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Abstract

Unexpected yaw disturbances, such as braking on unilaterally icy roads, side wind forces and tire ruptures,
are very difficult to handle by the driver of a road vehicle, due to his/her large panic reaction period ranging
between 0.5 and 2 s. Automatic driver assist systems provide counteracting yaw moments during this driver
panic reaction period to maintain the stability of the yaw dynamics of the vehicle. An active steering based
driver assist system that uses the model regulator control architecture is introduced and used here for yaw
dynamics stabilization in such situations. The model regulator, which is a special form of a two degree of
freedom control architecture, is introduced and explained in detail in a tutorial fashion whereby its integral
action capability, among others, is also shown. An auxiliary steering actuation system is assumed and
a limited integrator version of the model regulator based steering controller is developed in order not to
saturate the auxiliary steering actuator. This low frequency limited integrator implementation also allows
the driver to take care of low frequency steering and disturbance rejection tasks. Linear simulation results
are used to demonstrate the effectiveness of the proposed method.
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Introduction

A two degree of freedom controller that provides very
good disturbance rejection along with a high level of
robustness to unmodeled dynamics is presented in
this paper and is modified and applied to a vehicle
steering control with the aim of compensating for
unexpected yaw rotations of the vehicle during the
panic reaction period of a driver. This paper, there-
fore, has the two aims of first presenting this control
scheme in a tutorial fashion and, second, showing
that it can be used successfully as a vehicle steering
controller after appropriate modifications. This con-
trol scheme will, therefore, be introduced first, fol-
lowed by an introduction to the active vehicle steer-
ing task that is considered. Early work on this con-
trol architecture can be found in Ohnishi (1987) and
Umeno and Hori (1991). Even though some authors

have called this control architecture a disturbance
observer, this name will not be used here as this
control architecture, although somewhat similar in
its disturbance cancellation objective, is not an im-
plementation of a state estimator for disturbances
as in Mita et al. (1998) and Liu and Peng (2000).
Of the other names like model regulator and dis-
turbance estimating/canceling filter, the name model
regulator will be used here. This is a logical choice
since the aim of this control method is to force the
input-output behavior of the actual system to follow
that of a chosen model in the presence of external
disturbances and model uncertainty. The term two
degree of freedom controller is also used frequently
to describe the model regulator since it is a specific
method of implementing/designing a two degree of
freedom controller. The model regulator has been
used successfully in a variety of motion control appli-
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cations including high speed direct drive positioning
(Kempf and Kobayashi, 1999) and friction compen-
sation (Güvenç and Srinivasan, 1994). It can also
be used to achieve dynamics similar to those ob-
tained by the use of inner feedback loops through
control (Güvenç, 1999). The model regulator has
been applied to a steering control in an automated
path following of a city bus (an IFAC benchmark
problem) by Aksun Güvenç and Güvenç (2002). In
automated path following, the steering controller has
full control of the vehicle and guides the vehicle on a
designated lane with magnetic markers. This is fun-
damentally different from the vehicle yaw stabiliza-
tion task considered here, where control authority is
taken over only when needed to make sure that the
vehicle maintains yaw stability.

The aim in vehicle yaw stabilization through ac-
tive steering control is to counteract undesired yaw
rotations of the vehicle arising from unsymmetrical
dynamic loading like braking on partially icy roads,
side winds or tire blowouts. In such situations, the
driver cannot respond instantaneously. A dead time,
called the panic reaction time of the driver, passes
before the driver can start to take counter measures
through steering or braking. This panic reaction
time is about 0.5 to 2 s according to Ackermann
(2000). Therefore, the controller used in vehicle yaw
stabilization should act before this 0.5 to 2 s period
when a yaw moment disturbance occurs.

While one solution approach is to use individual
wheel braking, the other solution approach of using
a steering controller is preferred here1 . The first ap-
proach, i.e. an individual wheel braking type vehi-
cle yaw stabilization system, is available in produc-
tion cars (see van Zanten, 2000, for example). The
pioneering work in the second approach uses a ro-
bust decoupling based steering controller that works
during the panic reaction period of the driver and
counteracts the undesired yaw rotation (Ackermann,
1997). The same approach is taken here, except that
a different steering controller architecture that makes
use of the model regulator is used. The presence
of an auxiliary steering system in which the auxil-
iary steering actuator adds small corrections to the
steering angle commanded through the mechanical
steering linkage by the driver is assumed. The aim
is to leave the driving task to the driver except dur-
ing a panic reaction period following the occurrence
of a yaw moment disturbance, during the course of
which the active steering controller will impart its

corrective action through the auxiliary steering ac-
tuator. This is in accordance with the work reported
in Ackermann and Bünte (1997) and Aksun Güvenç
et al. (2001a). One also needs to be careful in not
saturating the auxiliary steering actuator and should
therefore limit the controller action as in Ackermann
and Bünte (1997). Therefore, the limited integrator
implementation of the model regulator is introduced
and used in this paper.

The organization of the paper is as follows. The
conventional model regulator is presented and its
structure is explained in detail in Section 2, which
can also be viewed as a tutorial section on the model
regulator. The single track car model used is intro-
duced and numerical data being used along with the
problem specifications are given in Section 3. The
application of the model regulator to vehicle steer-
ing control for yaw stabilization is presented in Sec-
tion 4. In this section, an auxiliary steering actu-
ation system is assumed for active steering control
and the limited integrator version of the model reg-
ulator based steering controller is developed. The
paper ends with conclusions.

The Structure of the Model Regulator

The steering controller that is used here is based on
the model regulator whose conventional architecture
is shown in Figure 1 and comprises the blocks Q and
Q/Gn that form the two model regulator degrees of
freedom. The augmentation of the plant G with the
model regulator as seen in Figure 1 forces it to be-
have like its nominal (or desired) model within the
bandwidth of the model regulator.
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Figure 1. System with model regulator.

Using a verbal explanation, the model regulation
in Figure 1 is achieved by first comparing the input
u to the plant represented by uQ (approximately the
same as u as will be seen later) with the input uy

1Future driver assist systems for yaw stabilization are expected to use a combination of both approaches.
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that should have been applied to obtain the mea-
sured output y based on the nominal (or desired)
knowledge of the plant and then by passing the dif-
ference um.r.through a positive feedback loop.

How this is done is explained more analytically
next. Consider plant G with multiplicative model er-
ror ∆m and external disturbance d. Its input-output
relation can be expressed as

y = Gu+ d = (Gn(1 + ∆m))u+ d (1)

where Gn is the nominal (or desired) model of the
plant. The aim in model regulator design is to obtain

y = Gnun (2)

as the input–output relation in the presence of model
uncertainty and external disturbance. un in (2) is a
new input signal to be defined below. This aim is
achieved in model regulator design by treating the
external disturbance and model uncertainty as an
extended disturbance e and solving for it as

y = Gnu+ (Gn∆mu+ d) = Gnu+ e (3)

e = y −Gnu (4)

and using the new control signal un given by

u = un −
e

Gn
= un −

1
Gn

y + u (5)

to cancel the effect of e when substituted back in (3).
With the aim of trying to limit the compensation to
a pre-selected low frequency range (in an effort not
to overcompensate at high frequencies and to avoid
stability robustness problems), the feedback signals
in (5) are multiplied by the low pass filter Q, which
can also be viewed as a tunable design entity. In this
case, the implementation equation becomes

u = un −
Q

Gn
(y + n) +Qu (6)

where y + n, with n representing the sensor noise,
is used as this is the actual output signal that is
available. This is illustrated in the block diagram of
Figure 1. The relative degree of the unity d.c. gain
low pass filter Q is chosen to be at least equal to

the relative degree of Gn for causality of Q/Gn. The
loop gain of the model regulator compensated plant
is

L =
GQ

Gn (1−Q)
(7)

with the model regulation, disturbance rejection and
sensor noise rejection transfer functions being given
by

y
un

= GnG
Gn(1−Q)+GQ

y
d = 1

1+L = Gn(1−Q)
Gn(1−Q)+GQ

y
n = −L

1+L = −GQ
Gn(1−Q)+GQ

(8)

from which it is obvious that Q must be a unity
gain low pass filter. As is desired, this choice will
result in y/un→Gn (model regulation), y/d→0 (dis-
turbance rejection) at low frequencies where Q →1,
and y/n→0 (sensor noise rejection) at high frequen-
cies where Q → 0. Thus, conventional model regu-
lator design is one of shaping Q as a low pass filter
as illustrated in Figure 2. Of course, high frequency
disturbance rejection is not possible with this choice,
i.e. y/d →1 as Q → 0 at high frequencies. This is
not a major concern as such high frequency plant
disturbances of significant size do not occur in vehi-
cle yaw stabilization tasks. If one insists on using the
model regulator for a general controls task incorpo-
rating high frequency plant disturbances, either the
cutoff frequency of the Q filter can be increased along
with better modeling and a higher fidelity sensor to
achieve Q →1 at the high frequencies of interest or
a disturbance feedforward compensation scheme can
be utilized if it is possible to sense the high frequency
disturbance.

A bandwidth limitation for the Q filter and hence
the model regulator comes from the stability robust-
ness requirement. To see this, rewrite the character-
istic equation in (8) given by

Gn (1−Q) + Gn (1 + ∆m)Q = 0 (9)

as

Gn (1 + ∆mQ) = 0 → Q = − 1
∆m

(10)

An application of the small gain theorem (see
Skogestad and Postlethwaite, 1996) results in
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|Q| <
∣∣∣∣ 1
∆m

∣∣∣∣, for ∀ω (11)
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Figure 2. Model regulator design requirements.

as the sufficient condition for robust stability. This
requirement is also illustrated in Figure 2. How to
obtain the worst case plot (or the stability robustness
boundary) for |∆m,max| such that |∆m| < |∆m,max|

for all frequencies will not be presented here as this
paper does not focus on robustness analysis or robust
controller design. Answers to these questions can be
found for the general case in textbooks like Skoges-
tad and Postlethwaite (1996) and Ackermann et al.
(2002). The computation of |∆m,max| for a similar
vehicle dynamics control problem can be found in
Bünte et al. (2001).

For specific choices of Q(s), the model regula-
tor introduces integrators into the loop, resulting in
reduced steady state error for reference and distur-
bance inputs. To see how the integrators are intro-
duced, consider the equivalent form of the model reg-
ulator in Figure 3 and consider Q(s) of the form

-

un

n

G

nG
Q

Q-1
1

d

y

Figure 3. Equivalent form of model regulator.

Q(s) =
αms

m + · · ·+ αk+1s
k+1 + aks

k + ak−1s
k−1 + ...+ a1s+ 1

ansn + an−1sn−1 + ...+ a2s2 + a1s+ 1
, k ≤ m < n (12)

Evaluate Q/(1−Q) in the loop gain of (7) to obtain

Q

1 −Q
=

αmsm + · · ·+ αk+1s
k+1 + aks

k + ak−1s
k−1 + ...+ a1s+ 1

sk+1
�
ansn−k−1 + an−1sn−k−2 + ...+ (am − αm) sm−k−1 + (am−1 − αm−1) sm−k−2 + · · ·+ (ak+1 − αk+1)

� (13)

which shows that k + 1 integrators are incorporated
into the loop for the choice of Q in (12). Note
that several commonly used forms for Q(s) are of
the form (12) and hence provide integral action.
Q(s) = 1/(τs+ 1)l (m = 0, n = l, k = 0) for ex-
ample introduces one integrator into the loop. Sim-
ilarly Q(s) = 1

/
((s/ω)2 + (2ζ/ω)s+ 1) (m = 0, n =

2, k = 0) also introduces one integrator into the
loop. Q(s) = (3τs+ 1)

/
(τ3s3 + 3τ2s2 + 3τs+ 1)

(m = 1, n = 3, k = 1) used in Kempf and Kobayashi
(1999) introduces two integrators into the loop. It
should be noted that while the presence of integral
action is useful for reducing steady state error, the
model regulator is not simply an alternative design
of an integral controller as suggested in Mita et al.
(1998). Not all forms of the low pass filter Q(s) will

result in integral action. Certainly, the ideal situa-
tion of Q = 1 does not result in integral action in the
loop, but rather infinite gain at all frequencies.

Vehicle Model for Yaw Dynamics and Prob-
lem Specifications

The vehicle model used in this paper is the classi-
cal single track model, also called the bicycle model,
which is shown in Figure 4. The main advantage of
and reason for using the single track model is its sim-
plicity. Its main disadvantages, of course, are that
the four wheel distribution is not handled directly
and that the roll and pitch motions are not modeled.
However, keeping in mind its shortcomings, the sin-
gle track model has been used extensively, especially
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Figure 4. Single track model for car steering.

in the context of vehicle lateral control systems. The
major variables and geometric parameters of the sin-
gle track model are
Ff (Fr) lateral wheel force at front (rear)

wheel
Mz moment about the vertical axis z

through the center of gravity (CG)
r yaw rate
β chassis side slip angle at vehicle CG
αf (αr) front (rear) tire side slip angle
v magnitude of velocity vector at CG

(v > 0, dv/dt = 0)
lf (lr) distance from front (rear) axle to CG
δf front wheel steering angle
m the mass of the vehicle
J the moment of inertia w.r.t. a vertical

axis through the CG
cf(cr) front (rear) wheel cornering stiffness
µ friction coefficient at road–tire inter-

face
The transfer function from the front wheel steer-

ing angle δf to the yaw rate r for the linearized single
track model is given by (see Ackermann et al., 2002)

Grδf (s) =
r(s)
δf (s)

=
b1s + b0

a2s2 + a1s+ a0
(14)

with

b0 = cf cr(lf + lr)v
b1 = cf lfmv

2

a0 = cfcr(lf + lr)2 + (crlr − cf lf )mv2

a1 = (cf(J + l2fm) + cr(J + l2rm))v
a2 = Jmv2

Grδf (s) in (14) is also called the steering wheel
input response transfer function here. The aim in ac-
tive steering control is to shape this transfer function

to achieve good steering command handling. The
d.c. gain of the nominal single track model is

Kn(v) = lim
s→0

Grδf (s)
∣∣∣
µ=µn

(15)

at the chosen longitudinal speed v and at nominal
friction coefficient µ = µn (taken as unity here).
The yaw disturbance input transfer function from
yaw disturbance moment Mz to yaw rate r for the
linearized single track model is given by

GrMz(s) =
r(s)
Mz(s)

=
mv2s+ (cf + cr)v
a2s2 + a1s+ a0

(16)

Note that a step input of Mz can be used to model
entering unilaterally icy road. The aim in active
steering control is to reject the effect of yaw moment
disturbances on the yaw motion of the vehicle (i.e.
keeping corresponding yaw rate r small). The block
diagram of the linearized single track model is shown
in Figure 5. The reader is referred to the references
(see Ackermann et al., 2002, for example) for more
detailed information on the single track model. Note
that the vehicle model given by equations (14) and
(16) is a linear parameter (velocity v here) varying
model.

frG δ

zrMG

δ f r

Mz

Figure 5. Linearized single track model.
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The vehicle model data used here corresponds to
a mid-sized passenger car that is available in the lit-
erature. The nominal values used are lf = 1.25 m,
lr = 1.32 m, m = 1296 kg, J = 1750 kgm2, cf0 =
84000 N/rad and cr0 = 96000 N/rad. The nominal
friction coefficient is µn = 1, which corresponds to
a dry road. The two variables exhibiting the largest
variation during operation are the longitudinal speed
v and the mass m of the vehicle. The tire cornering
stiffnesses cf = µcf0 and cr = µcr0 can also exhibit
large variations due to variations in friction coeffi-
cient µ between the road and the tires.

Model Regulator Based Steering Control

The model regulator based steering controller is illus-
trated in Figure 6. Grδfdesired is the desired steer-
ing command transfer function in this figure. Gsa
represents the auxiliary steering actuator. Gsa = 1
is used here for easier presentation of results. The
presence of an auxiliary steering actuator with a nec-
essarily limited range of action is taken into account
indirectly in the model regulator based steering con-
troller design reported here by using limited integra-
tor action. In previous work, Q and Grδfdesired were
chosen as

plant augmented/compensated by
model regulator d

r

n

Mz

GrMz

δf

δm.r.

Gsa
Q

Q
Grδf desired

Grδf

-

δd

Figure 6. Model regulator based steering controller.

Q =
1

τQs+ 1
(17)

Grδfdesired =
Kn(v)
τns+ 1

(18)

(see Bünte et al., 2001, and Aksun Güvenç et al.,
2001b, respectively) to achieve integral action for the

steer-by-wire type implementation of the model reg-
ulator based steering controller. Equation (18) re-
quires the use of a velocity scheduled implementation
of the model regulator, which was used successfully
in Aksun Güvenç et al. (2001a). To avoid possi-
ble steering actuator saturation problems that are
much more demanding when auxiliary steering actu-
ation is considered, a band pass Q filter was used in
Aksun Güvenç et al. (2001a). The approach taken
here is more direct and uses a limited integrator type
implementation of the model regulator in order not
to overload the steering actuator. This is similar to
the fading integrator idea of Ackermann and Bünte
(1997).

Regarding the choice of a first order form for the
desired dynamics Grδfdesired in (18) as compared to
second order model dynamics Grδf in (14), there are
three reasons for this choice. They are: 1) to avoid
an oscillatory controlled yaw response, 2) to show
that a lower order dynamic behavior can be imposed
on the system by using the model regulation concept
and 3) to have a simple controller at the end. It is,
of course, possible to use a second order form similar
to (14) but with nominal parameter values and with
µ = µn = 1 (dry road) instead of (18) forGrδfdesired.
It is also possible to use a critically damped second
order transfer function for Grδfdesired.

Limited integrator implementation

Another practical problem that needs to be ad-
dressed is one of the man-machine interface. The
task of the steering controller is to intervene only
during the panic reaction period of the driver when
a yaw moment disturbance occurs and to hand over
the steering task back to the driver afterwards. In
control specific terms, the steering controller should
only react to high frequency inputs outside the band-
width of the driver. This is called short duration
steering control here. Note that this effect can also
be called the fading effect and is necessary when an
auxiliary steering controller is used in order to avoid
saturating the auxiliary steering actuator with a lim-
ited capability of steering wheel angle change.

Recall from Section 2 that the choice (17) for Q
results in an integrator being incorporated into the
loop gain as

Q

1−Q =
1
s
R(s) =

nR(s)
dR(s)

. (19)

where R(s) represents everything other than the in-

478
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tegrator. This results in zero steady state error in
response to step reference and disturbance inputs.
Short duration steering control can be achieved by
using a low frequency limited integrator, as illus-
trated in Figure 7, instead of an integrator in the
loop. For this purpose, it is necessary to incorporate
the low frequency limited integrator K/(τs+ 1) in-
stead of 1/s in the model regulator loop using

Q

1−Q =
K

τs+ 1
R(s) =

K

τs+ 1
nR(s)
dR(s)

. (20)

Back solving for Q in (20) results in

Q =
KnR(s)

(τs+ 1)dR(s) + KnR(s)
(21)

Using the simplest possibility with R = nR =
dR = 1 results in

Q =
K

τs+ 1 +K
=

K/(1 +K)(
τ

1+K

)
s+ 1

(22)
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Figure 7. Low frequency limited integrator.

The simulation results with (22) as Q, with K =
10, τ = 0.006 s and with Grδfdesired given in (18)
are shown in Figures 8 and 9. The simulations were
conducted at six operating conditions corresponding
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Figure 8. Steering wheel step input responses.
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Figure 9. Yaw moment step disturbance responses.

to different values of speed and road–tire friction co-
efficient, the latter ranging from icy to dry road. Step
commands of driver steering input (see Figure 8) and
yaw moment disturbance input (see Figure 9) were
treated in these simulations. The responses with the
active steering controller of this section are displayed
using solid lines (controlled) and dashed lines are
used in its absence (conventional) in Figures 8 and
9. It is seen from an examination of these figures
that the short duration steering intervention objec-
tive has been met. The steering command responses
in Figure 8 follow the desired steering dynamics spec-
ified in (18) quite well at all operating conditions. In
interpreting the results displayed in Figure 8, the fol-
lowing remarks should be taken into account: 1) the
steering wheel step input value has been normalized
to obtain unity as the steady state value of the yaw
rate under dry road condition (i.e. µ = 1), 2) the
conventional vehicle yaw rate responses on the right
hand side of Figure 8 exhibit large values of devia-
tion from unity at steady state as the road is not dry
(µ < 1), 3) the controlled vehicle yaw rate responses
on the right hand side of Figure 8 have values close

to unity at steady state, the small deviations from
unity being due to the limited integrator nature of
the model regulator used.

The disturbance rejection is also very good with
the model regulator with low frequency limited in-
tegrator action, as is seen in Figure 9, but a steady
state error, which can easily be zeroed by the driver,
remains. An advantage of the model regulator based
steering controller is that it is easily adjusted for sat-
isfying different goals. The desired steering dynam-
ics can be specified for better handling dynamics,
for instance, by changing Grδfdesired in (18). The
disturbance rejection properties and the amount of
limited integrator action can be adjusted by modify-
ing K and τ in (22). The design can also be carried
out in the space of chosen controller parameters to
satisfy frequency response magnitude constraints like
weighted sensitivity or mixed sensitivity bounds (see
Bünte et al., 2001, for example).

Note that only constant velocity operation at
three different velocities has been treated here for
ease of exposition. In a practical implementa-
tion, the controller is also velocity scheduled (Kn(v)
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changes with velocity in equation (18)). This has
been illustrated with a different approach to Q filter
design in Aksun Güvenç et al. (2001a).

Note that one of the aims in using limited integra-
tor type model regulation was to try to reduce the
risk of auxiliary steering actuator saturation. The
maximum value of the yaw disturbance moment is
taken as 4000 Nm in this study and has been used
in the simulations of Figure 9. The auxiliary steer-
ing actuator saturation limit is specified as corre-
sponding to ±3◦ of wheel rotation here. The min-
imum value of the disturbance moment that causes
the auxiliary steering actuator to saturate turns out
to be 6119 Nm. The auxiliary steering actuator did
not saturate during any of the simulations reported
here. For the purposes of illustration, the auxiliary
steering actuator output δm.r. is shown in Figure 10
for both the limited integrator model regulator (solid
plot) discussed until now and a standard model reg-
ulator (dashed plot). For the standard model reg-
ulator, the only difference was the use of Q(s) in
(17) with τQ = τ/(1 + K) instead of equation (22).
Comparison of the two cases in Figure 10 shows that
the standard model regulator is closer to the limit of
saturation (|δm.r.|max = 2.24◦ ) in comparison to the
limited integrator one (|δm.r.|max = 1.86◦). While a
properly configured Q(s) will reduce the risk of sat-
uration, there will always be a large enough distur-
bance that will cause saturation. The consequence
of auxiliary steering actuator saturation will be a
degradation in performance. Therefore, one should
be careful to avoid the possibility of saturation in de-
sign. This can be achieved by using a less aggressive
controller or by using an auxiliary steering actuator
with a larger saturation limit.
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Figure 10. Auxiliary steering actuator output compari-
son.

Conclusions

Active vehicle steering controller development for
yaw dynamics stabilization was examined, in this pa-
per. An auxiliary steering actuation system was as-
sumed and a low frequency limited integrator version
of a model regulator based steering controller was de-
veloped in order not to saturate the auxiliary steering
actuator and to let the driver take care of low fre-
quency steering and disturbance rejection tasks. Lin-
ear simulation results have shown the effectiveness of
this method for improving vehicle steering dynamics
and in rejecting yaw moment disturbances. Further
work should use a realistic steering actuator model
and a higher order, more realistic vehicle model for
simulation.
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Degree of Freedom Add-On Controller Design For
Automatic Steering,” IEEE Transactions on Con-
trol Systems Technology, 10, 137-148, 2002.
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