
Turkish J. Eng. Env. Sci.
27 (2003) , 95 – 106.
c© TÜBİTAK
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Abstract

Large simple shear deformation, which is usually used to test the applicability of various models, is
studied by applying the classical plasticity model and the viscoplasticity theory based on overstress (VBO)
with the logarithmic stress rate. Hypo-elastic, elastic-perfectly plastic, elastic-plastic linear kinematic and
isotropic hardening models are employed. In addition to the logarithmic rate, the influences of the convected
Truesdell and co-rotational Jaumann and Green-Naghdi rates on stress-strain behavior in simple shear are
investigated. It is observed that unlike the Jaumann rate the logarithmic rate does not exhibit any oscillatory
response. The responses of the logarithmic rate to every type of model discussed here are acceptable except
the elastic-perfectly plastic case. The finite viscoplasticity theory based on overstress, which has been
developed by Krempl and co-workers, with zero isotropic stress rate and non-zero hardening modulus and
elastic-plastic kinematic hardening model give the same results at a rate of 10−51/s. It is shown that
elastic-perfectly plastic, and elastic-plastic kinematic hardening can be modeled with FVBO.
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Introduction

Choosing a suitable objective stress rate for the
hypo-elastic and the hypo-elastic-plastic models is an
important issue. Since the observation of unaccepted
oscillatory shear stress response by Dienes (1979),
and Nagtegaal and de Jong (1982), a number of dif-
ferent stress rates has been introduced by different
investigators. Generally, the objective stress rates
can be classified as co-rotational rates (Jaumann,
Green-Naghdi, Logarithmic rate etc.) and convected
rates (Truesdell, Cotter/ Rivlin and Oldroyd rate).
Dienes (1979) noted that when the Jaumann rate
is used in the linear hypo-elastic constitutive equa-
tion, an oscillatory shear stress response is obtained
in finite simple shear. Similar to the case of hypo-
elasticity, an oscillatory response was obtained in fi-
nite plasticity for linear kinematic hardening (Nagte-

gaal and de Jong, 1982). Dafalias (1985) showed that
stress oscillations generated by simple shear with lin-
ear kinematic hardening and the Jaumann rate fade
away with increasing strain by using the Armstrong-
Frederick model. It is also reported by Nagtegaal and
De Jong (1982) that oscillation is not experienced for
isotropic hardening. Green and Naghdi (1965) ob-
tained a non oscillatory solution to the simple shear
problem by using a different objective rate called the
Green-Naghdi rate.

Recently a new spin tensor called logarithmic
spin and a new objective rate, the logarithmic rate,
was introduced by Xiao et al. (1997a). It is proven
that an objective, co-rotational rate of the logarith-
mic strain lnV is identical to the stretching tensor
D and D and lnV are the only pair with such a
property within the family of co-rotational rates; see
Bruhns et al. (1999) and Xiao et al. (1997a and
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1997b).
This paper is arranged as follows: in section 2,

the convected stress rates, the Truesdell, Cotter-
Rivlin, Oldroyd rates, and the co-rotational rates,
the Jaumann, Green-Naghdi and logarithmic stress
rates, are reviewed. In section 3, a classical plastic-
ity model with various material laws (hypo-elastic,
elastic-perfectly plastic, elastic-plastic linear kine-
matic and isotropic hardening) is given. Then in
section 4, in addition to classical plasticity models,
the finite viscoplasticity theory based on overstress
(FVBO) is introduced and applied to simple shear.
At the end, the simulation results for simple shear
are given and compared.

Objective Stress Rates

One of the fundamental principles that all consti-
tutive equations have to satisfy is the principle of
objectivity or frame indifference. According to this
principle, constitutive equations must be invariant
under a change of reference frame. Tensor rates used
in constitutive equations need to be objective. A co-
rotational objective rate of a tensor A is denoted by

◦
A = Ȧ + AΩ−ΩA (1)

where Ȧ is the material rate with respect to the ba-
sis of A.

◦
A is objective rate of A and Ω is a skew-

symmetric spin tensor. Later various forms of Ω will
be evaluated.

Co-Rotational rates

A well-known objective rate is the Jaumann rate. It
is the obtained by setting Ω = W in Equation 1.
W is the anti-symmetric part of the velocity gradi-
ent tensor L, which is defined as L = ḞF−1. The
Jaumann rate is

◦
σ= σ̇ + σW−Wσ (2)

where σ is the Cauchy stress tensor.
Another co-rotational stress rate, the Green-

Naghdi (1965) rate, is obtained by taking Ω = ṘRT ,

◦
σ= σ̇ + σ(ṘRT)− (ṘRT )σ (3)

Recently, Xiao et al, (1997a) proved that the log-
arithmic rate of the Eulerian logarithmic strain mea-
sure, lnV, is equal to the rate of deformation tensor,

D. Among the co-rotational rates, only this pair has
this property. They introduced a new spin tensor
called logarithmic spin, or simply log spin. The log-
arithmic spin tensor Ω = Ωlogis given by

Ωlog = W + Nlog (4)

and

Nlog =


0, b1 = b2 = b3

ν [BD], b1 6= b2 = b3

ν1[BD] + ν2[B2D] + ν3[B2DB], b1 6= b2 6= b3

(5)

where

ν =
1

b1 − b2

(
1 + (b1/b2)
1− (b1/b2)

+
2

ln(b1/b2)

)
(6)

and bi are the eigenvalues of left Cauchy-Green ten-
sor, B = FFT .

νk = − 1
∆

3∑
i=1

(−bi)3−k
(

1 + εi
1− εi

+
2

ln εi

)
, k = 1, 2, 3

(7)

ε1 = b2/b3 ε2 = b3/b1 ε3 = b1/b2 (8)

∆ = (b1 − b2)(b2 − b3)(b3 − b1) (9)

The following notation is used:

[BrDBs] = BrDBs −BsDBr, [BrD] = BrD−DBr

[BD] = BD−DB, r, s = 0, 1, 2

(10)
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Convected rates

The convected rates are the Truesdell, Oldroyd and
Cotter/Rivlin rates. The Truesdell stress rate, see
Truesdell (1955), is defined as

◦
τ= τ̇ − Lτ − τLT (11)

where τ is the Kirchhoff stress tensor, τ = σJ, J =
det(F) and σ is the Cauchy stress tensor. The upper
(u) and lower (l) Oldroyd rates (Oldroyd, 1950) are
based on the Cauchy stress tensor and not on the
Kirchhoff stress used in the Truesdell rate:

◦
σu= F(F−1σ̇F−T )FT = σ̇ − Lσ − σLT

◦
σL= σ̇ + LTσ − σL

(12)

The Cotter-Rivlin rate, see Cotter and Rivlin
(1955), is defined as

◦
σ= F−T (FT σ̇F)F−1 = σ̇ + σL + LTσ (13)

Hypo-Elastic and Hypoelastic-Plastic Consti-
tutive Model at Finite Deformation

Hypo-elastic model

The simplest constitutive equation for isotropic
hypo-elasticity is

◦
σ= λtr(D)I + 2GD (14)

where λ and G are Lame constants, and
◦
σ is an ob-

jective stress rate.

Hypo-elastic-plastic models

The additive decomposition of the rate of deforma-
tion tensor D is used for modeling the finite elastic-
plastic deformation. In this theory, the rate of de-
formation D, which is the measure of the stretching
is decomposed into the elastic and plastic parts.

D = De + Dp (15)

The von Mises yield criterion is used for mod-
eling rate-independent plasticity with isotropic and
kinematic hardening; see Eterovic and Bathe (1990).

Hypo-elastic-plastic model with kinematic
hardening: The kinematic hardening model as-
sumes that the yield surface translates as a rigid
body during plastic deformation. Rate independent
plasticity with kinematic hardening depends on the
set {σy,α} of internal variables. α is a second order
tensor known as kinematic or back stress. In plas-
ticity, it is the repository for the Bauschinger effect.
Geometrically, the back stress represents the center
of the yield surface. Physically it is the resistance
to slip and results from the interaction of dislocation
with other dislocations and grain boundaries. The
von Mises yield criterion, which defines the boundary
of the elastic region, is widely used in the modeling
of material behavior. The quadratic yield function
is written as

f =
3
2

(σ′ − α) : (σ′ − α) − σ2
y ≤ 0 (16)

where σ′ and α are the deviatoric parts of Cauchy
stress tensor and back stress tensor respectively, σy
is initial yield stress in uniaxial tension.

σ′ = σ − 1
3

(σ : I)I (17)

Inelastic deformation occurs when the effective
stress exceeds the yield stress. The effective stress
tensor, s, is the difference between the applied stress
and the back stress tensors and is defined as

s = σ′ −α (18)

The effective stress invariant is given by

s̄ =

√
3
2
s : s (19)

The unit normal to the yield surface is

χ =

√
3
2

s
s̄

(20)

The effective plastic strain rate is defined as

ėp =

√
2
3
Dp : Dp (21)

The flow rule, which is the plastic part of the rate
of deformation, is
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Dp =

√
3
2
ėpχ (22)

The evolution equation for back stress for linear
kinematic hardening is given by

◦
α=

2
3
HDp (23)

Hypo-elastic-plastic model with isotropic
hardening: For modeling isotropic hardening, the
von Mises yield criterion is used. The evolution
of yield surface occurs by its changing size, not by
translation of its center. Therefore in isotropic hard-
ening the back stress, α, which represents the trans-
lation of yield surface, is zero. The yield stress is
given as (Johnson and Bammann. 1984)

σ̇y = Hėp (24)

Hypo-elastic-perfectly plastic model: In
this case, there is no isotropic or kinematic hard-
ening, and so the hardening modulus H = 0. This
yields to a constant yield stress and zero back stress.

Finite Viscoplasticity Theory Based on Over-
stress (FVBO)

VBO is a unified state variable theory without a yield
surface and loading/unloading condition and was
developed by Krempl and co-workers; see Krempl
(1998), Colak and Krempl (2002a), (2002b). There
is no separation of creep and plasticity in the model.
It consists of two tensor valued and one scalar state
variables with a growth law. A tensor valued kine-
matic stress is introduced to model the Bauchinger
effect. It also sets the tangent modulus at the
maximum strain of interest. Another tensor val-
ued state variable is equilibrium stress, which is the
rate-independent contribution to hardening. The
isotropic stress A is a scalar state variable for mod-
eling rate independent cyclic hardening (or soften-
ing) behavior. Its effect is similar to the isotropic
hardening in rate-independent plasticity; see Krempl
(1996).

FVBO is obtained by replacing the ordinary time
derivative by an objective one in the small deforma-
tion viscoplasticity theory based on overstress. The
flow law for finite deformation theory of VBO is

d = de + dp =
1 + ν

E

◦
s +

3
2

s− g
Ek[Γ]

(25)

where s and d are the deviators of Cauchy stress ten-
sor, σ and the rate of deformation tensor D, respec-
tively, g is the deviatoric part of equilibrium stress,
which is the stress that the material can sustain at
rest. E is the Young modulus, ν is the elastic Pois-
son’s ratio. k = k[Γ] is a decreasing positive viscosity
function and Γ is the overstress invariant with the di-
mension of stress, defined by

Γ2 =
3
2

(s− g) : (s− g) (26)

The viscosity function is

k = k1

[
1 +

Γ
k2

]−k3

(27)

where k1, k2 and k3 are material constants.
The equilibrium stress is similar to the back

stress in rate-independent plasticity models, but not
exactly the same. In the plasticity models, the
back stress is considered the repository for kinematic
hardening. However, in VBO the equilibrium stress
is not. The repository for kinematic hardening is
the kinematic stress. The equilibrium stress is intro-
duced to represent the defect structure of the ma-
terial. It can neither be measured experimentally
like other state variables nor controlled. It is the
stress that should be overcome in order to generate
the inelastic deformation. The growth law for the
equilibrium stress is

◦
g=

ψ[Γ]
E

(
◦
s +

s − g
k
− Γ
k

(g− f )
A

)
+
(

1− ψ[Γ]
E

)
◦
f

(28)

where ψ is the shape function that affects the tran-
sition between initial quasi-elastic behavior and in-
elastic flow. It is given by

ψ[Γ] = C1 +
C2 −C1

exp[C3Γ]
(29)

where C1,C2 and C3 are material constants.
During the deformation, on the one hand, the

material can harden because of the interaction of the
dislocations with others and grain boundaries, and,
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ÇOLAK

on the other hand, recovery can occur when the dis-
locations with opposite Burger vectors come across
and cancel each other. To simulate this behavior,
recovery and hardening, the hardening terms, which
are the first two terms in the evolution equation of
the equilibrium stress and dynamic recovery term,
the third term in Equation (28) are included in the
evolution equation of the equilibrium stress tensor.

The tensor valued state variable, kinematic
stress, f is given as follows:

◦
f=

Et
E

(s− g)
k[Γ]

(30)

where Et is the tangent modulus at the maximum
inelastic strain.

The isotropic stress A is the rate independent
stress. The growth law, see Colak and Krempl
(2000), is given by

Ȧ = Ac[Af −A]ėp (31)

where Ac and Af are material constants. For cyclic
neutral behavior, the isotropic stress is constant (Ac

= 0). If the initial value of the isotropic stress is
less than the final value, cyclic hardening is mod-
eled. The effective inelastic strain rate ėp is defined
as

ėp =
Γ
Ek

(32)

Hypoelastic and Hypoelastic-Plastic with
Kinematic Hardening Solutions for Simple
Shear Deformation

In simple shear, the motion is described by

x = X + γY

y = Y

z = Z

(33)

where γ is shear strain. The associated deformation
and velocity gradient tensors are

F =

 1 γ 0
0 1 0
0 0 1

 L =

 0 γ̇ 0
0 0 0
0 0 0

 (34)

The rate of deformation tensor D and spin tensor
W are

D =
1
2

 0 γ̇ 0
γ̇ 0 0
0 0 0

 W =
1
2

 0 γ̇ 0
−γ̇ 0 0
0 0 0


(35)

Since det(F) = 1, the Kirchoff stress is equal to
the Cauchy stress.

Elastic case
The elastic solutions are obtained by substituting

Equations (33)-(34) into the appropriate stress rate
equations given by Equations (2)-(3)-(11)-(12)-(13)
and solving the resulting differential equations.

Truesdell Rate
For the Truesdell rate, the resulting differential

equations are

σ̇11 − 2γ̇σ12 = 0
σ̇12 − γ̇σ22 = γ̇µ
σ̇22 = 0

(36)

The solution is

σ11 = γ2µ, σ12 = γµ, σ22 = 0 (37)

where µ is the shear modulus, which is defined as µ
= E / 2(1 + ν), ν is Poisson’s ratio and γ is the shear
strain. Initial conditions are σ11= σ12= σ22 = 0 and
the shear strain γ = 0 at time t = 0. This solution
does not exhibit oscillatory behavior.

Since tr(D) = 0 in simple shear, the Truesdell
and the upper Oldroyd rate give the same results.

Cotter-Rivlin Rate
Examining the simple shear response for the Cot-

ter/Rivlin rate, the results are

σ̇22 + 2γ̇σ12 = 0
σ̇12−γ̇µ+ σ11γ̇ = 0
σ̇11 = 0

(38)

which can be integrated to yield

σ11 = 0, σ12 = γµ, σ22 = −γ2µ (39)

where the same initial conditions are used as before
and no oscillations are found.
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Jaumann Rate
For the Jaumann rate, the differential equations

are

σ̇11 − γ̇σ12 = 0
σ̇22 + γ̇σ12 = 0
σ̇12 − γ̇µ + 1

2 γ̇(σ11 − σ22) = 0
(40)

with the solution

σ12 = sin(γ)µσ11 = −σ22 = µ(1− cosγ) (41)

Numerical Results

The VBO consists of stiff nonlinear ordinary differen-
tial equations. Stiffness implies that a small change
in the input may result in large changes in the out-
put. The system of stiff differential equations is nu-
merically integrated using a commercial ordinary dif-
ferential equation solver program, DGEAR of IMSL.

Simple shear is analyzed with various harden-
ing laws and objective stress rates. The system
of differential equations is solved for elastic and
elastic-perfectly plastic, elastic-plastic isotropic, lin-
ear kinematic hardening and VBO models with the
Jaumann, Green-Naghdi, logarithmic and Truesdell
rates.

In the first part of this section the simula-
tion results of the classical plasticity models (hypo-
elastic, elastic-perfectly plastic, elastic-linear kine-
matic hardening, isotropic hardening) were given.
In the second part, the responses of the FVBO
under simple shear are depicted for the following
cases: constant isotropic stress and nonzero kine-
matic stress, variable isotropic stress and zero kine-
matic stress, constant isotropic stress and zero kine-
matic stress. At the end, the simulation results of
FVBO and classical plasticity approaches are com-
pared and discussed.

Simulation of the behavior of classical plastic-
ity models for simple shear

The behavior of a hypothetical material under sim-
ple shear is investigated using the classical plastic-
ity models with various objective stress rates. The
material constants used for hypo-elastic and hypo-
elastic-plastic models are given in Table 1.

Elastic
The resulting shear and normal stress versus

shear strain curves are depicted in Figure 1 and 2
respectively. An oscillationary response in the shear

and normal stress components is observed with the
Jaumann rate. Linear behavior in the shear stress
and nonlinear behavior in the normal stress are ob-
served for the Truesdell rate. It is seen from Figure 2
that the normal stresses increase nonlinearly for the
logarithmic and the Green-Naghdi rates and have es-
sentially the same characteristic.

Table 1. Material constants for hypo-elastic and elastic-
plastic models.

Yield stress σy = 180 MPa
Young Modulus E = 195000 MPa
Poisson’s ratio ν = 0.3
Hardening modulus H=2000 MPa
Material parameter cr = 0.866
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Figure 1. Shear stress vs shear strain: Hypo-elastic ma-
terial.
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Figure 2. Normal stress vs shear strain: Hypo-elastic
material.
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Elastic-perfectly plastic
In Figure 3 and 4, the simulation results of the

elastic-perfectly plastic model are depicted. A steady
state behavior in shear is obtained for all investigated
stress rates. The Truesdell and Jaumann rates ex-
hibit perfectly elastic-plastic behavior for the normal
stress at different stress levels while the logarithmic
and Green-Naghdi rates cause a drop in the normal
stress component.
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Figure 3. Shear stress vs shear strain: Elastic-perfectly
plastic.
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Figure 4. Normal stress vs shear strain: Elastic-perfectly
plastic.

Elastic-plastic isotropic hardening
For the elastic-plastic isotropic hardening model,

all objective rates investigated exhibit the same lin-
ear characteristic in shear stress (Figure 5). Since

the size of the yield surface, which is represented by
the yield strength, continues to grow as a function
of the effective inelastic strain rate ėp during the de-
formation, see Equations (21) and (24), the shear
and normal stresses continue to increase (Figures 5
and 6). Solutions for isotropic hardening give a non-
linearly increasing normal stress for the Truesdell,
logarithmic and Jaumann rates. On the other hand,
the normal stress increases nonlinearly and levels off
for the Green-Naghdi rate.
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Figure 5. Shear stress vs shear strain: Elastic-plastic
with isotropic hardening.
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Figure 6. Normal stress vs shear strain: Elastic-plastic
with isotropic hardening.

Elastic-plastic kinematic hardening
The simulation results of simple shear for an

elastic-plastic linear kinematic hardening material
are shown in Figures 7 and 8. An oscillating be-
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havior is observed for the Jaumann rate in the case
of elastic-plastic linear kinematic hardening.
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Figure 7. Shear stress vs shear strain: Elastic-plastic
with linear kinematic hardening.

35

30

25

20

15

10

5

0
0 1 2 3 4 5 6 7 8 9

Shear Strain

σ 11
/σ

y

Jaumann

Logarithmic

Green-Naghdi

Truesdell

Figure 8. Normal stress vs shear strain: Elastic-plastic
with kinematic hardening.

Simulation of the behavior of FVBO for sim-
ple shear

The material behavior under simple shear is investi-
gated using FVBO with the convected Truesdell rate
and three co-rotational rates: the Jaumann, Green-
Naghdi and logarithmic rates. The simulation re-
sults of FVBO under simple shear are depicted for
the following cases:

i. Constant isotropic stress (A = 149 MPa)
and zero kinematic stress (Et = 0) to model
elastic-perfectly plastic material behavior. The

stress-strain diagram obtained with the elastic-
perfectly plastic model under uniaxial loading
is depicted in Figure 9. In addition, the simu-
lation behavior of VBO with constant isotropic
stress and zero kinematic stress is shown in
the same figure. The elastic-perfectly plas-
tic model and VBO with the parameters men-
tioned above yields the same results except the
transition from the quasi-elastic to fully plastic
region.

ii. Constant isotropic stress (A = 149 MPa) and
nonzero kinematic stress (Et 6= 0), (Table 2).
The stress-strain diagrams under uniaxial load-
ing for kinematic hardening using the classi-
cal plasticity model and VBO with constant
isotropic stress and nonzero tangent modulus
are shown in Figure 10. Similar to the elastic-
perfectly plastic case, curves match in the in-
elastic region.

iii. Variable isotropic stress, see Equation. (31)
and Table 2, and zero kinematic stress (Et= 0)
to model isotropic hardening.
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Figure 9. The stress-strain diagrams under uniaxial load-
ing using FVBO with a constant isotropic
stress (A =149 MPa) and Et = 0 and the
elastic-perfectly plastic model.
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Figure 10. The stress-strain diagrams under uniaxial
loading using FVBO with a constant isotropic
stress (A =149 MPa) and Et = 2000 MPa and
the elastic-plastic kinematic hardening model.

Table 2. Material constants for FVBO.

Modulus E = 195000 MPa
Et = 2000 MPa
ν = 0.3

Isotropic stress Ac = 1
Ao = 115 MPa
Af =160 MPa

Viscosity function k1 = 314200 s
k2 = 60 MPa
k3 = 21.98

Shape function C1 = 30000 MPa
C2 = 182500 MPa
C3 = 0.11 MPa−1

For the modeling of elastic-perfectly plastic mate-
rial behavior with the FVBO the repository for kine-
matic hardening should be set to zero. In addition,
the repository for isotropic hardening should be con-
stant. In FVBO, the tensor valued kinematic stress
f and the scalar isotropic stress A are responsible
for kinematic and isotropic hardening, respectively.
By setting the hardening modulus Et to zero and us-
ing constant isotropic stress, elastic-perfectly plastic
behavior is modeled and the simulation results are
shown in Figures 11 and 12. The elastic-perfectly
plastic model and FVBO give the same results ex-
cept the normal stress levels (Figures 3 and 4). The
material properties used for FVBO are given in Ta-
ble 2.
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Figure 11. Shear stress vs shear strain: FVBO with zero
isotropic stress rate and Et = 0.
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Figure 12. Normal stress vs shear strain: FVBO with
zero isotropic stress rate and Et = 0.

A constant isotropic stress and a nonzero harden-
ing modulus yield kinematic hardening. A constant
isotropic stress, A = 149 MPa is chosen to match the
numerical results of FVBO with the classical plastic-
ity model with kinematic hardening. The results of
FVBO with constant isotropic stress and non zero
kinematic stress are given in Figures. 13 and 14.
At a shear strain rate of 10−51/s, FVBO and the
elastic-plastic linear kinematic hardening model give
the same results, (Figures 7 and 8).
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Figure 13. Shear stress vs shear strain: FVBO with zero
isotropic stress rate and Et = 2000 MPa.
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Figure 14. Normal stress vs shear strain: FVBO with
zero isotropic stress rate and Et = 2000 MPa.

To model the isotropic hardening using FVBO
the isotropic stress is allowed to evolve according to
a Frederick-Armstrong type law. At the same time,
the kinematic stress is set to zero. Figures 15 and
16 show the simulation results of FVBO with a zero
hardening modulus (Et= 0) and a nonzero isotropic
stress rate (Ȧ 6= 0). These results are different
from the results of the classical plasticity model with
isotropic hardening (Figures 5 and 6). In the clas-
sical plasticity model, the size of the yield surface,
which is represented by the yield strength, grows as
a function of the effective inelastic strain rate; see
Equations (21) and (24). Since the inelastic rate of
deformation tensor continues to evolve during the de-
formation, the rate of the yield strength will continue
to grow and an increasing stress behavior is observed
as seen in Figures 5 and 6. On the other hand, in

FVBO isotropic stress has a saturation value and
isotropic hardening is observed until the isotropic
stress reaches the final value of the isotropic stress
Af , as seen in Figures 15 and 16. Therefore, the sim-
ulation results of FVBO with zero hardening modu-
lus (Et = 0) and nonzero isotropic stress rate (Ȧ 6= 0)
are similar to the results of FVBO with zero harden-
ing modulus (Et = 0) and zero isotropic stress rate
(Ȧ = 0) (Figures 11 and 12) and to the classical
plasticity approach with the elastic-perfectly plastic
case, (Figures 3 and 4), except the region where the
isotropic stress rate is still nonzero.
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Figure 15. Shear stress vs shear strain: FVBO with Et =
0 and non zero isotropic stress rate (Ȧ 6= 0).
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Figure 16. Normal stress vs shear strain: FVBO with Et
= 0 and non zero isotropic stress rate (Ȧ 6= 0).

Conclusion

The response under simple shear is investigated us-
ing a variety of inelastic material models. Included

104
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are the hypo-elastic, elastic-perfectly plastic, elastic-
plastic isotropic and linear kinematic and FVBO,
which can be specialized to most of these models. In
addition to the well-known Jaumann, Green-Naghdi
and Truesdell rates, the influence of the rate newly
introduced by Xiao et al. (1997a), the logarithmic
rate, is also studied for each material model by nu-
merically integrating incremental equations.

The following observations can be made:

1. The responses of the logarithmic rate to every
type of model discussed here are acceptable ex-
cept the elastic-perfectly plastic case. Unlike
the Jaumann rate, the logarithmic rate does
not exhibit any oscillatory response.

2. FVBO with a zero isotropic stress rate and
nonzero hardening modulus and elastic-plastic
kinematic hardening model give the same re-
sults at the rate of 10−51/s.

3. Elastic-plastic kinematic hardening, and
elastic-perfectly plastic can be modeled with
FVBO.

4. It is reasonable to require that the stresses in
simple shear do not develop responses with-
out bounds. However, the material law such
as isotropic hardening in plasticity yields the
stresses, which have no limit. On the other
hand, constant isotropic stress yields finite
stresses as the shear strain grows without
bounds. If the unlimited growth occurs then
the objective derivative is not useful such as
the Truesdell rate in Figures 6-8, the Trusdell
and Green-Naghdi rates in Figure 13.

5. The choice of stress rate should be governed
not only by the principle of objectivity and
non-oscillation but also by experimental evi-
dence. However, there are limited experimen-
tal data in the literature due to the difficulty
in performing simple shear in the laboratory.
Therefore, a comparison of the simulation re-
sults and experimental data cannot be per-
formed.
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