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Viscous Heating Effects in Viscoelastic Flow between Rotating
Parallel-Disks

Bülent YEŞİLATA
Department of Mechanical Engineering, Harran University,
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Abstract

Viscoelastic flow between two rotating parallel-disks (plates) is studied. First the current state of the art
is discussed and the limitations resulting from the simple flow assumptions are reported. In an attempt to
consider the effects of finiteness of the plates and viscous dissipation, the flow problem is fully formulated;
that is, no assumptions are made about the three-dimensional and nonisothermal nature of the flow. One of
the major contributions to the formulation is to use a nonisothermal constitutive equation, the nonisothermal
Oldroyd-B equation. In this case, the numerical solution scheme of resulting equations is too complex, even
for the Oldroyd-B model, which is considered one of the simplest constitutive equations for polymeric flows.
Instead, the problem is reduced to a one-dimensional nonisothermal infinite plate problem and the viscous
dissipation effect is then investigated. It is determined here that the viscous dissipation effect results in a
significant temperature rise in the flow field and may yield errors in the prediction of the material properties
of highly viscous and elastic fluids. Some simple modifications in existing equations used for the prediction
of fluid-material properties are proposed by considering viscous dissipation and free surface effects.

Key words: Polymeric (Viscoelastic) fluid, Parallel-Disks, Rheometry, Nonisothermal, Viscous dissipation
effect.

Introduction

Viscoelastic flow between two rotational plates has
received considerable attention in the literature since
it is the basis for rheological measurements of the vis-
cosity and normal stresses in non-Newtonian liquids
(Bird et al., 1987). Similar flow geometry can also
be found in a particular extrusion processing of poly-
mers (Tadmor and Gogos, 1979). The schematics of
the geometry in both applications are shown in Fig-
ures 1(a) and (b). The simplest case of the flow ge-
ometry consists of two co-axial disks of radius R, and
these disks are separated by a narrow gap of height
H . In a rheological measurement, fluid samples are
placed in the narrow gap, and the motion is gener-
ated by rotating the upper plate at a fixed rotation
rate (Ω) while the bottom plate remains stationary.
The dimensionless rotation rate is expressed by the

Deborah number, De = λΩ, where λ is the relaxation
time of the fluid. The torque required to achieve
this rotation as well as the total force required to
maintain the disks at a separation H and pressure
distribution across one of the plates are measured to
predict rheological properties in shear flow.

For prediction of the viscometric properties of
a fluid, the flow is assumed to be steady, one-
dimensional, and isothermal for all rotation rates.
Early theoretical and experimental observations,
however, have revealed that these simple flow as-
sumptions are not always valid in practical situa-
tions, and prediction of rheological parameters un-
der these assumptions may lead to significant errors
(Bird et al., 1987). The major sources of error in
predicting using simple flow assumptions are elastic
flow transitions, surface deflection at the edge, and
temperature rise due to viscous dissipation, and they
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are discussed briefly below.

H
z

r

R

Ω

R

H
Fluid sample

r
z

Free surface

Ω
(a)

(b)

Figure 1. The schematics of (a) a typical parallel-plate
rheometer, (b) a normal-stress extruder.

Elastic flow instabilities

Although most of the previous work related to ro-
tating parallel disks dealt with the prediction of sec-
ondary flow due to the elasticity of the fluids, few of
these were able to report well enough the structure
and origin of the instability. McKinley et al. (1991),
Oztekin and Brown (1993), and Byars et al. (1994)
have reported the following conclusions related to the
flow transition.

Flow becomes time dependent and non-
axisymmetric beyond a critical value of the dimen-
sionless rotational rate, or Deborah number (i.e.
Decrit = 4.54 ± 0.02 for parallel-plate geometry).
The temporal character of the secondary flow results
in monotonic increase with time on the measure-
ments of apparent viscosity and first normal stress.
This transition is called shear-thickening or anti-
thixotropic instability. The spatial character of the
instability is a sensitive function of the fluid rheology
and the aspect ratio of the finite disks. The origin

of this instability is the large difference between
the extra normal stresses in the streamwise direc-
tion and the direction of shear, which is inherent in
viscoelastic fluids.

Edge (free surface) effect

The edge effect is usually important when the aspect
ratio of a parallel-plate rheometer (R/H) is relatively
small; that is, the instrument has finite dimensions.
In this case, some distortion to the flow field near the
edge may penetrate through to the flow far from the
free surface and affect the result of the measurement.
From earlier theoretical and experimental studies, it
is known that there is reversal flow from the edge
throughout the fluid and this formation may change
flow characteristics even far away from the edge (see,
for example, Griffiths et al., 1969). In dealing with
the theoretical prediction of the flow characteristics,
all of the current work (with the exception of Ola-
gunju 1994, Avagliano and Phan-Thien 1995) utilize
semi-infinite geometry to obtain a solution. In the
analysis by Olagunju (1994), the flow of a viscoelastic
fluid is considered to be held by surface tension be-
tween two rotating finite plates. He obtained explicit
formulas to account for contributions of edge effects
on the torque and normal force. It was concluded
that torque measurement was insensitive to the edge
effect while normal stress was sensitive. These re-
sults were similar to those obtained by Shipman et
al (1991). Avagligano and Phan-Thien (1995) also
used finite plate geometry; however, their study con-
centrated on flow transitions instead of obtaining the
correction factor due to edge effects.

Viscous dissipation effect

When a fluid is sheared, some of the work done
is dissipated as heat. This shear-induced heating
gives an inevitable increase in temperature within
the fluid. Because of the high viscosities of poly-
meric fluids, especially polymer melts, a tempera-
ture rise due to viscous dissipation may considerably
affect the isothermal flow field. Moreover, fluid pa-
rameters, such as viscosity and relaxation time, are
very sensitive to temperature changes. In spite of
this crucial importance of the temperature depen-
dent flow phenomenon, relatively little attention has
been paid to the non-isothermal flow of viscoelas-
tic fluids until the last few years. Recent experi-
mental observations on the dynamics and kinemat-
ics of nonisothermal viscoelastic flows have been re-

504
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ported by Yesilata et al. (2000) for contraction flows,
and Rothstein and McKinley (2001), and Olagunju
et al. (2002) for torsional flows. These studies
have demonstrated remarkable modifications the on-
set conditions of purely elastic instabilities for both
flows due to temperature gradients resulting from
sequential heating or cooling imposed at the bound-
aries or the heat generated by viscous dissipation.
One of the main conclusions drawn by Yesilata et
al. (2000) is that modeling nonisothermal viscoelas-
tic flows requires constitutive equations that include
the effect of temperature gradient on the stress
field. In other words, coupling between the mo-
mentum and energy conservation equations should
be achieved through temperature-dependent consti-
tutive equations along with temperature-dependent
material properties. Therefore, the modeling of the
viscous heating effect for viscoelastic fluids is quite
different than that for inelastic non-Newtonian flu-
ids, which has been reported previously by Turian
and Bird (1963). A nonisothermal constitutive equa-
tion is necessary due to the relative difference be-
tween the observers’ time scale and the material’s
internal time scale, according to the Morland-Lee
hypothesis (see Luo and Tanner, 1987). Recently,
significant progress has been made in the develop-
ment of non isothermal constitutive equations and
several proposed models presently exist in the liter-
ature (see Bird and Wiest (1995) for a review).

This paper mainly deals with misprediction of
rheological data due to viscous heating rather than
its effect on rotational flow transitions. Three-
dimensional formulation of the flow, which consid-
ers free surface effects at edges and viscous dissipa-
tion effect, is clearly outlined in Section 2. Inclusion
of the time-dependency and nonaxisymmetry of the
flow is the subject of a complex stability analysis and
thus is outside the scope of this paper. One of the
major contributions to the formulation is to use a
nonisothermal constitutive equation, the nonisother-
mal Oldroyd-B equation, which is obtained from the
non-isothermal Giesekus constitutive equation pro-
posed by Wiest (1995). The Oldroyd-B constitutive
equation predicts a constant viscosity and a constant
first normal stress coefficient, and thus it is relatively
a simple model for viscoelastic flows. The model is
very suitable for Boger fluids that have nearly con-
stant viscosities up to high shear rates. In order to
explore whether a temperature gradient is present
in the flow due to viscous dissipation, the solution
found for one-dimensional and nonisothermal flow

between infinite plates is applied to a typical vis-
coelastic fluid (PIB/PB Boger fluid) in Section 3.

Formulation

Dimensionless governing equations

Dimensionless governing equations for creeping flow
(Re = 0) of a viscoelastic flow are given as

∇.v = 0 (1)

−∇p+∇.S +∇.(1− βT )γ̇ = 0 (2)

Pe
DT

Dt
−∇2T −Na[S : ∇ v + (1− βT )γ̇ : ∇ v] = 0

(3)

where v is the velocity vector, p is the pressure, S
is the polymeric contribution to the deviatoric stress
tensor, and βT is the ratio of temperature depen-
dent polymer viscosity to total viscosity measured
at reference temperature. Operators ∇, D/Dt, and
(:) show gradient vector, substantial derivative and
double-dot product of two tensors respectively. Clear
definitions of these operators can be found in ap-
pendix section of the book by Bird et al. (1987). The
total viscosity (η = ηp + ηs) is formed by contribu-
tions of polymer viscosity (ηp) and solvent viscosity
(ηs). Definitions of these parameters along with the
temperature shift factor (aT), the rate-of-strain ten-
sor (γ̇), dimensionless temperature (T ), Peclet num-
ber (Pe), and Nahme-Griffith number (Na) are given
as

βT = aT [ηp/η] = aTβ, aT = exp[C(
1
T̃
− 1
T̃0

)],

T =
T̃ − T̃0

∆T̃
, ∆T̃ =

1
(daT /dT̃ )T̃=T̃0

γ̇ = ∇v + (∇v)T , P e =
ρcpH

2γ̇2
R

k

Na =
ηH2γ̇2

R

k∆T̃
, γ̇R = ΩR/H,
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where ρ, cp, and k, are respectively, density, heat
capacity per unit mass, and thermal conductivity of
the fluid. The superscript ‘∼’ is explicitly used here
for some cases to emphasize that the parameter has
a dimension, and thus T̃ denotes dimensional tem-
perature. Since no reference temperature difference
can be obtained from the boundary conditions, ∆T̃
is selected as a rheological temperature difference
(see Pearson, 1978). The polymeric contribution to
the deviatoric stress tensor is given by nonisothermal
form of Oldroyd-B constitutive equation

[1−DeT
D(lnT )

Dt
]S + DeT [v.∇S − S.L− S.LT ] = βT γ̇

(4)

where the second term in the first parentheses is
due to the non isothermal effect (see Wiest, 1995),
L = ∇ v, and superscript T stands for trans-
pose. DeT = λTΩ = aTλΩ is the definition of
the temperature dependent Deborah number with
temperature dependent relaxation time (λT ). The
governing equations given above were scaled with
(H,Ω−1, HΩ, η0Ω) for length, time, velocity, and
stress respectively. The final forms of the continu-
ity, momentum, and energy equations for steady and
axisymmetric flow of a viscoelastic fluid are

∂vr
∂r

+
vθ
r

+
∂vz
∂z

= 0 (5)

−∂p
∂r

+ {1
r

∂(rSrr)
∂r

+
∂(Srz)
∂z

− Sθθ
r
}+ {1

r

∂[r(1− βT )γ̇rr ]
∂r

+
∂[(1− βT )γ̇rz ]

∂z
− (1− βT )γ̇θθ

r
} = 0 (6)

{ 1
r2

∂(r2Srθ)
∂r

+
∂(Sθz)
∂z

}+ { 1
r2

∂[(1− βT )r2γ̇rθ ]
∂r

+
∂[(1− βT )γ̇θz]

∂z
} = 0 (7)

−∂p
∂z

+ {1
r

∂(rSrz)
∂r

+
∂(Szz)
∂z

}+ {1
r

∂[(1− βT )rγ̇rz ]
∂r

+
∂[(1− βT )γ̇zz]

∂z
= 0 (8)

Pe{vr
∂T

∂r
+ vz

∂T

∂z
} − {1

r

∂

∂r
(r
∂T

∂r
) +

∂2T

∂z2
} −Na{[Srr + (1− βT )γ̇rr ](

∂vr
∂r

)

+[Srθ + (1− βT )γ̇rθ ](
∂vθ
∂r
− vθ

r
) + [Srz + (1− βT )γ̇rz ](

∂vr
∂z
− ∂vz

∂r
)

+[Sθθ + (1− βT )γ̇θθ](
vr
r

) + [Sθz + (1− βT )γ̇θz](
∂vθ
∂z

)

+[Szz + (1− βT )γ̇zz](
∂vz
∂z

)} = 0

(9)

where

γ̇rr = 2
∂vr
∂r

, γ̇rθ = γ̇θr = r
∂

∂r
(
vθ
r

), γ̇rz = γ̇zr =
∂vr
∂z

+
∂vz
∂r

, γ̇θθ = 2
vr
r
, γ̇θz = γ̇zθ =

∂vθ
∂z

, γ̇zz = 2
∂vz
∂z

The components of the constitutive equation given by equation (4) are expressed as

ΓSrr + DeT {−2
vθ
r
Srθ − 2[SrrLrr + SrθLθr + SrzLzr ] = βT γ̇rr (10)
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ΓSrθ + DeT {
vθ
r

(Srr − Sθθ) − [SrrLrθ + Srθ(Lθθ + Lrr) + SrzLzθ + SθθLθr + SθzLzr ]} = βT γ̇rθ (11)

ΓSrz + DeT {−
vθ
r
Sθz − [SrrLrθ + Srz(Lzz + Lrr) + SθzLθr + SzzLzr]} = βT γ̇rz (12)

ΓSθθ + DeT {2
vθ
r
Srθ − 2[SrθLrθ + SθθLθθ + SθzLzθ]} = βT γ̇θθ (13)

ΓSθz +DeT {
vθ
r
Srz − [SθrLrz + Sθz(Lzz + Lθθ) + SrzLrθ + SzzLzθ]} = βT γ̇θz (14)

ΓSzz + DeT {−2[SrzLrz + SzzLzz ]} = βT γ̇zz (15)

where

Γ = {1−DeT (vr
∂

∂r
+ vz

∂

∂z
) ln(T )};

Lrr =
∂vr
∂r

, Lrθ =
∂vθ
∂r

, Lrz =
∂vz
∂r

, Lθr = −vθ
r
, Lθθ =

vr
r
, Lθz = 0, Lzr =

∂vr
∂z

, Lzθ =
∂vθ
∂z

, Lzz =
∂vz
∂z

.

Boundary conditions

For a more general approach, we consider that the
top plate rotates with constant angular velocity Ω
and the bottom plate with angular velocity sΩ where
−1 ≤ s ≤ 1. Corresponding boundary conditions are
given below:

No-slip and no-penetration and isothermal condi-
tions on the top (z = 1) and bottom (z = 0) plates,

vr = vz = 0, vθ = r, T = 0 (16)

vr = vz = 0, vθ = rs, T = 0 (17)

Symmetry conditions at the centerline (r = 0)

vr = vθ = 0,
∂vz
∂r

=
∂T

∂r
= 0 (18)

Boundary conditions at the free surface of r =
f(z), where f(z) is dimensionless shape of the menis-
cus at the free surface: respectively, no flow through
the boundary of the surface, stress balance at the
boundary, and isothermal boundary

v.∇f = 0 (19)

(p− pa)n+ [S + (1− β)γ̇ ].n = σFn (20)

T = Ta (21)

where pa is atmospheric pressure, n is unit vector
normal to the surface (outward), σ is surface ten-
sion, F is mean curvature of the surface, and Ta is
atmospheric air temperature, which all are dimen-
sionless. Since f(z) is also a part of the solution,
additional boundary conditions on the top and bot-
tom plates are needed. One of the best approaches
is to apply the pinning condition to the plates (see
Olagunju, 1994), as given below

f(z = 0) = R and f(z = 1) = R. (22)
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YEŞİLATA

Infinite Plate Solution (R >> H)

For the infinite plate case, by assuming that the top
plate rotates while the bottom plate is stationary (s
= 0), the velocity components in the flow field can
be expressed as

vr = vz = 0 vθ = vθ(r, z). (23)

The corresponding boundary conditions for z =
0 and z = 1 are given as

vθ = 0, T = 0 (24)

vθ = r, T = 0. (25)

The process of the solution is summarized as fol-
lows:

• Continuity equation (1) is satisfied,

• The components of the rate-of-strain tensor all
vanish except for the two components given be-
low

γ̇rθ = γ̇θr = r
∂

∂r
(
vθ
r

), γ̇θz = γ̇zθ =
∂vθ
∂z

• The operators defined in the equations (10) -
(15) become

Γ = 1, and Lrθ = ∂vθ
∂r
, Lθr = −vθ

r
, Lzθ = ∂vθ

∂z
(the other L’s are “0”)

• The stress components obtained from the con-
stitutive equations are substituted into the mo-
mentum and energy equation that yield the fol-
lowing forms:

∂p

∂r
= −2

r
DeT βT (

∂vθ
∂z

)2 (26)

∂2vθ
∂z2

+
1
r2

∂

∂r
{(1− βT )r2[

∂vθ
∂r
− vθ

r
]} = 0 (27)

∂p

∂z
= 0 (28)

1
r

∂

∂r
(r
∂T

∂r
) +

∂2T

∂z2
+ Na{(∂vθ

∂r
− vθ

r
)2 + (

∂vθ
∂z

)2} = 0

(29)

• The definition of velocity profile as vθ = rw(z),
where w(z) is assumed to be nearly unaffected
by temperature, and consideration of the order
of magnitudes for the terms in energy equation
gives the corresponding flow, stress and tem-
perature field:

vθ = rz, p = −DeT βT r2 (30)

Srr = Srθ = Srz = Szz = 0, Sθθ = 2DeT βT r2,

Sθz = −βT r
(31)

T =
1
2

(Na)r2z(1− z) (32)

Numerical example for a parallel plate
rheometer

The solution obtained above is applied to a particu-
lar viscoelastic fluid (PIB/PB based Boger fluid with
material properties of η = 43 Pas, λ = 1.8 s, β =
ηp/ηo = 0.35 at T̃o = 295 K). The radius and height
of the rheometer are selected as R = 20 mm, and
H = 1 mm, which are quite typical for a parallel-
plate rheometer. For illustration purposes, “z” is
kept constant (z = 0.5).

The radial profiles of temperature and normal
stress in the ‘θ’ direction (Sθθ) are given in Figures
2(a) and (b) as a function of rotation rate (Ω) or
Deborah number, which is defined at T̃o = 295K, De
= λ(T̃o)Ω. The temperature increase due to viscous
dissipation is negligible around the rotation center
for all De values and also along the radial direc-
tion for small De values as illustrated in Figure 2(a).
However, it increases significantly at higher De val-
ues, reaching almost 3K for De = 5.4 and 8K for De
= 9 at the edge of the plates. The corresponding
difference in fluid properties from the center to the
edge is over 60% since a typical polymeric fluid such
as the one used here is strongly temperature depen-
dent. This feature of the fluid can be observed from
the plot in Figure 2(b). Values of normal stresses
with and without viscous heating effect greatly differ,
especially for the edge and for increasing De values.
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Figure 2. Radial profiles of (a) temperature and (b) nor-
mal stress in the ‘θ’ direction (Sθθ). Plots are
obtained for T̃o = 295 K and z = 0.5. Solid and
dashed lines are for stresses calculated with
and without viscous dissipation effects respec-
tively.

Proposed corrections in the current equations

The temperature gradient generated by viscous dis-
sipation in the flow field seems significantly large for
moderate and high rotation rates as shown in the
previous section, and thus its effect on the predic-
tion of material properties in parallel-plate rheome-
ters should be considered. A practical way of ac-
complishing this is to modify some parameters in
the current equations. The equations that are used
to determine steady shear flow parameters of a vis-
coelastic fluid in a parallel-plate rheometer are given
by Bird et al., (1987) as follows:

ηo(γ̇R, T̃o) =
(M/2πR3)

γ̇R
[3 +

d ln(M/2πR3)
d ln γ̇R

] (33)

Ψ1(γ̇R, T̃o)− Ψ2(γ̇R, T̃o) =
(N/πR2)

γ̇2
R

[2 +
d ln(N/πR2)

d ln γ̇R
]

(34)

Ψ1(γ̇R, T̃o) + Ψ2(γ̇R, T̃o) =
1
γ̇2
R

d(Πzz(0))
d ln γ̇R

(35)

Ψ2(γ̇R, T̃o) =
Pa − d(Πzz(R))

γ̇2
R

(36)

where M is torque, N is normal force required to
keep separation constant, Ψ1 and Ψ2 are coefficients
of first and second normal stresses for the fluid, γ̇R
is shear rate at the edge of the system, and Πzz is
normal pressure measured on the bottom plate. The
shear rate at the edge is the reference parameter for
measurements as can be seen from equations (33)
through (36) and is defined as γ̇R = ΩR

H . The ref-
erence temperature (T̃o) in the equations is usually
the temperature of the test environment or one of the
plates, and the temperature rise in the flow field due
to viscous dissipation is ignored. The dimensional
form of equation (32) that describes local tempera-
ture in the rheometer is equal to

T̃ (r̃, z̃)− T̃o =
ηΩ2R2

2kH4
r̃2(z̃H − z̃2). (37)

We define the arithmetic average of local temper-
atures in the bulk flow

T̃ ∗0 =

H∫
0

R∫
0

T̃ (r̃, z̃)dr̃dz̃

H∫
0

R∫
0

dr̃dz̃

(38)

and propose a modified reference temperature

T̃ ∗o = T̃o

{
1 +

ηΩ2R2α2

36kT̃0

}
(39)

where α = R/H . The value of any parameter on
the left side of equations (33) through (36) indeed
corresponds to the value at T̃ ∗o , not at T̃o.

Similar approach may be applied to modify refer-
ence (characteristic) shear rate, γ̇R = Ωα, on the left
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side of equations (33) through (36) for minimizing
the free surface effects on measurements. The under-
lying assumption in these equations is no distortion
at the free surface. In a real situation, however, there
is surface deflection and it strongly affects the value
of normal stress, N , in the equations, especially for
small aspect ratios (R/H < 10). The explicit for-
mula for calculating the axial surface deflection (see
Shipman et al., 1991)

∆R =
ρgH3

σ
{1

6
(z − 1

2
)3 − 1

24
(z)2 +

1
48
} (40)

can be averaged along the axial direction to rede-
fine the reference shear rate in the equations above.
The corrected reference shear rate γ̇∗R given below
may then be used instead of γ̇R when deflections are
significantly high

γ̇∗R =
ΩR∗

H
= γ̇R

{
1 +

7ρgH3

44σΩα

}
. (41)

We are now able to replace these corrected (mod-
ified) reference values of temperature and shear rate
with those on the left side of the equations (33) –
(36). Namely, only (T̃o,γ̇R) should be replaced with
(T̃ ∗o , γ̇∗o) and no change is necessary on the right side
of the equations.

Summary and Concluding Remarks

The viscoelastic flow between two rotating parallel-
plates has been studied in this paper. The motion
generated in similar geometry is the basis for rhe-
ological measurements of the viscosity and normal
stresses in non-Newtonian liquids. Similar flow ge-
ometry can also be found in polymer processing, such
as a rotating normal stress extruder. In the most
common case of flow, motion is generated by rotat-
ing one of the two coaxial disks as the other (usu-
ally the bottom plate) remains stationary. In rheo-
logical use of this geometry, the flow at all rotation
rates is assumed to be steady, isothermal and one-
dimensional. These approximations are valid with
absence of any flow instability, free surface effect
at the edge and temperature gradient due to vis-
cous dissipation. Previous experimental and theo-
retical studies have, however, shown the presence of
these three complicated phenomena and thus flow
is proved to be time-dependent, three-dimensional,
and nonisothermal at high rotation rates. In this pa-
per, three-dimensional formulation of the flow, which

considers free surface and viscous dissipation effects,
is clearly outlined. The main contribution to the for-
mulation is to use a nonisothermal constitutive equa-
tion, the nonisothermal Oldroyd-B equation. The
numerical solution scheme of the resulting equations
is found to be extremely complex. In order to ex-
plore whether temperature gradient is present in the
flow due to viscous dissipation, the solution formu-
lated for one-dimensional and nonisothermal flow be-
tween infinite plates is applied to a typical viscoelas-
tic fluid (PIB/PB Boger fluid). From this illustrative
example it is determined that the temperature gradi-
ent generated by viscous dissipation in the flow field
is quite large for moderate and high rotation rates,
and thus its effect on measured parameters should be
considered. In order to minimize the errors in mea-
surements due to viscous dissipation and free surface
effects, modifications for reference temperature and
shear rate are proposed here. These modifications
allow better prediction and ensure that the effects
of free surface and viscous dissipation taken into ac-
count. Further detailed experimental analysis of the
flow is warranted to verify the validity of infinite
plate solution obtained and the corrections proposed
here.

Nomenclature

aT temperature shift factor
C activation energy constant
cP heat capacity per unit mass
De Deborah number
F mean curvature of the surface
H disk separation
k thermal conductivity
M torque
N normal force
n unit vector normal to the surface (outward)
Na Nahme-Griffith number
p pressure
pa atmospheric pressure
Pe Peclet number
R disk-radius
r radial coordinate
S polymeric part of stress tensor
T dimensionless temperature
T̃o reference temperature
T̃ ∗o modified reference temperature
Ta atmospheric air temperature
v velocity vector
X̃ dimensional form of parameter X
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XT temperature dependent form of X
z axial coordinate
λ relaxation time of the fluid
θ azimuthal coordinate
Ω rotation rate
γ̇ the rate-of-strain tensor
η total viscosity
ηp polymer viscosity
ηs solvent viscosity
∆T̃ rheological temperature difference

β the ratio of polymer viscosity to total vis-
cosity

γ̇R reference shear rate
γ̇∗R modified reference shear rate
ρ density
σ surface tension
Ψ1 coefficient of first normal stress
Ψ2 coefficient of second normal stress
Πzz normal pressure measured on the bottom

plate
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