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Abstract

The unit hydrograph of a river basin can be estimated from the records of rainfall and streamflow by
various methods. In this paper, a linear reservoirs in series model is used to derive the unit hydrograph of a
certain duration. This approach is similar to that proposed by Nash for the instantaneous unit hydrograph.
Expressions are obtained for the unit hydrograph ordinates of the model as function of model parameters,
number of reservoirs and storage coefficient. A computer program is developed to simulate the conversion
of the rainfall excess to the direct runoff by the model and to optimize the model parameters according to
a selected criterion. Application of the method is illustrated in an example.
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Introduction

The derivation of the flow hydrograph resulting from
a certain rainfall over a river basin is an important
problem in hydrology. A black-box model called the
unit hydrograph is commonly used for this purpose.
The unit hydrograph, proposed by Sherman in 1932
(Sherman, 1932), is defined as the hydrograph of di-
rect runoff resulting from unit (1 cm) depth of effec-
tive rainfall falling over the basin area at a uniform
rate during a specified period of time. It is assumed
here that the hydrographs resulting from rainfalls of
different depths will be similar, with magnitudes pro-
portional to the depth of rainfall. The basin system
transforming the effective rainfall to the direct runoff
is assumed to be linear. Although this assumption is
not quite correct, the unit hydrograph theory gives
results that are acceptable for practical purposes.

Various methods have been used to derive the
unit hydrograph of a basin from given records of rain-
fall and streamflow. It is relatively easy to determine
the unit hydrograph when these records are avail-
able for an isolated storm distributed uniformly over

the basin, with approximately constant intensity, of
short duration, separated from other storms. Oth-
erwise, the hydrograph of composite storms can be
used in deriving the unit hydrograph, applying the
superposition principle for linear systems (Bayazıt,
2001).

Having obtained the unit hydrograph of a basin
for a certain duration of the effective rainfall, the
unit hydrograph for another duration can be easily
derived, again using the superposition principle. A
hypothetical concept facilitating the theoretical anal-
ysis is that of the instantaneous unit hydrograph
(IUH) obtained when the duration of the effective
rainfall is infinitesimally small. The IUH is the trans-
fer (impulse response) function of the basin system
converting the effective rainfall to direct runoff. Sev-
eral mathematical models have been developed for its
determination from the rainfall and runoff records.

The outflow from the system (direct runoff), y,
can be computed from the known inflow (effective
rainfall), x, by means of the IUH, u, using the linear
system theory (Chow et al., 1988):
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y(t) =

t∫
o

u (t− τ )x (τ ) dτ (1)

where t(s) is the time, and τ (s) is a dummy variable.
In Eq. (1) x and y have the same units (such as m3/s
or cm/min), and u has the unit 1/s.

Nash (1957) proposed a conceptual model for the
IUH consisting of n identical linear reservoirs in se-
ries. A linear reservoir has an outflow, y, propor-
tional to the amount of water stored in it, S:

S = K y (2)

where K is the storage coefficient of the reservoir. S
and K have, respectively, the dimension of volume
(m3) and time (s). Taking the derivative of Eq. (2)
with respect to time t

dS

dt
= K

dy

dt
(3)

The equation of continuity for the reservoir can be
written as

dS

dt
= x− y (4)

where x is the inflow. Combining Eq. (3) with Eq.
(4):

x = y +K
dy

dt
(5)

Integrating with the initial condition y(0) = 0

y(t) =

t∫
0

x(τ )
1
K
e−(t−τ)/K dτ (6)

Comparing Eq. (6) with Eq. (1), it is seen that the
linear reservoir has the IUH:

u(t) =
1
K
e−t/K (7)

In the reservoirs in series model, the output of a
reservoir constitutes the input into the downstream
reservoir. The IUH of the model can be derived as

follows. When unit rainfall excess enters the first
reservoir at the instant of time t = 0, the outflow
will be given by Eq. (7), which is also the input to
the second reservoir.

The output of the second reservoir can be com-
puted by Eq. (6) taking u(t) given by Eq. (7) as its
input x(τ ), with the result

y2(t) =

t∫
0

1
K
e−t/K

1
K
e−(t−τ)/Kdτ =

t

K2
e−t/K

(8)

Similarly, the output of the n-th reservoir will be

yn(t) =
1

(n− 1)!K

(
t

K

)n−1

e−t/K (9)

which is the IUH of the reservoirs in series model.
This model has two parameters: n, the number of
reservoirs, and K, the storage coefficient.

Unit Hydrograph of Finite Duration

In this study, the linear reservoirs in series model de-
veloped for the derivation of the IUH is applied to
the unit hydrograph of finite duration ∆t. Figure 1
shows the model configuration, in which the index
i refers to the reservoir number and j refers to the
time interval.

The ordinates of the unit hydrograph at time in-
terval ∆t can be determined as follows. Consider
the input x = 1 into the first reservoir (i = 1) at the
first time interval ∆t. Initially all the reservoirs are
empty. The storage in the first reservoir is S1,1 = 1,
and output is

y1,1 = 1/K = C (10)

which is the input to the second reservoir (i = 2). Its
output is

y2,1 = C.C = C2 (11)

Similarly, the output of the reservoir i = n at the
time interval ∆t is

yn,1 = Cn (12)
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In the second time interval t = 2∆t, there is no
input into the first reservoir. Its storage is S1,2 =
1-C, and its output is

y1,2 = C(1−C) (13)

The second reservoir has an initial storage C-C2 =
C(1-C), to which y1,2 is added. Its output at the
time interval 2∆t is

y2,2 = 2C2 (1− C) (14)

The output of the final reservoir i = n at the time
interval 2 ∆t is

yn,2 = nCn(1− C) (15)

In a similar manner, the output of the reservoir i =
n at the time interval j ∆t is

yn,j = an,j C
n (1− C)j−1 (16)

where the coefficient an,j can be computed iteratively
by the expression

an,j = an−1,j + an,j−1 (17)

with a1,1 = a1,2 . . . = a1,n = 1, and a1,1 = a2,1 =
. . . = aj,1 = 1. Table 1 gives the an,j values for n =
1,2, . . . ,20 and j = 1,2, . . . ,10. For any value of n,
the sum of the yn,jvalues is equal to one:

∞∑
j=1

yn,j = 1 (18)

Eq. (16) gives the ordinates of the unit hydro-
graph of duration ∆t of the linear reservoirs in series
model when the input (effective rainfall) and the out-
put (direct runoff) are expressed in same the units.

Usually ∆t is expressed in hours, flows Un,j in
m3/s, yn,j in cm, and the basin area A in km2.
In this case the unit hydrograph ordinates are com-
puted by the expression

Un,j = 2.778
1

∆ t
yn,j A (19)

where 2.778 is a unit conversion factor.

Simulation of the Model

The conversion of the effective rainfall hyetograph to
the direct runoff hydrograph by means of the linear
reservoirs in series model is simulated on the com-
puter. The simulation program derives the hydro-
graph ordinates for a certain hyetograph when n and
K values are given. For each reservoir in the system,
finite difference forms of Eq. (2) and Eq. (4) are
applied at successive time intervals ∆t to obtain the
outputs of the final reservoir (i = n), the hydrograph
ordinates.

1

S1,j

S2,j

S3,j

Sn,j

Y1,j=X2,j

Y2,j=X3,j

Y3,j=X4,j

Yn-1,j=Xn,j

Yn,j

Figure 1. Configuration of the linear reservoirs in series model for unit hydrograph estimation.
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Table 1. an,j coefficients of the model.

n \ j 1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10
3 1 3 6 10 15 21 28 36 45 55
4 1 4 10 20 35 56 84 120 165 220
5 1 5 15 35 70 126 210 330 495 715
6 1 6 21 56 126 252 462 792 1287 2002
7 1 7 28 84 210 462 924 1716 3003 5005
8 1 8 36 120 330 792 1716 3432 6435 11440
9 1 9 45 165 495 1287 3003 6435 12870 24310
10 1 10 55 220 715 2002 5005 11440 24310 48620
11 1 11 66 286 1001 3003 8008 19448 43758 92378
12 1 12 78 364 1365 4368 12376 31824 75582 167960
13 1 13 91 455 1820 6188 18564 50388 125970 293930
14 1 14 105 560 2380 8568 27132 77520 203490 497420
15 1 15 120 680 3060 11628 38760 116280 319770 817190
16 1 16 136 816 3876 15504 54264 170544 490314 1307504
17 1 17 153 969 4845 20349 74613 245157 735471 2042975
18 1 18 171 1140 5985 26334 100947 346104 1081575 3124550
19 1 19 190 1330 7315 33649 134596 480700 1562275 4686825
20 1 20 210 1540 8855 42504 177100 657800 2220075 6906900

The simulation program can be used to deter-
mine the optimal values of the parameters n and K
of the linear reservoirs in series model for the unit
hydrograph of duration ∆t, when the direct runoff
and rainfall excess ordinates are given, as explained
below.

Obviously it is not possible to obtain a perfect
fit of the simulated hydrograph ordinates to those of
the observed hydrograph. A best fit is sought on the
basis of a chosen criterion. The values of the param-
eters n and K are optimized so that the relative error
is minimized. The relative error is defined as

e = w1 e1 + w2 e2 (20)

where w1 and w2 are the weight coefficients, and e1

and e2 are the relative errors with respect to the to-
tal hydrograph ordinates and the hydrograph peak,
respectively.

e1 =
m∑
i=1

(
yio−yic
yio

)2

e2 =
(
ypo−ypc
ypo

)2
(21)

where m is the total number of hydrograph ordinates,
yi are the hydrograph ordinates (i = 1,2, . . . ,m), and

yp is the hydrograph peak ordinate. The subscripts
o and c refer to the observed and computed hydro-
graphs, respectively. The optimization by Eq. (20)
considers both the total hydrograph ordinates and
the hydrograph peak. If w1 = 0, w2 = 1, then only
the hydrograph peak ordinate is considered in the
optimization.

Another alternative is to consider the time and
magnitude of the hydrograph peak:

e′ = w′1 e′1 + w′2 e′2 (22)

where

e′1 =
(
tpo−tpc
tpo

)2

e′2 = e2

(23)

where tp is the time to the peak
Once the optimization criterion is chosen and the

weights are determined, optimal values of n and K
are found by minimizing the relative error:

min e or min e′ (24)
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Table 2. Observed rainfall excess and direct runoff.

Time Rainfall Excess Direct Runoff
(min) (cm) (m3/s)

20 0.562 0
40 1.968 456
60 0.526 3990
80 0.083 12275
100 13166
120 9268
140 6717
160 5682
180 3632
200 1881
220 1445
240 820

Time Direct Runoff
(min) (m3/s)
260 638
280 508
300 299
320 215
340 189
360 137
380 91
400 78
420 65
440 59
460 46
480 39

14000

12000

10000

8000

6000

4000

2000

0

Computed Measured

a

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

n = 15

K = 1.2

COMPARISON OF DIRECT RUNOFFS

Time (min)

D
is

ch
ar

ge
 (

m3 .
s-1

)

14000

12000

10000

8000

6000

4000

2000

0

b

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

n = 16

K = 1.2

Time (min)

D
is

ch
ar

ge
 (

m3 .
s-1

)

14000

12000

10000

8000

6000

4000

2000

0

D
is

ch
ar

ge
 (

m3 .
s-1

)

10 50 90 13
0

17
0

21
0

25
0

29
0

33
0

37
0

41
0

45
0

49
0

Time (min)

c

n = 18

K = 1.2

Figure 2. Comparison of the measured and simulated direct runoff hydrographs: (a) n = 15, K = 1.2, (b) n = 16,
K = 1.2, (c) n = 18, K = 1.2.
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Application

Unit hydrograph derivation by the linear reservoirs
in series model is illustrated in an example. Singh
(1992) gives the rainfall excess (computed from the
observed hyetograph) and direct runoff ordinates for
a basin of area A = 2393 km2 (Table 2).

The linear reservoirs in series model is fitted to
the observed hydrograph by different criteria and dif-
ferent weight coefficients. The results are shown in
Table 3.

Measured direct runoff hydrograph is compared
with the hydrographs estimated by the linear reser-
voirs in series model for different values of n and K
(Figures 2a, b, c). Unit (1 cm depth) hydrographs
of the linear reservoirs in series model are compared
with the unit hydrograph of the basin estimated by

the Collins method (Singh, 1992), which is a trial-
and-error procedure, as shown in Figures 3a, b, c.

A better fit to the observed flows is achieved with
the parameter values n = 6, K = 1.4 found by trial
and error (Figure 4), in which case the estimated
unit hydrograph is quite close to that found by Singh
(1992). This hydrograph corresponds to certain val-
ues of the weight coefficients that were not consid-
ered in the optimization.

Table 3. Optimization results.

Criterion w1(w′1) w2(w′2) n K
min e 0 1 15 1.2
mine′ 1 0 16 1.2
min e 0.5 0.5 18 1.2
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Figure 3. Comparison of the unit hydrograph of the model with that estimated by the Collins method: (a) n = 15, K =
1.2, (b) n = 16, K = 1.2, (c) n = 18, K = 1.2.
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Figure 4. (a) Comparison of the unit hydrograph of the model with that estimated by the Collins method, (b) Comparison
of the measured and simulation direct runoff hydrographs. n = 6 and K = 1.4.

Conclusions

The unit hydrograph of a basin can be estimated
from the given rainfall excess hyetograph and direct
runoff hydrograph of a river basin by a linear reser-
voirs in series model that was originally developed
for the instantaneous unit hydrograph. The model
has two parameters: n, number of reservoirs, and K,
storage coefficient.

An expression is derived that gives the unit hy-
drograph ordinates of the model for a given pair of
n and K values. A computer program is prepared
that simulates the conversion of the rainfall to the

runoff using the model. The parameters of the model
can be optimized on the basis of a selected criterion
expressing the fit of the estimated direct runoff hy-
drograph to the observed hydrograph. An example
shows that satisfactory agreement can be achieved
when the model parameters are selected appropri-
ately.
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