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Abstract

The unsteady viscous flow produced by a sudden coincidence of two axes while a disk and the fluid at
infinity are initially rotating with the same angular velocity about non-coincident axes is examined. The
velocity field and the shear stress components on the disk are found exactly with the use of the Laplace
transform technique. In order to confirm the results obtained exactly, another solution that is valid at small
times is also obtained. At the region near the disk, it is observed that the projections of the rotation centers
of the fluid layers on the disk plane are in both the first and the second quadrant for the given flow geometry.
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Introduction

It is possible to determine the material moduli of
non-Newtonian fluids if an apparatus consisting of
two parallel disks rotating with the same angular ve-
locity about two different axes perpendicular to the
disks is used (Maxwell and Chartoff, 1965). For this
flow, a symmetric condition is used because of the
characteristic of the flow (Berker, 1982). However,
when a disk and a fluid at infinity rotates with the
same angular speed about non-coincident axes, the
fluid at infinity is free of shear stress. Hence, we do
not need an extra condition.

Coirier (1972) was the first to study the flow of
a Newtonian fluid caused by non-coaxial rotation of
a disk and of the fluid at infinity. He considered the
rotation with both the same and different angular
velocities. Erdoğan (1976a, 1977) investigated the
same flow in the case of a porous disk, when they ro-
tate with the same and slightly different angular ve-
locities, respectively. Murthy and Ram (1978) stud-
ied the effect of heat transfer on the MHD flow for
a Newtonian fluid when a porous disk and the fluid
at infinity rotate eccentrically with the same angular

velocity. Recently, Ersoy and Barış (2002a) reconsid-
ered the flow given by Coirier (1972) and examined
the velocity field according to the coordinates.

Erdoğan (1976b) considered the flow in the same
geometry for a non-Newtonian fluid after Coirier’s
work. He investigated the flow of a second order fluid
when the disk and the fluid at infinity rotate with
slightly different angular velocities. Ersoy (2000) in-
vestigated the MHD flow of a conducting Oldroyd-B
fluid due to non-coaxial rotation of a porous, insu-
lated disk and the fluid at infinity with the same
angular velocity. Ersoy and Barış (2002b) studied
the flow induced by the rotation at the same angu-
lar velocity in the case of a porous disk for a second
grade/order fluid.

Pop (1979) was the first to consider the unsteady
flow produced by a disk and a fluid at infinity. He
considered the problem for a Newtonian fluid and
studied the unsteady flow induced when the disk and
the fluid at infinity start impulsively to rotate with
the same angular velocity about non-coincident axes.
Kasiviswanathan and Rao (1987) presented an exact
solution of the unsteady Navier-Stokes equations for
the flow produced by an eccentrically rotating porous
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disk oscillating in its own plane and the fluid at in-
finity. Erdoğan (1997) studied the unsteady viscous
flow resulting from rotation about non-coaxial axes
while the disk and the fluid at infinity are initially
rotating about a common axis. Hayat et al. (1999)
obtained an exact analytic solution for the unsteady
viscous flow induced by the oscillations of a porous
disk in its own plane. They also discussed the un-
steady flow due to the porous disk oscillating and
the fluid at infinity rotating about an axis parallel
to their first rotation axis. Erdoğan (2000) studied
the flow due to non-coaxial rotation of a disk oscil-
lating in its own plane and a viscous fluid at infinity.
Hayat et al. (2001) examined Erdoğan’s work (1997)
for a porous disk in the presence of a magnetic field.
Siddique et al. (2001) studied the same problem for
a second grade fluid. However, they considered small
values of the elastic parameter.

In this paper, we study the unsteady flow of a
Newtonian fluid resulting from rotation about a com-
mon axis while a disk and the fluid at infinity are ini-
tially rotating with the same angular velocity about
non-coincident axes. The disk and the fluid at infin-
ity rotate with the same angular velocity throughout
the flow. The initial condition is different from that
in the papers mentioned above since it is the solu-
tion obtained by Coirier (1972). The velocity field
and the shear stress components that are related to
the force components in the x- and y-directions ex-
erted by the fluid on the disk are found exactly. In
order to verify the results obtained exactly, another
solution that is valid at small time instants is also
obtained.

Governing Equations

Let us consider a Newtonian fluid filling the semi-
infinite space z ≥ 0 in a Cartesian coordinate system.
The axis of rotation of the disk located at z = 0 and
that of the fluid at infinity are in the plane x = 0.
The disk and the fluid at infinity are initially rotat-
ing with the same angular velocity Ω about the z-
and z′-axes, respectively, and the distance between
the axes is denoted by ` (Figure 1). The disk sud-
denly starts to rotate with its initial angular velocity
about the z′-axis. Therefore, the initial and bound-
ary conditions are

u = −Ω y + f̂(z), v = Ωx+ ĝ(z),

w = 0 at t = 0 for z ≥ 0,
(1a)

u = −Ω (y − `), v = Ωx,

w = 0 at z = 0 for t > 0,
(1b)

u = −Ω (y − `), v = Ωx,

w = 0 at z → ∞ for t ≥ 0
(1c)

where u, v, w denote the velocity components along
the x, y, z-directions, respectively. The functions
f̂(z) and ĝ(z), obtained by Coirier (1972), are given
by

z z′

Ω

Ω

O O′ y,y′

`)

Figure 1. Flow geometry

f̂(z) + i ĝ(z) = Ω `
(
1− e−k z

)
(2)

where i =
√
−1, k = (1 + i)

√
Ω/(2 ν), and ν is the

kinematic viscosity of the fluid. The solution shown
by Eq. (2) is summarized in the Appendix.

Thus, it seems reasonable to try a solution of the
form

u = −Ω y + f(z, t), v = Ωx+ g(z, t), w = 0.
(3)

This means that the flow is a result of superpo-
sition, in each z = constant plane, of a rigid body
rotation with the angular velocity Ω about the z-
axis and of a time-dependent rigid body translation
that changes from plane to plane with the velocity
{f(z, t); g(z, t); 0} in a Cartesian coordinate sys-
tem. Using Eqs. (1a-c) and (3), we have

f(z, 0) = f̂(z), g(z, 0) = ĝ(z) for z ≥ 0, (4a)
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f(0, t) = Ω `, g(0, t) = 0 for t > 0, (4b)

f(∞, t) = Ω `, g(∞, t) = 0 for t ≥ 0. (4c)

Substituting Eq. (3) into the Navier-Stokes equa-
tions, one obtains

1
ρ

∂ p

∂ x
= Ω2x+

(
ν
∂2f

∂ z2
− ∂ f

∂ t
+ Ω g

)
, (5a)

1
ρ

∂ p

∂ y
= Ω2y +

(
ν
∂2g

∂ z2
− ∂ g

∂ t
−Ω f

)
, (5b)

1
ρ

∂ p

∂ z
= 0 (5c)

where ρ is the density of the fluid and p is the mod-
ified pressure. Equations (5a-c) give

ν
∂2f

∂ z2
− ∂ f

∂ t
+ Ω g = C1(t), (6a)

ν
∂2g

∂ z2
− ∂ g

∂ t
−Ω f = C2(t). (6b)

Since the fluid at infinity has no shear stress, we
find that C1(t) = 0 and C2(t) = −Ω2` with the help
of Eq. (4c). Introducing F (z, t) = f(z, t) + i g(z, t)
and using Eqs. (6a-b), we get

ν
∂2F

∂ z2
− ∂ F

∂ t
− iΩF = −iΩ2`. (7)

If we introduce the following dimensionless vari-
ables

F =
f

Ω `
+ i

g

Ω `
− 1, ζ =

√
Ω
2 ν

z, τ = Ω t (8)

then Eq. (7) and the conditions (4a-c) become

∂2F
∂ ζ2

− 2
∂ F
∂ τ
− 2 iF = 0, (9)

and

F(0, τ ) = 0 (τ > 0), (10a)

F(∞, τ ) = 0 (τ ≥ 0), (10b)

F(ζ, 0) = −e−(1+i) ζ (ζ ≥ 0). (10c)

Solution of the problem

Setting

F(ζ, τ) = H(ζ, τ) e−i τ , (11)

we have

∂2H

∂ ζ2
− 2

∂ H

∂ τ
= 0 (12)

with the conditions as follows:

H(0, τ ) = 0 (τ > 0), (13a)

H(∞, τ ) = 0 (τ ≥ 0), (13b)

H(ζ, 0) = −e−(1+i) ζ (ζ ≥ 0). (13c)

Let the Laplace transform of H(ζ, τ) be H̄(ζ, s),
so that

H̄(ζ, s) =

∞∫
0

H(ζ, τ) e−s τ d τ. (14)

Taking the Laplace transforms of Eqs. (12)-(13a-
b), we get

H̄ ′′ − 2 s H̄ = 2 e−(1+i) ζ , (15a)

H̄(0, s) = 0 (τ > 0), (15b)

H̄ (∞, s) = 0 (τ ≥ 0) (15c)

and we obtain the transformed solution as
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H̄ =
1

s− i e
−
√

2 s ζ − 1
s− i e

−(1+i) ζ . (16)

In order to take the Laplace inversion of H̄ , we shall rewrite Eq. (16) as follows:

H̄ =
1

2
√
s

(
1

√
s+
√
i

+
1

√
s−
√
i

)
e−
√

2 s ζ − 1
s− i e

−(1+i) ζ . (17)

With the help of Table 1 (Abramowitz and Stegun, 1965), we obtain

H =
1
2
ei τ

[
e
√

2i ζerfc
(√

i τ +
ζ√
2 τ

)
+ e−

√
2 i ζerfc

(
−
√
i τ +

ζ√
2 τ

)]
− ei τ e−(1+i) ζ (18)

where erfc (.) denotes the complementary error function.
Using Eqs. (11) and (18), one finds

f

Ω `
+ i

g

Ω `
= 1− e−(1+i) ζ +

1
2

[
e
√

2 i ζerfc
(√

i τ +
ζ√
2 τ

)
+ e−

√
2 i ζerfc

(
−
√
i τ +

ζ√
2 τ

)]
. (19)

The dimensionless shear stress components in the fluid are obtained by

Txz + i Tyz

Tr
=

∂

∂ ζ

(
f

Ω `
+ i

g

Ω `

)
(20)

where Tr =
√
µρΩ3/2 `, and µ is the dynamic viscosity of the fluid. Using Eqs. (19)-(20), we obtain

Txz + i Tyz

Tr
= (1 + i)

[
e−(1+i) ζ +

1
2
e
√

2 iζ erfc
(√

i τ +
ζ√
2 τ

)
− 1

2
e−
√

2 i ζ erfc
(
−
√
i τ +

ζ√
2 τ

)]

−
√

2
2

1√
π τ

[
e
√

2 i ζ−(
√

i τ+ζ/
√

2 τ)2 + e−
√

2 i ζ−(−
√

i τ+ζ/
√

2 τ)2
]
. (21)

Finally, we have the dimensionless shear stress components on the disk in the following form:

(T̄xz)ζ=0 + i (T̄yz)ζ=0 = (1 + i)
{

1 +
1
2

[
erfc

(√
i τ

)
− erfc

(
−
√
i τ

)]}
−

√
2
π τ

e−i τ (22)

where T̄xz = Txz/Tr and T̄yz = Tyz/Tr.

Solution at small times

Although the solution given above is exact, we shall
search for another solution that is valid for small val-
ues of time. Thus, our purpose is to compare the re-
sults obtained in two different forms. We shall write
Eq. (16) as follows:

H̄ =
1
s

1
(1− i/s)

[
e−ϕ ζ − e−(1+i) ζ

]
(23)

where ϕ =
√

2 s. It is well known that the series
∞∑

n=0
xn converges to (1− x)−1 for |x| < 1. Using this

binomial series, it is possible to obtain the solution
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for small values of the time corresponding to large s,
i.e.

H̄ =
1
s

∞∑
n=0

(
i

s

)n [
e−ϕ ζ − e−(1+i) ζ

]
(24)

or

H̄ =
∞∑

n=0

(i)n e
−ϕ ζ

sn+1
−
∞∑

n=0

(i)n e−(1+i) ζ 1
sn+1

. (25)

From Table 1 (Abramowitz and Stegun, 1965),
the Laplace inversion of H̄ becomes

H =
∞∑

n=0

(i)n (4 τ )n i2nerfc
(

ζ√
2 τ

)
− e−(1+i) ζei τ

(26)

where inerfc (.) denotes the repeated integrals of the
complementary error function and is given by

i−1erfc x =
2√
π
e−x2

, i0erfc x = erfc x, inerfc x =

∞∫
x

in−1erfc φ dφ (n = 0, 1, 2, ...). (27)

From Eqs. (11) and (26), we have

f

Ω `
+ i

g

Ω `
= 1− e−(1+i) ζ + e−i τ

∞∑
n=0

(i)n (4 τ )n i2nerfc
(

ζ√
2 τ

)
(28)

or

f

Ω `
=

[
1− e−ζ cos ζ

]
+ (cos τ ) [A(ζ, τ)] + (sin τ ) [B(ζ, τ)], (29a)

g

Ω `
= [e−ζ sin ζ] + (cos τ ) [B(ζ, τ)]− (sin τ ) [A(ζ, τ)] (29b)

where

A(ζ, τ) = erfc
(

ζ√
2 τ

)
− (4 τ )2 i4erfc

(
ζ√
2 τ

)
+ (4 τ )4 i8erfc

(
ζ√
2 τ

)
− ..., (30a)

B(ζ, τ) = (4 τ ) i2erfc
(

ζ√
2 τ

)
− (4 τ )3 i6erfc

(
ζ√
2 τ

)
+ (4 τ )5 i10erfc

(
ζ√
2 τ

)
− ... . (30b)

Bearing in mind the identity

d

d z
inerfc y = −

(
d y
d z

)
in−1erfc y, (31)

one finds

Txz

Tr
= e−ζ (cos ζ + sin ζ)− cos τ√

2 τ
[C(ζ, τ)]− sin τ√

2 τ
[D(ζ, τ)], (32a)
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Tyz

Tr
= e−ζ (cos ζ − sin ζ)− cos τ√

2 τ
[D(ζ, τ)] +

sin τ√
2 τ

[C(ζ, τ )] (32b)

where

C(ζ, τ) = i−1erfc
(

ζ√
2 τ

)
− (4 τ )2 i3erfc

(
ζ√
2 τ

)
+ (4 τ )4 i7erfc

(
ζ√
2 τ

)
− ... , (33a)

D(ζ, τ) = (4 τ ) i erfc
(

ζ√
2 τ

)
− (4 τ )3 i5erfc

(
ζ√
2 τ

)
+ (4 τ )5 i9erfc

(
ζ√
2 τ

)
− ... . (33b)

Using the identity

inerfc 0 = [2n Γ(n/2 + 1)]−1 (n = −1, 0, 1, 2, ...), (34)

the shear stress components on the disk are

(Txz)ζ=0 = 1− cos τ√
2 τ

[
1

2−1Γ(0.5)
− (4 τ )2

23 Γ(2.5)
+

(4 τ )4

27 Γ(4.5)
− (4 τ )6

211 Γ(6.5)
+ ...

]

−sin τ√
2 τ

[
(4 τ )

2 Γ(1.5)
− (4 τ )3

25 Γ(3.5)
+

(4 τ )5

29 Γ(5.5)
− (4 τ )7

213 Γ(7.5)
+ ...

]
, (35a)

(Tyz)ζ=0 = 1− cos τ√
2 τ

[
(4 τ )

2 Γ(1.5)
− (4 τ )3

25 Γ(3.5)
+

(4 τ )5

29 Γ(5.5)
− (4 τ )7

213 Γ(7.5)
+ ...

]

+
sin τ√

2 τ

[
1

2−1 Γ(0.5)
− (4 τ )2

23 Γ(2.5)
+

(4 τ )4

27 Γ(4.5)
− (4 τ )6

211 Γ(6.5)
+ ...

]
(35b)

where Γ(.) is the gamma function defined by

Γ(n) =

∞∫
0

xn−1 e−x dx(n > 0). (36)

Table 1. Table of Laplace transforms used in this paper, where f(s) is the Laplace transform of F(t) (Abramowitz and
Stegun, 1965).

f(s) F(t)
e−k

√
s

√
s (a+

√
s)

(k ≥ 0) ea k ea2 t erfc
(
a
√
t+ k

2
√

t

)
1

s+a e−a t

e−k
√
s

s1+m/2 (m = 0, 1, 2, ...; k ≥ 0) (4 t)m/2 imerfc
(

k
2
√

t

)
1

sm
(m = 1, 2, 3, ...) tm−1

(m−1)!
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For small values of time, the solutions given by
Eqs. (29a-b) and (35a-b) can be used instead of the
exact solutions given by Eqs. (19) and (22), respec-
tively. It is clear that Eqs. (29a-b) and (35a-b) are
very convenient for τ ≤ 0.25.

Discussion and Conclusions

When a disk and a fluid at infinity rotate with the
same angular velocity about non-coincident axes, the
fluid layer in each z = constant plane rotates as a
rigid body with their angular velocity. The coor-
dinates of the rotation centers of these fluid layers
in this paper are obtained by x/` = −g/Ω ` and
y/` = f/Ω ` for 0 ≤ ζ < ∞. Thus, the velocity
components in the planes parallel to the xy-plane
are calculated according to the coordinates.

In our problem, the disk and the fluid at infinity
are initially rotating with the same angular velocity
about two parallel axes normal to the disk. Hence,
the initial condition becomes the solution given by
Coirier (1972). Because of the rotation about the
common axis for t > 0, the fluid tends to a rigid
body rotation and it rotates about the z′-axis in the
steady flow, as expected (Figures 2-3). In the limit
as τ → ∞, this result is readily acquired from Eq.
(19) for every ζ.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

ζ

f / Ω

τ = 0 0 01. 0 03. 0 07. 01. 0 2. 0 3.

0 5.

0 7.

1

15.

2

steady - flow

`)

Figure 2. Variation of f/Ω ` versus ζ for various values
of τ .

-0.1 0 0.1 0.2 0.3
0

1

2

3

4

5

6

ζ

g / Ω

3

4

2

15.
1 0 7. 05.

0 25.

τ = 0

steady - flow

Figure 3. Variation of g/Ω ` versus ζ for various values
of τ .

At the region near the disk, the projections of the
rotation centers of the fluid layers on the xy-plane
are in the second quadrant until the computed value
τ = 2.05158. After this instant, the projections are
in the first quadrant. The projections continue to
be in both the first and second quadrants as time
elapses, and they reach the point O′(0, `, 0) in the
steady flow.

Since the shear stress components Txz and Tyz

do not depend on x and y, (Txz)ζ=0 and (Tyz)ζ=0

are related to the x- and y-components of the force
per unit area exerted by the fluid on the disk, re-
spectively (Figure 4). At small times, the compo-
nents become negative and positive in the x- and y-
directions, respectively; however, the x-component
is larger than the y-component. The components
change their directions continuously and finally go
to zero. As shown in Figure 4, these components
become equal at some values of time (for example
(Txz)ζ=0 = (Tyz)ζ=0 = 0.11928 for τ = 1.37947 and
(Txz)ζ=0 = (Tyz)ζ=0 = −0.02951 for τ = 4.22331).
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Figure 4. Variations of (Txz)ζ=0 and (Tyz)ζ=0 versus τ .

Nomenclature

` eccentricity distance (L)
p modified pressure (M L−1 T−2)
s Laplace transform variable
t time (T)
Txz, Tyz shear stress components (M L−1

T−2)
(Txz)ζ=0, (Tyz)ζ=0 dimensionless shear stress com-

ponents on the disk
u, v, w velocity components in Cartesian

coordinate system (L T−1)
x, y, z Cartesian coordinates (L)
ζ non-dimensional vertical dis-

tance
µ dynamic viscosity (M L−1 T−1)
ν kinematic viscosity (L2 T−1)
ρ density (M L−3)
τ non-dimensional time
Ω common angular velocity of the

disk and the fluid at infinity
(T−1)

Appendix

The initial condition in this paper is the solution
given by Coirier (1972). He considered the Newto-
nian fluid case and studied the flow produced when a
disk and the fluid at infinity rotate about the z- and
z′-axes, respectively (for the notation used in this
paper, see Figure 1). In the case of rotation with the
same angular velocity, he assumed the velocity field
to be

u = −Ω y + f̂(z), v = Ωx+ ĝ(z), w = 0. (A1)

Substitution of Eq. (A1) into the Navier-Stokes
equations leads to

1
ρ

∂ p

∂ x
= Ω (Ωx+ ĝ) + ν f̂ ′′, (A2a)

1
ρ

∂ p

∂ y
= −Ω (−Ω y + f̂) + ν ĝ′′, (A2b)

1
ρ

∂ p

∂ z
= 0. (A2c)

Introducing F̂ (z) = f̂(z) + i ĝ(z) and using Eqs.
(A2a-c), we have

F̂ ′′ − iΩ
ν
F̂ = − iΩ

2`

ν
(A3)

With the conditions F̂ (0) = 0 and F̂ (∞) = Ω `,
the solution to Eq. (A3) is given in Eq. (2).
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Erdoğan, M.E., “Flow Induced by Non-Coaxial Ro-
tation of a Disk Executing Non-Torsional Oscilla-
tions and a Fluid Rotating at Infinity”, Int. J. Eng.
Sci., 38, 175-196, 2000.

Ersoy, H.V., “MHD Flow of an Oldroyd-B Fluid due
to Non-Coaxial Rotations of a Porous Disk and the

122



ERSOY

Fluid at Infinity”, Int. J. Eng. Sci., 38, 1837-1850,
2000.
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Ersoy, H.V., and Barış, S., “Flow of a Second Or-
der/Grade Fluid due to Non-Coaxial Rotation of a
Porous Disk and the Fluid at Infinity”, Int. J. Appl.
Mech. Eng., 7, 2002b (in press).

Hayat, T., Asghar, S., and Siddiqui, A.M., “Un-
steady Flow of an Oscillating Porous Disk and a
Fluid at Infinity”, Meccanica, 34, 259-265, 1999.

Hayat, T., Asghar, S., Siddiqui, A.M., and Haroon,
T., “Unsteady MHD Flow due to Non-Coaxial Ro-
tations of a Porous Disk and a Fluid at Infinity”,
Acta Mech., 151, 127-134, 2001.

Kasiviswanathan, S.R., and Rao, A.R., “An Un-
steady Flow due to Eccentrically Rotating Porous

Disk and a Fluid at Infinity”, Int. J. Eng. Sci., 25,
1419-1425, 1987.

Maxwell, B., and Chartoff, R.P., “Studies of a Poly-
mer Melt in an Orthogonal Rheometer”, Trans. Soc.
Rheol., 9, 41-52, 1965.

Murthy, S.N., and Ram, R.K.P., “MHD Flow and
Heat Transfer due to Eccentric Rotations of a
Porous Disc and a Fluid at Infinity”, Int. J. Eng.
Sci., 16, 943-949, 1978.

Pop, I., “Unsteady Flow due to Noncoaxially Rotat-
ing Disk and a Fluid at Infinity”, Bull. Tech. Uni.
Ist., 32, 14-18, 1979.

Siddiqui, A.M., Haroon, T., Hayat, T., and Asghar,
S., “Unsteady MHD Flow of a Non-Newtonian Fluid
due to Eccentric Rotations of a Porous Disk and a
Fluid at Infinity”, Acta Mech., 147, 99-109, 2001.

123


