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Abstract

The problem considered here is the steady three-dimensional flow of a second grade fluid near the stag-
nation point of an infinite flat plate moving parallel to itself with constant velocity. The basic equations
governing flow and heat transfer are reduced to a set of ordinary differential equations by using the ap-
propriate transformations for the velocity components and temperature. These equations have been solved
approximately subject to the relevant boundary conditions by employing a numerical technique. The effect
of a nondimensional elastic parameter, S, on the velocity field and temperature are carefully examined.
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Introduction

There is a class of two- and three-dimensional flows
involving stagnation points that may be computed
by solving systems of ordinary differential equations
for certain skillfully chosen functions and indepen-
dent variables. The analysis of such flows is very
important in both theory and practice. From a the-
oretical point of view, flows of this type are funda-
mental in fluid mechanics and forced convective heat
transfer. From a practical point of view, these flows
have applications in forced convection cooling pro-
cesses where a coolant is impinged on a continuously
moving plate.

The two-dimensional stagnation point flow
against a stationary flat plate was first studied by
Hiemenz (1911) for the case of orthogonal flow. Two-
dimensional oblique stagnation flow was solved by
Stuart (1959) and later by Tamada (1979) and Dor-
repaal (1986). Goldstein (1938, p.140) notes that
Hiemenz’s solution can be obtained without invok-
ing the simplifications of boundary layer theory; that
is to say, it does in fact satisfy the full Navier-
Stokes equations and not just the boundary layer

equations. The axisymmetric case was studied by
Homann (1936). Both two-dimensional and axisym-
metric flows were extended to three dimensions by
Howarth (1951) and Davey (1961).

Authors like Stuart (1955), Rott (1956), and
Glauert (1956) analyzed the two-dimensional stag-
nation point flow against a plate that is oscillat-
ing in its own plane. Yang (1958) investigated the
two-dimensional unsteady stagnation flow towards a
plate. Yang’s work was extended by Williams (1968)
for the case of axisymmetric flow and then Cheng et
al. (1971) for the case of three-dimensional flow. The
three-dimensional stagnation flow on a moving plate
was considered by Wang (1973) and Libby (1974).
Wang (1985) studied the unsteady oblique stagna-
tion point flow.

All the above mentioned studies deal with flows of
Newtonian fluids. However, within the past 50 years
many new fluids not obeying Newtonian laws are
being studied by scientists because of their techno-
logical significance. That non-Newtonian fluids are
finding increasing application in industry has given
impetus to many researchers. Srivastava (1958) has
obtained an approximate solution for an axisym-
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metric flow of a Reiner-Rivlin fluid near a stagna-
tion point adopting the Karman-Pohlhausen method
used for the study of boundary layer equations in
Newtonian fluids. Maiti (1965) re-examined the
same flow problem by replacing Reiner-Rivlin fluid
by power-law fluid. For second order Rivlin-Ericksen
fluid, Rajeswari and Rathna (1962) studied the two-
dimensional and axisymmetric flows near a stagna-
tion point by using an extension of the Karman-
Pohlhausen technique. The Prandtl boundary layer
theory has been extended by Beard and Walters
(1964) for an idealized elastico-viscous fluid, more
specifically such a fluid is called a Walters’ B′ fluid,
and then by Sarpkaya and Rainey (1971) for a sec-
ond order viscoelastic fluid. They obtained the ap-
proximate solution valid for sufficiently small values
of the elastic parameter by employing a perturba-
tion procedure, using the coefficient that multiplies
the highest order term in the equation as the per-
turbation parameter, thereby lowering the order of
the equation. Soundalgekar and Vighnesam (1980)
used the perturbation scheme, which is similar to the
scheme employed by Beard and Walters (1964), in
order to obtain a solution to the heat transfer prob-
lem related to the two-dimensional stagnation point
flow of Walters’ B′ fluid. Garg and Rajagopal (1990)
considered the two-dimensional stagnation point flow
of thermodynamically compatible second-order fluid,
where only the velocity field was studied. The heat
transfer aspect of this problem has been investigated
Massoudi and Ramezan (1992) and Garg (1994).
Garg and Rajagopal (1990) and Garg (1994) have
obtained solutions valid for all values of an elastic
parameter by using an additional boundary condi-
tion at infinity, whereas Massoudi and Ramezan’s
work is confined to small values of elastic parameter.
Labropulu et al. (1993) studied the orthogonal and
oblique flows of a second grade fluid impinging on
a wall with suction or blowing. Ariel (1994) has ex-
amined the generalized three-dimensional stagnation
point flow of a Walters’ B′ fluid against a stationary
flat plate by using the transformations proposed by
Howarth (1951) for the velocity components. He has
demonstrated on the basis of his exact numerical so-
lutions that the solutions can be obtained only up to
some critical value of the elastic parameter, and that
for values less than this critical value dual solutions
exist. In his subsequent study, he investigated the
laminar, steady stagnation point flow of a Walters’
B′ fluid towards a moving plate by considering both
the cases of two-dimensional and axisymmetric flow

(Ariel, 1995).
The literature survey clearly indicates that lit-

tle attention has been paid to the three-dimensional
flows of non-Newtonian fluids near the stagnation
point of a moving plate. Therefore, the present pa-
per aims to solve such a problem by introducing a
second grade fluid and examining qualitatively the
effect of the elasticity of fluid on velocity and tem-
perature distributions.

Formulation of the Problem

In this paper we consider the three-dimensional stag-
nation point flow of a non-Newtonian fluid, namely
the second grade fluid, against a moving flat plate.
The Cauchy stress tensor T in such a fluid is related
to the motion in the following manner (Truesdell and
Noll, 1965):

T = −pI + µA1 + α1A2 + α2A2
1, (1)

where µ is the coefficient of viscosity, and α1 and
α2 material moduli which are usually referred to as
the normal stress coefficient. In the foregoing equa-
tion, p is the pressure, I is the identity tensor and
kinematical tensors A1 and A2 are defined through
(Rivlin and Ericksen, 1955)

A1 = L + LT, (2)

A2 =
D

Dt
A1 + L ·A1 + A1 · LT, (3)

L = ∇v(Lij = vj;i), (4)

where v is the velocity vector, ∇ is the gradient op-
erator, the semicolon stands for covariant differen-
tiation and D / D t is the material time derivative
which is defined as follows:

D

Dt
[.] =

∂

∂t
[.] + v · ∇[.], (5)

where ∂/∂t is the partial time derivative. We no-
tice that α1 = α2 = 0, the model (1) reduces to the
classical linearly viscous fluid model.

If the fluid modelled by Eq. (1) is to be compat-
ible with thermodynamics in the sense that all mo-
tions of the fluid meet the Clausius-Duhem inequal-
ity and the assumption that the specific Helmholtz
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free energy of the fluid is a minimum in equilibrium,
then (Dunn and Fosdick, 1974)

µ ≥ 0, α1 ≥ 0, α1 + α2 = 0. (6)

The fluids characterized by the above restrictions
have come to be known in the literature as sec-
ond grade fluids as opposed to second order fluids
(Ariel, 2001). The restrictions in Eq. (6) have been
the subject of much controversy. Experimental re-
sults made under the assumption that the fluid being
tested is a second order fluid contradict the restric-
tions in Eq. (6)2,3. On the other hand, Dunn and
Fosdick (1974) demonstrated that if α1 < 0 while
the other two restrictions hold, the fluid exhibits un-
acceptable instability characteristics. Later Fosdick
and Rajagopal (1979) showed that if α1 < 0, the
fluid exhibited anomalous behaviour not expected in
materials of rheological interest. A thorough discus-
sion of the issues involved can be found in the recent
critical review of Dunn and Rajagopal (1995). We
shall not discuss these issues further. In this study
we shall assume that the model under consideration
meets Eq. (6), and is compatible with the present lit-
erature. For this case the constitutive equation (1)
can be written as

T = −pI + µA1 + α(A2 −A2
1), α = α1 = −α2.

(7)

The orthogonal three-dimensional stagnation
point flow against an infinite flat plate at z = 0 mov-
ing with constant velocity U in the x direction is
illustrated in Figure 1. A non-Newtonian fluid flow-
ing in the direction of the negative z-axis approaches
a moving plane at z = 0, and divides into streams
proceeding away from the stagnation point at the
origin.

The velocity components corresponding to the x,
y and z directions are respectively denoted by u, v
and w. Far from the plate, as z tends to infinity, the
velocity distribution in the frictionless potential flow
is given by

u∞ = ax, v∞ = ay, w∞ = −2az, (8)

U
O

x

y
z

T = Tw

u = u∞, v = v∞, w = w∞, T = T∞

Figure 1. Sketch of flow geometry and coordinate system

where a is a physical constant with dimensions of
T−1, depending on the velocity in potential motion.
Then, from the Euler equation the pressure distribu-
tion will be

p− p0 = −ρ2
(
u2
∞ + v2

∞ +w2
∞
)

= −ρa
2

2

(
x2 + y2 + 4z2

)
,

(9)

where ρ is the density and p0 is a constant which
corresponds to the pressure at the stagnation point.
Since the velocity field given in Eq. (8) does not sat-
isfy the no-slip conditions at the plate, it is not an
acceptable solution of the equations of viscous flow.
The problem is to obtain a solution that satisfies
the no-slip boundary conditions and agrees with the
outer solution far from the stagnation point. This is
why we shall seek a velocity field compatible with the
continuity equation of the form (Rott, 1956; Glauert,
1956; Wang, 1973)

u = Uf(η) + axh′(η), v = ayh′(η),

w = −2
√
aνh(η),

(10)

where ν = µ/ρ is called the kinematic viscosity,
η =

√
a/νz and the prime denotes the differentia-

tion with respect to η. It is important to note that
the function f(η) represents velocity profile due to
the translation of the plate at z = 0.

The boundary conditions for the velocity field are

z = 0 : u = U, v = 0, w = 0,

z →∞ : lim
z→∞

u→ u∞ = ax, lim
z→∞

v → v∞ = ay,

lim
z→∞

w→ w∞ = −2az

(11)

The assumptions made in this analysis are as fol-
lows: (a) the flow is steady and laminar; (b) the
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fluid is incompressible; (c) the body forces are neg-
ligible; (d) all the physical properties, e.g. the vis-
cosity, specific heat and thermal conductivity of the
fluid, remain invariable throughout the fluid; (e) the
heat flux vector can be represented by Fourier’s law;
and (f) the effects of radiant heating and viscous
dissipation are negligible. Under the above stated
assumptions, the basic equations of the problem are
as follows:

Continuity equation:

∇ · v = 0, (12)

Equations of motion:

ρ(v · ∇v) = ∇ ·T, (13)

Energy equation:

ρcp(v · ∇T ) = k∆T, (14)

where T is the temperature, cp the specific heat at
constant pressure, k the thermal conductivity and ∆
is the Laplacian operator.

Substituting Eq. (10) into the equations of mo-
tion (13) for the second grade fluid given in Eq. (7)
and using the conditions of integrability, we get

h′′′ + 2hh′′ − h′2 + 1 + S(2h′h′′′ − 2hhIV − h′′2) = 0,
(15)

f ′′ + 2hf ′ − h′f + S(−2hf ′′′ + h′f ′′ − h′′f ′ + h′′′f) = 0,

(16)

where the nondimensional elastic parameter
S = αa/µ.

The boundary conditions (11) are re-written as

η = 0 : h(0) = 0, h′(0) = 0, f(0) = 1,

η →∞ : lim
η→∞

h′(η)→ 1, lim
η→∞

f(η) → 0. (17)

The terms in Eqs. (15) and (16) having the S
factor represent the non-Newtonian character of the
fluid. It is noticed that the system of equations
characterizing the flow has an order of seven, but
there are only five boundary conditions. To obtain
a solution we need two extra boundary conditions.

One of the possible methods that overcomes this re-
quirement of additional conditions is the perturba-
tion technique. However, we are treating a singular
perturbation as if it were regular. In the absence
of a means for prescribing additional boundary con-
ditions, this is perhaps the best that can be done.
Thus, we seek a solution of Eqs. (15) and (16) in the
form

h = h0 + Sh1 + O(S2), (18)

f = f0 + Sf1 +O(S2), (19)

valid for a sufficiently small S. Inserting Eqs. (18)
and (19) into Eqs. (15) and (16), and equating the
corresponding coefficient of S up to first order, the
following set of ordinary differential equations is ob-
tained

h′′′0 + 2h0h
′′
0 − h′20 + 1 = 0, (20)

h′′′1 +2h0h
′′
1 − 2h′0h

′
1 + 2h′′0h1 = −2h′0h

′′′
0

+2h0h
IV
0 + h′′20 ,

(21)

f ′′0 + 2h0f
′
0 − h′0f0 = 0, (22)

f ′′1 +2h0f
′
1 − h′0f1 = f0h

′
1 − 2h1f

′
0 − h′0f ′′0 − f0h

′′′
0

+f ′0h′′0 + 2h0f
′′′
0 ,

(23)

In a similar manner the higher order terms can
be obtained. However, the calculations will become
complicated. Moreover, the solutions considered are
valid for small values of S. Therefore, we retain up
to first order terms. From Eqs. (17) - (19) it follows
that the boundary conditions for Eqs. (20) - (23) are

h0(0) = 0, h′0(0) = 0, lim
η→∞

h′0(η)→ 1, (24)

h1(0) = 0, h′1(0) = 0, lim
η→∞

h′1(η)→ 0, (25)

f0(0) = 1, lim
η→∞

f0(η)→ 0, (26)
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f1(0) = 0, lim
η→∞

f1(η)→ 0, (27)

It is recorded that for Newtonian fluid (S =
0) Eqs. (20) and (22) together with the associated
boundary conditions (24) and (26) are the same as
those obtained by Wang (1973). In addition, Eq. (20)
with the boundary conditions (24) represents the
axisymmetric stagnation point flow against a sta-
tionary plate (Homann, 1936). The integration of
Eqs. (20) - (23) subject to the related boundary con-
ditions (24) - (27) has been performed numerically.

Having computed the velocity field, substituting
the results back into equations of motion and then
integrating, it can be shown that the general expres-
sion for the pressure distribution is

P (x, y, η) = −ρ2
(
4νa{h′+ h2 − 2Shh′′ − 3Sh′2}

+a2{x2 + y2}{1− 2Sh′′2}
−2USf ′{Uf ′ + 2axh′′}) + P0,

(28)

where P0 is a constant reference pressure. In the ab-
sence of S, Eq. (28) is the same as that obtained by
Wang (1973).

It is also of interest to determine the effect of
elasticity (S) on the shear stress on the plate in the
x direction. From the constitutive Equation (7), we
obtain

τw =
T xz|z=0

µU
√

a
ν

= f ′(0) +
(ax
U

+ S
)
h′′(0) (29)

Next, we introduce a temperature field of the
form

T = T∞ + (Tw − T∞)θ(η), (30)

where T∞ is the temperature of the fluid at infinity
and Tw is the temperature of the plate, respectively.
Substituting Eqs. (10) and (30) into Eq. (14) leads
to the ordinary differential equation

θ′′ + 2Prhθ′ = 0, (31)

where Pr = µcp/k is the Prandtl number. Equation
(31) is to be solved subject to the boundary condi-
tions

θ(0) = 1, lim
η→∞

θ(η)→ 0. (32)

In order to solve Eq. (31), h0 and h1 functions
are first determined from Eqs. (20) and (21) and it
can then be solved numerically.

The heat transfer rate per unit area on the plate
may be written by Fourier’s law as follows:

qw = −k
(
dT

dz

)
z=0

= −k
√
a

ν
(Tw − T∞)θ′(0) (33)

Numerical Results and Discussion

The two-point boundary value problem represented
by Eqs. (20) - (23) under the relevant conditions
given in Eqs. (24) - (27) was solved numerically using
the shooting method. Having found h(= h0 + Sh1),
the solution for Eq. (31) subject to the boundary
conditions (32) is obtained by a similar shooting
method. The values of h′′n(0) and f ′n(0) are esti-
mated, and the differential equations are then inte-
grated numerically by using the fourth-order Runge-
Kutta procedure as though we had an initial value
problem from η = 0 to η∞, where η∞ is a sufficiently
large number; in practice, setting η∞ as low as 5.0
yields satisfactory accuracy for the present problem.
The accuracy of the assumed missing initial condi-
tions are then checked by comparing the calculated
values of h′n(η∞) and fn(η∞) with their given values
at η = η∞. If a difference exists, the computations
with new and improved values for h′′n(0) and f ′n(0)
are repeated. The systematic way used here for find-
ing the new values of missing initial conditions is
equivalent to a modified Newton’s method for find-
ing the roots of equations in several variables. This
process is continued until agreement between the cal-
culated and given values at η = η∞ is within a preset
tolerance. The accuracy of missing initial conditions
which yield the known values at the terminal point
is 10−6 at least. Table 1 gives some of the resulting
values of hn(η), h′n(η), h′′n(η), and Table 2 gives those
of fn(η), f ′n(η).
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Table 1. Numerical values of hn, h
′
n and h′′n

η h0 h1 h′0 h′1 h′′0 h′′1
0 0.000000 0.000000 0.000000 0.000000 1.31193769 -1.45219720

0.2 0.024906 -0.026750 0.242394 -0.256033 1.112107 -1.108386
0.4 0.094303 -0.097850 0.444987 -0.443675 0.914547 -0.769543
0.6 0.200306 -0.199780 0.608710 -0.564781 0.724509 -0.444694
0.8 0.335339 -0.319578 0.735773 -0.623180 0.549215 -0.144310
1 0.492414 -0.445271 0.829868 -0.624961 0.395936 0.119091

1.5 0.944105 -0.721951 0.955221 -0.449159 0.135655 0.506668
2 1.433033 -0.882425 0.991892 -0.200165 0.030954 0.423937

2.5 1.931293 -0.940425 0.999025 -0.053504 0.004546 0.169366
3 2.431111 -0.953142 0.999924 -0.008420 0.000422 0.035634

3.5 2.931099 -0.954813 0.999996 -0.000777 0.000024 0.004118
4 3.431098 -0.954944 0.999999 -0.000042 0.000001 0.000268

4.5 3.931098 -0.954950 1.000000 -0.000001 0.000000 0.000010
5 4.431098 -0.954951 1.000000 -0.000000 0.000000 0.000000

Table 2. Numerical values of fn and f ′n

η f0 f1 f ′0 f ′1
0 1.000000 0.000000 -0.93873274 0.82664147

0.2 0.813937 0.158966 -0.913798 0.755277
0.4 0.637447 0.299602 -0.844428 0.645946
0.6 0.478490 0.415544 -0.740306 0.509282
0.8 0.342815 0.501602 -0.613899 0.346795
1 0.233450 0.552418 -0.479684 0.156977

1.5 0.069787 0.502124 -0.194842 -0.340516
2 0.014117 0.274869 -0.050979 -0.480566

2.5 0.001869 0.086614 -0.008380 -0.248936
3 0.000158 0.015526 -0.000855 -0.062095

3.5 0.000009 0.001592 -0.000054 -0.008131
4 0.000000 0.000094 -0.000002 -0.000584

4.5 0.000000 0.000003 -0.000000 -0.000024
5 0.000000 0.000000 -0.000000 -0.000000

The predictions based on the foregoing analysis
are displayed graphically for various values of nondi-
mensional elastic parameter S in Figures 2-5. Since
our perturbation analysis is valid only for small val-
ues of elastic parameter S, the variation of S is lim-
ited to a range from 0.0 to 0.2. In addition, u∞ and
U are assumed to be in the same direction, i.e. a x /
U > 0. Figures 2 to 4 show the velocity profiles cor-
responding to the x, y and z directions, respectively.
We observe from these figures that the main effect
of elasticity (S) on the three-dimensional stagnation
point flow against a moving flat plate is to increase
in velocity component in the x direction, whereas it
is to decrease the velocity components in the y and
z directions.

The temperature profiles are presented in Figure
5. It is apparent from Figure 5 that the temperature
profiles slightly increase with the increase in elas-
ticity of the fluid. Again from Figure 5, we arrive
at the conclusion that the thermal boundary layer
thickness becomes small for the increase in Prandtl
number, as expected. It is also noted the tempera-
ture distribution is independent of plate translation.

The values of shear stress on the plate in the x
direction (τw) are tabulated in Table 3 for several
different values of the parameters a x / U and S.
We conclude from Table 3 that an increase in elas-
tic parameter S leads to a reduction in the value of
wall shear stress τw. Table 4 illustrates the effect
of elastic parameter S on the heat transfer rate per
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unit area on a plate for a selection of values of the
Prandtl number. From Table 4, we note that with
an increase in elastic parameter S, the heat loss per
unit area from the plate decreases. This change in
heat transfer is more pronounced for a large Prandtl
number.
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Figure 2. The velocity component in the x direction
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Figure 3. The velocity component in the y direction

Table 3. Values of wall shear stress τw

S a x / U = 0.01 a x / U = 0.2 a x / U = 0.5

0 -0.925614 -0.676345 -0.282764
0.1 -0.727730 -0.506053 -0.156038
0.2 -0.558890 -0.364805 -0.058356

h 
(η

)
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Figure 4. The velocity component in the z direction
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Figure 5. Temperature distribution

Table 4. Values of heat transfer parameter −θ′(0)

S Pr = 0.2 Pr = 10 Pr = 50
0 0.405419 1.752083 3.055577

0.1 0.395240 1.687631 2.940866
0.2 0.384962 1.618727 2.817269
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Nomenclature

An Rivlin-Ericksen tensor of rank n, T−1

cp specific heat at constant pressure,
L2T−2ϑ−1

I identity tensor, dimensionless
k thermal conductivity, MLT−3ϑ−1

Pr Prandtl number, dimensionless
p pressure, ML−1T−2

qw heat transfer rate per unit area on
plate, MT−3

S elastic number, dimensionless
T temperature, ϑ
T Cauchy stress tensor, ML−1T−2

Tw temperature of plate, ϑ

T∞ temperature of fluid at infinity, ϑ
t time, T
U translation velocity of plate, LT−1

u , v , w components of the velocity vector,
LT−1

u∞, v∞, w∞ velocity components at infinity, LT−1

v velocity vector, LT−1

x , y , z cartesian coordinates, L
α normal stress modulus, ML−1

α1, α2 normal stress moduli, ML−1

µ coefficient of viscosity, ML−1T−1

ν kinematic viscosity, L2T−1

ρ density , ML−3

τw shear stress on plate, dimensionless
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