+ ρ2 (∇ · v2) = 0.

(5)

Equations of motion

ρ1
D1v1
Dt = ∇ · σ1 − f + ρ1F1,

ρ2
D2v2
Dt

= ∇ · σ2 + f + ρ2F2.
(6)

Energy equation

∑
β

ρβ
DβUβ
Dt

= ρ r −∇ · q + f · (v1 − v2)

+
∑
β

tr
[
σβ · (∇vβ)T

] (7)

where the superscript T and tr denote transpose and
trace of a second-order tensor field, respectively. The
quantities Uβ , σβ and Fβ are in turn internal energy
per unit mass, partial stress and external body force
acting on per unit mass of the β th constituent. In
addition, r, the heat supply per unit mass, and q,
the heat flux, refer to the mixture as a whole, and
f denotes the diffusive force1 . It is important to
bear in mind that the ij th component of ∇vβ taken
as vβ j ; i, where the semicolon stands for covariant
differentiation.

Consideration of the balance of angular momen-
tum for <1 and <2 shows that σ1 and σ2 need not
be symmetric although the balance of angular mo-
mentum for the mixture results in the symmetry of
σ, the total stress in the mixture, defined by

σ = σ1 + σ2. (8)

Admissible thermomechanical processes in the
mixture must be compatible with an entropy pro-
duction inequality. If S1 and S2 are the entropies
per unit mass of the constituents, then the Clausius-
Duhem inequality may be written as follows (Green
and Naghdi, 1969; Bowen and Wiese, 1969):

1The diffusive force f may be interpreted as the drag exerted on one constituent due to the motion of the other (Craine, 1971).
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∑
β

ρβ
DβSβ
Dt

− ρr

= +∇ ·
(q
=
)
≥ 0. (9)

(ii) Constitutive equations
In this work we shall concern ourselves with a

mixture of two incompressible Newtonian fluids. Let
the densities of <1 and <2, before mixing, be ρ10 and
ρ20 respectively, which in view of the assumed incom-
pressibility are constants. Introducing a composition
factor γ, defined as the proportion by volume of the
constituent <1, and assuming that the mixture does
not contain voids, it follows that

ρ1 = γρ10, ρ2 = (1− γ)ρ20 (10)

and hence

ρ1

ρ10
+

ρ2

ρ20
= 1 . (11)

By using (3) and (11), it can be easily shown that

ρ1 =
ρ10 (ρ20 − ρ)
ρ20 − ρ10

, ρ2 =
ρ20 (ρ− ρ10)
ρ20 − ρ10

. (12)

Substituting (12) into Eqs. (5) and eliminating
∂ρ / ∂ t between them gives the relation

(ρ20 − ρ) tr(d1) + (ρ− ρ10) tr(d2)− ξ · a = 0 (13)

where

2 dβ = (∇vβ)T +∇vβ , ξ = ∇ρ, a = v1 − v2.
(14)

The derivation of the constitutive equations ap-
propriate to our binary mixture of incompressible
Newtonian fluids has been outlined in Atkin and
Craine (1976a, b). If the mixture is considered to
be a purely mechanical system, that is, thermal ef-
fects are ignored, the relevant equations are

Aβ = Aβ(ρ), A = A(ρ), (15)

p1 = (ρ− ρ20)
(
ρ1

dA1
dρ

+ λ
)
,

p2 = (ρ− ρ10)
(
ρ2

dA2
dρ
− λ

)
,

(16)

f = αa− λξ,

q = −k′ a,
(17)

σ1 = [−p1 + λ1tr(d1) + λ3tr(d2)] I

+2µ1d1 + 2µ3d2 + λ5Γ,
(18)

σ2 = [−p2 + λ4tr(d1) + λ2tr(d2)] I

+2µ4d1 + 2µ2d2 − λ5Γ
(19)

where Aβ denotes the partial Helmholtz free energy,
and the Helmholtz free energy A of the mixture (to-
tal free energy) is defined by

A =
1
ρ

∑
β

ρβAβ (20)

and the coefficients α, λ1, ..., λ5, k
′, µ1, ..., µ4 are

functions of ρ and satisfy the inequalities

α ≥ 0 , λ5 ≥ 0 , µ1 ≥ 0 , µ2 ≥ 0 ,

λ1 +
2
3
µ1 ≥ 0 , λ2 +

2
3
µ2 ≥ 0 ,

(µ3 + µ4)2 ≤ 4µ1µ2 ,
[
λ3 + λ4 + 2

3
(µ3 + µ4)

]2
≤ 4

(
λ1 + 2

3µ1

) (
λ2 + 2

3µ2

)
.

(21)

The quantity λ is a Lagrange multiplier2 associ-
ated with the constraint (13) and Γ is given by

2Γ = [(∇v1)T −∇v1]− [(∇v2)T −∇v2]. (22)

Finally, for the case of non-inertial flow
(Dβvβ / D t = 0), neglecting the body forces, we
shall derive the equations governing the flow of a
mixture of two Newtonian fluids. For this purpose,
inserting σ1, σ2 and f from Eqs. (18), (19) and
(17)1 into Eqs. (6), with the help of Eqs. (14) and
(22), one gets the following equations of motion:

2See Beevers and Craine (1982).
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M1∇2v1 + M5∇ (∇ · v1) + (∇ · v1)∇λ1 + (∇v1)T · (∇M1) + (∇v1) · (∇M9)

+M2∇2v2 + M6∇ (∇ · v2) + (∇ · v2)∇λ3 + (∇v2)T · (∇M2) + (∇v2) · (∇M10)

−α (v1 − v2) = −λ∇ρ+∇p1 , (23)

M3∇2v1 +M7∇ (∇ · v1) + (∇ · v1)∇λ4 + (∇v1)T · (∇M3) + (∇v1) · (∇M11)

+M4∇2v2 + M8∇ (∇ · v2) + (∇ · v2)∇λ2 + (∇v2)T · (∇M4) + (∇v2) · (∇M12)

+α (v1 − v2) = λ∇ρ+∇p2 (24)

where

M1 = µ1 +
λ5

2
, M2 = µ3 −

λ5

2
, M3 = µ4 −

λ5

2
, M4 = µ2 +

λ5

2
,

M5 = λ1 + µ1 −
λ5

2
, M6 = λ3 + µ3 +

λ5

2
, M7 = λ4 + µ4 +

λ5

2
, M8 = λ2 + µ2 −

λ5

2
,

M9 = µ1 −
λ5

2
, M10 = µ3 +

λ5

2
, M11 = µ4 +

λ5

2
, M12 = µ2 −

λ5

2
. (25)

Note that, under isothermal conditions, the coef-
ficients M1 etc. appearing in (23) and (24) depend
only on the total density ρ, and hence spatial coor-
dinates. In the subsequent sections, we shall obtain
the exact solutions of the above equations for some
simple flows of a binary mixture of incompressible
Newtonian fluids.

Parallel flow with a free surface

First, we examine the flow of a film of a binary
mixture of incompressible Newtonian fluids of uni-
form thickness δ. The ambient air is assumed to
be stationary and, therefore, the flow is driven by
externally imposed pressure gradients ∂p1 / ∂x and
∂p2 / ∂x. Let the y-axis be directed normally to the

plate, and the x-axis along this plate (see Figure 1).

x

y

 y=0

stationary air y=δ ∆

Figure 1. Basic geometry of the problem

We shall seek a solution of the form

vβ x = vβ x(y), ρ = ρ(y) (26)

where the function vβ x denotes the velocity compo-
nent of the βth fluid in the x direction. With this
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assumption, it is shown that the equations of con-
tinuity (5) can be satisfied identically. Substituting
Eq. (26) into the x- and y-components of the equa-
tions of motion (23) and (24), we get

M1v
′′
1x +M2v

′′
2x +M ′1v

′
1x +M ′2v

′
2x

−α(v1x − v2x) = ∂p1
∂ x ,

(27)

λρ′ =
∂p1

∂y
, (28)

M3v
′′
1x +M4v

′′
2x +M ′3v

′
1x +M ′4v

′
2x

+α(v1x − v2x) = ∂p2
∂ x
,

(29)

−λρ′ =
∂p2

∂y
. (30)

In the above equations, primes denote differenti-
ation with respect to y. With the use of Eqs. (12),
(16) and (20), elimination of ∂ λ/∂ y between Eqs.
(28) and (30) gives

(ρ− ρ10) (ρ20 − ρ)
dρ

dy

d2(ρA)
dρ2

= 0 (31)

and since, in general, ρ 6= ρ10, ρ 6= ρ20 and
d2(ρA)

/
dρ2 6= 0 we deduce that ρ is a constant. As

a result, the coefficients M1 etc. in (27) and (29) are
constants. It also follows that the quantities p1 and
p2 are not functions of y. Then, from Eqs. (27) and
(29), it is evident that the pressure gradients are con-
stants, i.e. ∂p1 / ∂x = −p10 and ∂p2 / ∂x = −p20.
Thus, Eqs. (27) and (29) reduce to

M1 v
′′
1x +M2v

′′
2x − α (v1x − v2x) = p10, (32)

M3 v
′′
1x + M4v

′′
2x + α (v1x − v2x) = p20. (33)

It is convenient at this point to introduce dimen-
sionless variables and material constants. If f̄ is used
to denote the dimensionless form of a quantity f , it
follows that

ȳ = y
δ , M̄i = Mi

µ , v̄β x = vβxµ
p0δ 2 ,

ᾱ = αδ 2

µ
, Q̄ = Qµ

p0δ 3

(34)

where µ is the viscosity of the mixture and Q is the
volume flux of the mixture per unit distance normal
to the plane of flow. In addition, it is assumed that
the pressure gradients imposed on mixture compo-
nents are the same, i.e. p10 = p20 = p0. Thus the
dimensionless governing equations are as follows:

M̄1 v̄
′′
1x + M̄2v̄

′′
2x − ᾱ (v̄1x − v̄2x) = −1, (35)

M̄3 v̄
′′
1x + M̄4v̄

′′
2x + ᾱ (v̄1x − v̄2x) = −1. (36)

Throughout this paper, henceforth for conve-
nience, unless stated otherwise, we shall drop the
bars that appear over the dimensionless quantities.

Subtracting M4 times Eq. (35) from M2 times
Eq. (36), and M3 times Eq. (35) from M1 times Eq.
(36), we get the following equations, respectively

η1v
′′
1x − α (M2 +M4) (v1x − v2x) = M2 −M4,

(37)

−η1 v
′′
2x − α (M1 +M3) (v1x − v2x) = M1 −M3

(38)

and the sum of above equations is

η1 (v′′1x − v′′2x) − α η2 (v1x − v2x) = η3 (39)

where

η1 = M1M4 −M2M3, η2 = M1 +M2 +M3 + M4,

η3 = M1 +M2 −M3 −M4. (40)

Hereafter, we shall assume that α 6= 0, η1 6= 0
and η2 6= 0.

The boundary conditions for the velocity fields
are

vβ x(0) = 0, v1x(1) − v2x(1) = W (41)
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where W is a constant to be determined later. Equa-
tion (39), which satisfies boundary conditions (41), is
solved by the following simple analytical expression

v1x − v2x = C1cosh(γ1y) +C2sinh(γ1y) −
η3

αη2

(42)

where γ1 =
√
αη2/η1, and the constants C1 and C2

are

C1 =
η3

αη2
, C2 =

W

sinh(δγ1)
−C1tanh

(
δγ1

2

)
.

(43)

Substituting Eq. (42) into Eqs. (37)-(38) and
solving them, we have, respectively

v1x = (M2+M4)
η2

[C1 cosh(γ1y) + C2 sinh(γ1y)]

+C3y + C4 − y2

η2
,

(44)

v2x = − (M1+M3)
η2

[C1 cosh(γ1y) +C2 sinh(γ1y)]

+C5y + C6 − y2

η2

(45)

where C3, ..., C6 are the constants of integration.
Boundary conditions (41) are not sufficient for de-
termining these constants in a unique way. It would
thus appear that the additional boundary condition
must be imposed. This is a free-surface condition,
that is, the atmospheric shear stress, which is as-
sumed to be negligible (no wind, negligible air vis-
cosity), must be equal to the total shear stress, σxy,
of the mixture at y = 1. Thus

σxy(1) = (M1 + M3)v′1x(1) + (M2 + M4)v′2x(1) = 0.
(46)

From conditions (41) and (46), we find that

C3 = 1
η2

{
(M2 + M4)

[
C1 +W − C1cosh(γ1)

−C2sinh(γ1)
]

+ 2
}
,

C5 = 1
η2

{
− (M1 + M3)

[
C1 +W − C1cosh(γ1)

−C2sinh(γ1)
]

+ 2
}
,

C4 = −C1
(M2 +M4)

η2
, C6 = C1

(M1 + M3)
η2

.

(47)

The volume rate of flow per unit length in the
z-direction is

Q =

1∫
0

v1xdy +

1∫
0

v2xdy. (48)

Inserting v1x and v2x from Eqs. (44) and (45),
with the aid of Eq. (47), into Eq. (48) yields

W =γ1

�
C1+

4− 3Qη2

3 (M1−M2 +M3−M4)

�
coth

� γ1

2

�
− 2C1.

(49)

It is obvious from Eq. (49) that the value of con-
stant W in Eqs. (43)2 and (47)1,2 can be determined
by experimental measurement of Q.

Flow between intersecting planes, one of
which is moving

In this section, we consider the slow motion of a mix-
ture of two incompressible Newtonian fluids near a
corner of plane rigid walls, one of which is station-
ary and the other moving. The flow is caused by
the motion of the wall at θ = 0. The moving wall is
made of a porous material through which the fluids
are injected with constant velocities V1 and V2 (see
Figure 2).

It seems reasonable to assume that the velocity
distribution and total density in planar polar coor-
dinates (r, θ) are of the form

vβ = [vβ r(r, θ), vβθ(r, θ)], ρ = ρ(r, θ) (50)

P(r )

O

r

=0

V

V1,V2θ

θ,

θ

νβr

νβθ

θ=θ0

Figure 2. Sketch of flow geometry and coordinate system
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where vβ r and vβθ denote the velocity components
of the βth fluid in the directions of r and θ, respec-
tively. By defining the stream function ψβ(r, θ), such
that

vβ r =
1
r

∂ψβ
∂θ

, vβ θ = −∂ψβ
∂r

(51)

the equation ∇·vβ = 0 is satisfied automatically. In
this case, we easily conclude from Eqs. (5) and (13),
taking account of Eq. (12), that the density ρ of the
mixture is a constant. Since ρ has been proved to be

constant, all of the coefficients in Eqs. (23) and (24)
are constants. Now we shall seek a solution of the
following form (Riedler and Schneider, 1983):

ψβ(r, θ) = r fβ(θ). (52)

Inserting vβ r and vβθ from Eq. (51), with the
aid of (52), into the r- and θ-components of the mo-
mentum equations (23) and (24) and eliminating the
pressure terms by cross-differentiating yields

M1 (f ıv
1 + 2f ′′1 + f1) + M2 (f ıv

2 + 2f ′′2 + f2)− α r2 (f ′′1 − f ′′2 + f1 − f2) = 0, (53)

M3 (f ıv
1 + 2f ′′1 + f1) +M4 (f ıv

2 + 2f ′′2 + f2) + α r2 (f ′′1 − f ′′2 + f1 − f2) = 0 (54)

where primes denote differentiation with respect to θ.
Let us make the variables and material constants non-dimensional by the following substitutions:

M̄i =
Mi

µ
, ᾱ =

α r 2

µ
, f̄β(θ) =

fβ(θ)
V

. (55)

Thus the non-dimensional governing equations become

M̄1

(
f̄ ıv

1 + 2f̄ ′′1 + f̄1

)
+ M̄2

(
f̄ ıv

2 + 2f̄ ′′2 + f̄2

)
− ᾱ

(
f̄ ′′1 − f̄ ′′2 + f̄1 − f̄2

)
= 0, (56)

M̄3

(
f̄ ıv

1 + 2f̄ ′′1 + f̄1

)
+ M̄4

(
f̄ ıv

2 + 2f̄ ′′2 + f̄2

)
+ ᾱ

(
f̄ ′′1 − f̄ ′′2 + f̄1 − f̄2

)
= 0. (57)

The boundary conditions for the dimensionless velocity fields are as follows:

v̄β r(r, 0) = −1, v̄β r(r, θ0) = 0,

v̄βθ(r, 0) = Vβ / V (Vβ > 0, V > 0), v̄β θ(r, θ0) = 0. (58)

From Eqs. (51), (52) and (58), it follows that the boundary conditions for the function fβ are

fβ(0) = −Vβ / V, fβ(θ0) = 0,

f ′β(0) = −1, f ′β(θ0) = 0. (59)

From Eqs. (56) and (57), making simple algebraic calculations as in the previous section, we can obtain the
following equations:
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η1 (f ıv
1 + 2f ′′1 + f1) − α (M2 +M4) (f ′′1 − f ′′2 + f1 − f2) = 0, (60)

−η1 (f ıv
2 + 2f ′′2 + f2)− α (M1 + M3) (f ′′1 − f ′′2 + f1 − f2) = 0. (61)

The sum of the above equations is

f ıv
1 − f ıv

2 + (1− γ2) (f ′′1 − f ′′2 )− γ2 (f1 − f2) = 0 (62)

where γ2 = −1 +α η2/η1. The characteristic roots of Eq. (62) are ±i and ±√γ2. Hence, the general solution is

If γ2 < 0,

f1 − f2 = C1 cos θ + C2 sin θ +C3cos(
√
|γ2|θ) +C4sin(

√
|γ2 | θ). (63)

If γ2 = 0,

f1 − f2 = D1 cos θ + D2 sin θ+ D3θ +D4. (64)

If γ2 > 0,

f1 − f2 = E1 cos θ +E2 sin θ + E3cosh(
√
γ2θ ) + E4sinh(

√
γ2θ ). (65)

Applying the boundary conditions (59) to Eqs. (63)-(65) separately, we find

C1 =

√
|γ2|(V2 − V1)

C∗

[
cos θ0 cos(

√
|γ2|θ0) +

√
|γ2| sin θ0 sin(

√
|γ2|θ0)− 1

]
,

C2 =

√
|γ2|(V1 − V2)

C∗

[√
|γ2| cos θ0 sin(

√
|γ2 |θ0) − sin θ0 cos(

√
|γ2|θ0)

]
,

C3 =
(V1 − V2)

C∗

{√
|γ2|
[
1− cos θ0 cos(

√
|γ2|θ0)

]
− sin θ0 sin(

√
|γ2| θ0)

}
,

C4 =
(V1 − V2)

C∗

[
sin θ0 cos(

√
|γ2|θ0)−

√
|γ2| cos θ0 sin(

√
|γ2|θ0)

]
,

D1 = D∗(cos θ0 − 1), D2 = D∗ sin θ0, D3 = −D2 , D4 = D1 + D∗θ0 sin θ0,

E1 =
√
γ2(V2 − V1)

E∗
[1− cos θ0 cosh(

√
γ2θ0) +

√
γ2 sin θ0 sinh(

√
γ2θ0)] ,
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E2 =
√
γ2(V1 − V2)

E∗
[sin θ0 cosh(

√
γ2θ0) +

√
γ2 cos θ0 sinh(

√
γ2θ0)] ,

E3 =
(V1 − V2)

E∗
{sin θ0 sinh(

√
γ2θ0) +

√
γ2[cos θ0 cosh(

√
γ2θ0) − 1]},

E4 =
(V2 − V1)

E∗
[sin θ0 cosh(

√
γ2θ0) +

√
γ2 cos θ0 sinh(

√
γ2θ0)] (66)

where

C∗ = V
{

2
√
|γ2|[cos θ0 cos(

√
|γ2|θ0) − 1] + (1 + |γ2| ) sin θ0 sin(

√
|γ2| θ0)

}
,

D∗ = (V2 − V1)/ [V (2 cos θ0 + θ0 sin θ0 − 2)],

E∗ = V {2√γ2[1− cos θ0 cosh(
√
γ2θ0)] + (γ2 − 1) sin θ0 sinh(

√
γ2θ0)}. (67)

Having substituted Eqs. (63)-(65) into Eqs. (60) and (61), we integrate the resulting equations and obtain
the following solutions for f1(θ) and f2(θ), respectively

If γ2 < 0,

f1(θ) = (C5 +C6θ) cos θ + (C7 +C8θ) sin θ − α (M2 +M4)
η1(|γ2| − 1)

[
C3cos(

√
|γ2|θ) +C4sin(

√
|γ2 |θ)

]
,

f2(θ) = (C9 +C10θ) cos θ + (C11 +C12θ) sin θ +
α (M1 + M3)
η1(|γ2| − 1)

[
C3cos(

√
|γ2|θ) +C4sin(

√
|γ2|θ)

]
. (68)

If γ2 = 0,

f1(θ) = (D5 + D6θ) cos θ + (D7 + D8θ) sin θ+
α (M2 +M4)

η1
(D4 +D3θ),

f2(θ) = (D9 + D10θ) cos θ + (D11 +D12θ) sin θ − α (M1 +M3)
η1

(D4 +D3θ). (69)

If γ2 > 0,

f1(θ) = (E5 +E6θ) cos θ + (E7 +E8θ) sin θ +
M2 +M4

η2
[E3cosh(

√
γ2θ) + E4sinh(

√
γ2θ)],

f2(θ) = (E9 +E10θ) cos θ + (E11 +E12θ) sin θ − M1 + M3

η2
[E3cosh(

√
γ2θ) +E4sinh(

√
γ2θ)] (70)
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With the help of Eq. (59), the constants of integration C5, ..., C12, D5, ..., D12 and E5, ..., E12 can be
expressed as

C5 = −V1

V
+
α(M2 + M4)
η1(|γ2| − 1)

C3,

C6 =
{

[α(M2 +M4)(V1 − V2) + η1V1(|γ2| − 1)] [sin(2θ0) + 2θ0] + 2 V η1(|γ2| − 1) sin2 θ0

}/
Ĉ,

C7 = 2αV (M2 + M4)
{
C3

[ (
cos θ0 − cos(

√
|γ2|θ0)−

√
|γ2 | sin(

√
|γ2|θ0)

)
sin θ0

+
(

1− cos θ0 cos(
√
|γ2|θ0)

)
θ0

]
+C4

[(√
|γ2| θ0 cos(

√
|γ2|θ0)− sin(

√
|γ2|θ0)

)
sin θ0

+
(√
|γ2 | θ0 − cos θ0 sin(

√
|γ2 |θ0)

)
θ0

] }/
Ĉ

+[η1V1(1− |γ2 |) sin(2θ0) + 2η1θ0(1− |γ2|)(V1 + θ0V )]
/
Ĉ,

C8 =
{

2 [α(M2 + M4)(V1 − V2) + η1V1(|γ2| − 1)] sin2 θ0 + η1V (|γ2| − 1)[2θ0 − sin(2θ0)]
}/

Ĉ,

C9 = C5 −C1, C10 = C6, C11 = C7 −C2, C12 = C8,

D5 = −V1

V
− α(M2 + M4)

η1
D4,

D6 =
{

[α(M2 +M4)(V2 − V1) + η1V1] [sin(2θ0) + 2θ0] + 2η1V sin2 θ0

}/
D̂,

D7 = 2αV (M2 + M4)
{
D3(cos θ0 − 1) θ2

0 + D4[(1− cos θ0)(sin θ0 − θ0)]
}/

D̂

−η1

{
V1[sin(2θ0) + 2θ0] + 2 V θ2

0

}/
D̂,

D8 =
{

2 [α(M2 +M4)(V2 − V1) + η1V1] sin2 θ0 + η1V [2θ0 − sin(2θ0)]
}/

D̂,

D9 = D5 −D1, D10 = D6, D11 = D7 −D2, D12 = D8,

E5 = −V1

V
− (M2 +M4)

η2
E3,

E6 =
{

[ (M2 +M4)(V2 − V1) + η2V1] [sin(2θ0) + 2θ0] + 2η2V sin2 θ0

}/
Ê,
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E7 = 2V (M2 + M4)
{
E3

[(
cosh(

√
γ2θ0)− cos θ0 −

√
γ2 θ0 sinh(

√
γ2θ0)

)
sin θ0

+
(
cos θ0 cosh(

√
γ2θ0) − 1

)
θ0

]
+E4

[(
sinh(

√
γ2θ0)−√γ2 θ0 cosh(

√
γ2θ0)

)
sin θ0

+
(
cos θ0 sinh(

√
γ2θ0)−√γ2 θ0

)
θ0

] }/
Ê − [η2V1 sin(2θ0) + 2η2θ0(V1 + θ0V )]

/
Ê,

E8 =
{

2 [(M2 +M4)(V2 − V1) + η2V1] sin2 θ0 + η2V [2θ0 − sin(2θ0)]
}/

Ê,

E9 = E5 −E1, E10 = E6, E11 = E7 − E2, E12 = E8 (71)

where

Ĉ = η1V (|γ2 | − 1)[cos(2θ0) + 2θ2
0 − 1], D̂ = η1V [cos(2θ0) + 2θ2

0 − 1],

Ê = η2V [cos(2θ0) + 2θ2
0 − 1]. (72)

Flow between two coaxial moving cylinders

Finally, we study the fully developed flow of a binary
mixture of incompressible Newtonian fluids between
an inner cylinder of radius r1 rotating at a constant
rate of w1 as well as translating at uniform velocity
V and outer concentric cylinder of radius r2 rotat-
ing at a constant rate of w2, as sketched in Figure 3.
The flow is driven by a combination of externally ap-
plied pressure gradients (∂ p1/∂ z, ∂ p2/∂ z) and the
motion of cylinders. Cylindrical coordinates (r, θ, z),
with the z-axis coinciding with the common axis of
the cylinders, are introduced.

We look for a solution, compatible with the mass
balance equations (5), of the form

vβ = [0, vβθ(r), vβ z(r)], ρ = ρ(r) (73)

where vβ θ and vβ z denote the velocity components
of the β th fluid in the directions of θ and z, respec-
tively. Substituting velocity components and total
density from Eq. (65) into equations of motion (23)
and (24) gives

λρ′ =
∂p1

∂r
, (74)

z

r

V
r1

r2

w2

w1

Figure 3. Schematic diagram of flow

M1(r2v′′1θ + rv′1θ − v1θ) + M2(r2v′′2θ + rv′2θ − v2θ) − α r2(v1θ − v2θ)

+r2(M ′1 v
′
1θ +M ′2 v

′
2θ)− r(M ′9 v1θ + M ′10 v2θ) = r

∂p1

∂θ
, (75)

M1v
′′
1z +M2v

′′
2z +

1
r

(M1v
′
1z + M2v

′
2z) +M ′1v

′
1z + M ′2v

′
2z − α (v1z − v2z) =

∂p1

∂z
, (76)
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−λρ′ =
∂p2

∂r
, (77)

M3(r2v′′1θ + rv′1θ − v1θ) + M4(r2v′′2θ + rv′2θ − v2θ) + α r2(v1θ − v2θ)

+r2(M ′3 v
′
1θ +M ′4 v

′
2θ)− r(M ′11 v1θ +M ′12 v2θ) = r

∂p2

∂θ
, (78)

M3v
′′
1z +M4v

′′
2z +

1
r

(M3v
′
1z +M4v

′
2z) + M ′3v

′
1z +M ′4v

′
2z + α (v1z − v2z) =

∂p2

∂z
. (79)

The primes here indicate differentiation with re-
spect to r. Elimination of ∂ λ / ∂ r between Eqs. (74)
and (77), with the help of Eqs. (12), (16) and (20),
leads to

(ρ− ρ10) (ρ20 − ρ)
dρ

dr

d2(ρA)
dρ2

= 0. (80)

Here, in general, ρ 6= ρ10, ρ 6= ρ20 and
d2(ρA)

/
dρ2 6= 0, and hence we arrive at the con-

clusion that the total density ρ is a constant. Since
ρ has been proved to be constant, the coefficients

M1 etc. appearing in equations of motion become
constants. It also follows that the quantities p1 and
p2 are not functions of r. From Eqs. (75) and (78),
it is clear that ∂ p1 / ∂ θ and ∂ p2 / ∂ θ are constants.
Since p1 and p2 are periodic functions of θ, these
constants must be equal to zero. Consequently, p1

and p2 can be at most functions of z. Then Eqs.
(76) and (79) imply that the pressure gradients are
constants, i.e. ∂ p1 / ∂ z = p10 and ∂ p2 / ∂ z = p20.
It is assumed that p10 = p20 = p0. In the light of
these arguments, the equations of motion reduce to

M̄1(r̄2v̄′′1θ + r̄ v̄′1θ − v̄1θ) + M̄2(r̄2v̄′′2θ + r̄ v̄′2θ − v̄2θ)− ᾱ r̄2(v̄1θ − v̄2θ) = 0, (81)

M̄1v̄
′′
1z + M̄2v̄

′′
2z +

1
r̄

(
M̄1v̄

′
1z + M̄2v̄

′
2z

)
− ᾱ (v̄1z − v̄2z) = p∗, (82)

M̄3(r̄2v̄′′1θ + r̄ v̄′1θ − v̄1θ) + M̄4(r̄2v̄′′2θ + r̄ v̄′2θ − v̄2θ) + ᾱ r̄2(v̄1θ − v̄2θ) = 0, (83)

M̄3v̄
′′
1z + M̄4v̄

′′
2z +

1
r̄

(
M̄3v̄

′
1z + M̄4v̄

′
2z

)
+ ᾱ (v̄1z − v̄2z) = p∗ (84)

where

r̄ =
r

r2
, M̄i =

Mi

µ
, v̄βθ =

vβθ
r2w2

, v̄β z =
vβ z
V
, ᾱ =

α r2
2

µ
, p∗ =

p0r
2
2

µ V
. (85)

From the above equations, after a little algebra as in the previous sections, we get

η1

(
v′′1z +

1
r
v′1z

)
− α (M2 + M4) (v1z − v2z) = (M4 −M2) p∗, (86)
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−η1

(
v′′2z +

1
r
v′2z

)
− α (M1 + M3) (v1z − v2z) = (M3 −M1) p∗, (87)

η1(r2v′′1θ + rv′1θ − v1θ) − α r2 (M2 + M4) (v1θ − v2θ) = 0, (88)

−η1(r2v′′2θ + rv′2θ − v2θ)− α r2 (M1 +M3) (v1θ − v2θ) = 0. (89)

Adding Eqs. (86) and (87) gives

η1 (v′′1z − v′′2z) +
1
r
η1 (v′1z − v′2z)− αη2 (v1z − v2z) = η4 (90)

where η4 = −η3 p
∗. Integration of this equation yields

v1z − v2z = C1I0 (γ1r) + C2K0 (γ1r)−
η4

α η2
(91)

where I0 and K0 are modified Bessel functions of order zero.
The no-slip boundary conditions of the problem are

vβ θ(r1/r2) =
r1w1

r2w2
, vβθ(1) = 1, (92)

vβ z(r1/r2) = 1, vβz(1) = 0. (93)

The boundary conditions on velocity given by Eq. (93) require

C1 =
η4[K0(γ1) −K0(γ1r1/r2)]

αη2[I0(γ1r1/r2)K0(γ1)− I0(γ1)K0(γ1r1/r2)]
,

C2 =
η4[I0(γ1) − I0(γ1r1/r2)]

αη2[K0(γ1r1/r2)I0(γ1)−K0(γ1)I0(γ1r1/r2)]
. (94)

Substituting Eq. (91) into Eqs. (86) and (87), and integrating these differential equations, we have, respec-
tively

v1z =
M2 + M4

η2
{C1[I0 (γ1r)− 1] + C2K0 (γ1r)}+

p∗

2η2
r2 + C3 ln r +C4, (95)

v2z = −M1 +M3

η2
{C1[I0 (γ1r)− 1] + C2K0 (γ1r)}+

p∗

2η2
r2 + C5 ln r + C6. (96)

Here C3, ..., C6 are constants of integration. Boundary conditions (93) allow us to express these constants
as
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C3 =
M2 +M4

η2 ln(r1/r2)
{C1[I0 (γ1)− I0 (γ1r1/r2)] + C2[K0 (γ1)−K0 (γ1r1/r2)] }[1em] +

p∗
(
r2

2 − r2
1

)
+ 2 r2

2η2

2 r2
2η2 ln(r1/r2)

,

C4 = −M2 + M4

η2
{C1[I0 (γ1) − 1] +C2K0 (γ1)} − p∗

2η2
,

C5 =
M1 +M3

η2 ln(r1/r2)
{C1[I0 (γ1r1/r2) − I0 (γ1)] + C2[K0 (γ1r1/r2)−K0 (γ1)] }+

p∗
(
r2

2 − r2
1

)
+ 2 r2

2η2

2 r2
2η2 ln(r1/r2)

,

C6 =
M1 + M3

η2
{C1[I0 (γ1) − 1] +C2K0 (γ1)} − p∗

2η2
. (97)

The sum of Eqs. (88) and (89)

r2(v′′1θ − v′′2θ) + r(v′1θ − v′2θ)− (1 + γ2
1r

2)(v1θ − v2θ) = 0. (98)

The solution of this equation is

v1θ − v2θ = C7I1(γ1r) +C8K1(γ1r) (99)

where I1 and K1 are modified Bessel functions of order one. On application of conditions (92), we get

v1θ − v2θ = 0. (100)

Substituting Eq. (100) into Eqs. (88) and (89), we obtain

r2v′′βθ + rv′βθ − vβθ = 0. (101)

It is easy to see that Ωβ, under the boundary conditions (92), has the form

vβθ(r) =

[
(r2 − 1)w1 +w2

]
r2

1 − r2w2r
2
2

r(r2
1 − r2

2)w2
. (102)

Discussion

In this paper some steady and slow flows of a mixture
of two incompressible inert Newtonian fluids have
been studied theoretically. Exact solutions have been
obtained for the problems under consideration. We
infer from these solutions that the presence of ex-
ternally applied pressure gradients or the difference
between boundary conditions for each fluid brings
about the relative motion between the fluids, i.e.
v1 − v2 6= 0.

In order to make predictions based on the forego-

ing analysis, it is necessary to know all of the mate-
rial functions in the constitutive equations. Determi-
nation of these functions for a mixture is much more
difficult than that for a single continuum, owing to
the large number of response functions appearing in
the constitutive equations. On the other hand, a
significant body of literature has grown up around
the problem of determining these functions due to
the fact that the flow of mixtures is of great tech-
nical importance. For example, employing results
obtained from the kinetic theory of fluids, Sampaio
and Williams (1977) were able to derive formulae for
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µ1, µ2, µ3 and µ4 in terms of the viscosities of the
unmixed fluids and the volume fractions in the case
of λ5 = 0. In this work, we benefit from the formulae
suggested by Sampaio and Williams (1977) with the
intention of assigning reasonable values to M̄1, M̄2,
M̄3 and M̄4. To achieve this for a mixture composed
of water and oil, at the outset we assume that the
densities of unmixed fluids and the volume fractions
are known. With the aid of Eqs. (3) and (10), knowl-
edge of these quantities enables ρ1, ρ2 and ρ = ρ0

to be calculated. Later, the viscosity coefficients can
be determined by using the formulae proposed in the
work of Sampaio and Williams (1977). For the pur-
pose of simulations, the following values are given to
the dimensionless parameters:

M̄1 = 0.32, M̄2 = M̄3 = 0.22, M̄4 = 0.68.
(103)
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Figure 4. Velocity components in the x-direction for
Q̄ = 1, ᾱ = 0.45
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Figure 5. Radial velocity components for V1/V = −0.1,
V2/V = −0.2, ᾱ = 1, θ0 = π/2
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Figure 6. Tangential velocity components for
V1/V = −0.1, V2/V = −0.2, ᾱ = 1, θ0 = π/2
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Figure 7. Streamline patterns for V1/V = −0.1,
V2/V = −0.2, ᾱ = 1, θ0 = π/2
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Figure 8. Axial velocity components for ᾱ = 10, p∗ = −5
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Figure 9. Axial velocity components for ᾱ = 10, p∗ = 10

In Figures 4 to 9, the velocity distributions for
constituents of binary mixture under consideration
are plotted as a function of position for various val-
ues of the parameters, keeping the material constants
fixed at the values given in Eq. (103). From these
figures, we arrive at the conclusion that the particles
of each constituent move independently with veloci-
ties v1, v2 at a given point in the mixture, but the
velocity profiles of mixture components are gener-
ally similar to those of pure Newtonian fluids. For
the solutions corresponding to pure Newtonian fluid
we refer the reader to the books of Batchelor (1967)
and Papanastasiou et al. (2000).

Nomenclature

A Helmholtz free energy, L2T−2

F external body force, LT−2

f diffusive force, ML−2T−2

I identity tensor
Im, Km modified Bessel functions of order m
k′ thermal coefficient, ML−1T−2

p pressure, ML−1T−2

Q volumetric flow rate per unit width,
L2T−1

q heat flux vector, MT−3

r heat supply, L2T−3

S entropy, L2T−2θ−1

t time, T
U internal energy, L2T−2

V translation velocity, LT−1

V1, V2 injection velocities, LT−1

v velocity vector, LT−1

w mean velocity, LT−1

w1, w2 angular velocities of the cylinders,
T−1

X reference position of a typical particle,
L

x position vector of the material parti-
cle, L

α diffusive coefficient, ML−3T−1

γ composition factor, dimensionless
λ1, ..., µ1, ... material constants, ML−1T−1

ρ density, ML−3

σ stress tensor, ML−1T−2

ψ stream function, L2T−1

= temperature, θ
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