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Abstract

A slider bearing consisting of connected surfaces with Powell-Eyring fluid as a lubricant is analyzed in
the present study. A Powell-Eyring model has been used as a non-Newtonian lubricant in a slider bearing.
The analysis is based on the perturbation technique. Under the assumptions of the order of magnitudes
of the variables, it is seen that only viscous and non-Newtonian terms have effects, whereas inertia terms
are negligible. Choosing non-Newtonian effects smaller than viscous effects, a perturbation solution is
constructed. The pressure distribution in the bearing is calculated approximately.
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Introduction

The lubrication of bearings is an important techno-
logical problem. The pressure distribution in the
bearing should be known for proper functioning.
Much work has been done on Newtonian-type lu-
brication. However, additives are frequently used
in lubricating fluids, which makes the flow non-
Newtonian.

Some relevant studies on non-Newtonian lubrica-
tion in bearings have been published. Ng and Saibel
(1962) used a special third-grade fluid (second-grade
terms neglected) and studied the flow occurring in
a slider bearing. Harnoy and Hanin (1974) and
Harnoy and Philippoff (1976) studied the flow of a
second-grade fluid in a journal bearing. Bourgin and
Gay (1983) used a model similar to that of Ng and
Saibel (1962) to investigate the behavior of flow in
a journal bearing. Buckholz (1985) used a power-
law model as a non-Newtonian lubricant in a slider
bearing. More recently, Kacou et al. (1987) stud-
ied the flow of a third-grade fluid in a journal bear-
ing and constructed a perturbative solution. The
work is extended by the same authors (Kacou et al.

[1988]) by including thermal effects. Yürüsoy and
Pakdemirli (1999) studied the flow of a special third-
grade fluid in a slider bearing. Yürüsoy (2002) has
investigated second- and third-grade fluids in a slider
bearing and used a perturbative solution. Bujurke
and Jagadeeswar (1992) used second-grade fluid as a
non-Newtonian lubricant in a taper-flat slider bear-
ing and constructed a von-Karman momentum inte-
gral solution. Na (1994) investigated the boundary
layer flow of the Reiner-Philippoff model. Hansen
and Na (1968) considered the similarity solution of
the laminar boundary layer problem of the Powell-
Eyring model.

In this study, a Powell-Eyring model was used as
a non-Newtonian lubricant in a slider bearing. The
Powell-Eyring model, although mathematically more
complex, deserves our attention for at least two rea-
sons. Firstly, it can be deduced from a kinetic theory
of gases rather than the empirical relation as in the
power-law model. Secondly, it correctly reduces to
Newtonian behavior for low and high shear rates for
otherwise pseudoplastic systems, whereas the power-
law model indicates an infinite effective viscosity for
low shear rate, thus limiting its range of applicabil-
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ity. Mathematically, the Powell-Eyring model can be
written as (see reference Hansen and Na [1968])

τyx = µ
∂u∗

∂y∗
+

1
B

sinh−1 1
C

∂u∗

∂y∗
(1)

where τyx is shear stress, µ is viscosity and B and C
are constants of the Powell-Eyring model.

First, the equations of motion for a Powell-Eyring
fluid in a slider bearing will be derived. Under the
thin film assumption, viscous, non-Newtonian effects
remain significant whereas the inertial term can be
neglected in a slider bearing flow. Then assuming
that non-Newtonian effects, are small compared to
the viscous effects a perturbation type of solution is
constructed. The first term in the solution is due to
Newtonian behavior and non-Newtonian terms are
added to the Newtonian solution as corrections. The
pressure distributions are calculated approximately
and the effect of non-Newtonian behavior is shown
in figures.

Equation of Motion

The slider bearing is shown in Figure 1. The conti-
nuity and linear momentum equations are

b1

y

U

L

b(x)
b2

x

Figure 1. Slider bearing.

div v = 0 (2)

divτ = ρ
dv

dt
(3)

Let us introduce the following non-dimensional
parameters:

x =
x∗

L
, y =

y∗

b1
, u =

u∗

U
, v =

Lv∗

b1U
, b =

b∗

b1
,

p =
p∗

ρU2

b1
L

(4)

Substituting Eqs. (1) and (4) into (2) and (3),
gives

∂u

∂x
+
∂v

∂y
= 0 (5)

(
u
∂u

∂x
+ v

∂u

∂y

)
= −1

δ

∂p

∂x
+

1
Re

1
δ2

∂2u

∂y2

+_
α

1
δ2

∂2u
∂y2√

β
(
∂u/∂y

)2

+ 1
(6)

(
u
∂v

∂x
+ v

∂v

∂y

)
= − 1

δ3

∂p

∂y
+ _
α

1
δ2

∂2u
∂y∂x√

β
(
∂u/∂y

)2

+ 1

(7)

In the above equations, the non-dimensional pa-
rameters are

Re =
ρUL

µ
,

_
α =

1
LBCUρ

, β =
U2

b21C
2
,

1
δ

=
L

b1
(8)

In Eqs. (5)-(7), only the largest terms in each
group are retrieved. We may now assume that 1/Re
is of order δ, _α of order δ (_α=δ_γ). Under these as-
sumptions, the largest terms in Eqs. (5)-(7) are

∂u

∂x
+
∂v

∂y
= 0 (9)

dp

dx
=
∂2u

∂y2
+ _
γ

∂2u
∂y2√

β
(
∂u/∂y

)2

+ 1
(10)

∂p

∂y
= 0 (11)

The boundary conditions for the problem are

u(0) = 1, u(b) = 0, v(0) = 0, v(b) = 0 (12)
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Velocity profile

In this section, velocity profile will be calculated
approximately. Assuming that the non-Newtonian
term is small compared to the viscous term, one may
write

_
γ = εγ (13)

where ε is a small parameter. When the non-
Newtonian term of equation (10) is expanded into
power series, we have

dp

dx
=
∂2u

∂y2
+ _
γ
∂2u

∂y2

(
1− 1

2
β

(
∂u

∂y

)2

+ O(β2)

)
(14)

where _
γ and β are dimensionless material constants

in the Powell-Eyring model. The solution procedure
attempted here is that of the perturbation technique
of Nayfeh (1981). The approximate velocity profile
in the x and y directionb and the approximate pres-
sure profile can then be written as

u = u0 + εu1v = v0 + εv1 p = p0 + εp1 (15)

Substituting Eqs. (15) and (13) into Eqs.s (14),
(9) and (12) one has

Order 1:

∂u0

∂x
+
∂v0

∂y
= 0 (16a)

∂2u0

∂y2
=
dp0

dx
(16b)

u0(0) = 1, u0(b) = 0, v0(0) = 0, v0(b) = 0 (16c)

Order ε:

∂u1

∂x
+
∂v1

∂y
= 0 (17a)

∂2u1

∂y2
=
dp1

dx
− γ ∂

2u0

∂y2

(
1− β

(
∂u0

∂y

)2
)

(17b)

u1(0) = 0, u1(b) = 0, v1(0) = 0, v1(b) = 0 (17c)

Equations (16a-c) represent the Newtonian prob-
lem with the well-known solution

u0 =
1
2
dp0

dx

(
y2 − yb

)
+
(

1− y

b

)
(18)

v0 = −1
2
d

dx

(
dp0

dx

(
y3

3
− by

2

2

))
− y2

2b2
db

dx
(19)

d

dx

(
dp0

dx
b3
)

= 6
db

dx
, p0(0) = p0(1) = 0 (20)

Equation (20) determines the Newtonian pres-
sure. Substituting equation (18) into equation (17b)
and using the boundary conditions, one gets the cor-
rection term to the velocity profile

u1 = dp1
dx

(
y2

2 −
by
2

)
+ γβ

((
y2b2

16 + y4

24 −
y3b
12 −

yb3

3

)(
dp0
dx

)3

+
(
y2

4 −
y3

6b −
yb
12

)(
dp0
dx

)2

+
(
y2

4b2
− y

4b

)(
dp0
dx

)
+ 1

β

(
by
2
− y2

2

) (
dp0
dx

)) (21)

Hence, the solution can be written as

u = dp
dx

(
y2

2
− by

2

)
+
(
1− y

b

)
+ _
γβ
((

y2b2

16
+ y4

24
− y3b

12
− yb3

3

)(
dp0
dx

)3

+
(
y2

4
− y3

6b
− yb

12

)(
dp0
dx

)2

+
(
y2

4b2 −
y
4b

)(
dp0
dx

)
+ 1

β

(
by
2 −

y2

2

) (
dp0
dx

)) (22)

Using Eqs. (17a), (17c) and (15), we have
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v = − d
dx

(
dp
dx

(
y3

6 −
by2

4

))
− y2

2b2
db
dx −

_
γβ d

dx

((
y3b2

48 + y5

120 −
y4b
48 −

y2b3

6

)(
dp0
dx

)3

+
(
y3

12 −
y4

24b −
y2b
24

)(
dp0
dx

)2

+
(

y3

12b2 −
y2

8b

)(
dp0
dx

)
+ 1

β

(
by2

4 −
y3

6

) (
dp0
dx

))
(23)

dp1
dx = −19βγ

10 b2
(
dp0
dx

)3

− βγ
2b2

(
dp0
dx

)
+ γ

(
dp0
dx

)
+ C1

p1(0) = p1(1) = 0

(24)

where C1 is a constant. Equation (23) is a non-
Newtonian pressure equation. The pressure distribu-
tion p0(x) and p1(x) remain unknown in Eqs. (20)
and (24) respectively. The goal would then be to
determine the pressure distribution approximately.

Pressure Distribution

The solution to Eq. (20), which is the Newtonian
solution, subject to the given boundary conditions is

p0 =
6x(b− r)
b2(1 + r)

(25)

where b and r are defined to be

b = (1− (1− r)x), r = b2/b1 (26)

Inserting this Newtonian pressure distribution
into equation (23) and applying the associated
boundary conditions one finally obtains

p1 = βγ

(
− 2736r3

5 (r − 1) (1 + r)3b6
+

24624r2

25(1 + r)2(r − 1)b5

− 6171r
10(r − 1)(1 + r)b4

+
689

5(r − 1)b3

+
(r − 1)2(−2077 + 4054r− 2077r2)

50r3(r + 1)2
x

− 6890− 10185r+ 8208r2 − 2077r3

50(r − 1)(r + 1)3

)
+γ 6x(b−r)

b2(r+1)

(27)

The final pressure distribution would then be

p = 6x(b−r)
b2(1+r) + β

_
γ
(
− 2736r3

5(r−1)(1+r)3b6

+
24624r2

25(1 + r)2(r − 1)b5
− 6171r

10(r− 1)(1 + r)b4

+
689

5(r − 1)b3
+

(r − 1)2(−2077 + 4054r− 2077r2)
50r3(r + 1)2

x

+
1
β

6x(b− r)
b2(r + 1)

− 6890− 10185r+ 8208r2− 2077r3

50(r − 1)(r + 1)3

)
(28)

In the next section, the numerical plots of pres-
sure distribution will be given.

Results and Discussion

The analytical study of a slider bearing with Powell-
Eyring fluid as lubricant is considered. The pres-
sure distributions and velocity profiles in x and y
directions in the slider bearing are calculated ap-
proximately using the perturbation method. Bearing
characters can be analyzed for any value of Powell-
Eyring constants by solving a set of algebraic equa-
tions. The pressure distribution in the bearing is
determined for various values of the parameters _

γ
and β. Figure 2 indicates the variation of the pres-
sure with respect to x when β = 0 and _

γ is varied.
It is seen that the pressure increases with increasing
_
γ . Figure 3 illustrates the manner in which pressure
varies with _

γ , when β is held fixed at some nonzero
value. As before, increasing _

γ increases the pressure,
which means higher loading capacity for the bearing.
In Figure 4 for different β, _γ is held fixed. It is seen
that when _

γ > 0 the pressure decreases with increas-
ing β, which means lower loading capacity for the
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bearing. Lubricants possessing higher _γ values of the
Powell-Eyring model bear higher load capacities. In
Figure 5 for β = _

γ = 0.01 the dimensionless length
versus dimensionless pressure is plotted for different
clearance ratios. Similar to Newtonian behavior, in
the non-Newtonian case pressure builds up in the
bearing for lower clearance ratios. The maximum
load capacity of a bearing depends on both parame-
ter _

γ of a lubricant and clearance ratios. The present
analysis with slider bearings suggests that the load
capacity of a bearing lubricated with Powell-Eyring
fluid can be obtained after giving an appropriate de-
sign to the bearings.
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Figure 2. Pressure distribution in the bearing corre-
sponding to various non-Newtonian effects for
r = 0.5 (—α = β = 0 (Newtonian); ..... α =
0.3, β = 0; - - -α = 0.5, β = 0).
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Figure 3. Pressure distribution in the bearing corre-
sponding to various non-Newtonian effects for
r = 0.5 (— α = β = 0 (Newtonian); ..... α =
0.3, β = 0.01; - - - α = 0.5, β = 0.01).
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Figure 4. Pressure distribution in the bearing corre-
sponding to various non-Newtonian effects for
r = 0.5 (—α = β = 0 (Newtonian); ..... α =
0.1, β = 0.2; - - - α = 0.1, β = 0.3).
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Figure 5. Pressure distribution in the bearing corre-
sponding to different clearance ratios for α =
β = 0.01 (- - - r = 0.3) (.....r = 0.5)(- - - r =
0.7).

The paper deals only with the theoretical part of
lubrication and it may inspire mechanical engineers
to search for the validity of our predicted theoreti-
cal results and investigate the design of bearings to
extract greater economical benefits from lubricants.

Nomenclature

b bearing clearance
b∗ dimensional bearing clearance
b1 clearance at left
b2 clearance at right
B,C constants in the Powell-Eyring model
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dp

dx
dimensionless pressure gradient

L bearing length
p non-dimensional pressure
p* dimensional pressure
p0 first term in perturbation expansion of

pressure
p1 second term in perturbation expansion

of pressure
r clearance ratios of slider bearing ( b2b1 )
Re Reynolds number
U velocity of the moving surface
v velocity vector
u,v velocity component in x and y direc-

tions
u∗,v∗ dimensional velocity component in x

and y directions
u0 first term in perturbation expansion of

velocity component x direction

u1 second term in perturbation expansion
of velocity component x direction

v0 first term in perturbation expansion of
velocity component y direction

v1 second term in perturbation expansion
of velocity component y direction

x coordinate along the bearing length
x∗ dimensional coordinate along the bear-

ing length
y coordinate along thickness
y∗ dimensional coordinate along thickness
_
α,

_
γ, γ, β dimensionless material constants

ε perturbation parameter
µ viscosity
ρ density
δ a small parameter( b1

L
)

τyx shearing stress
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Yürüsoy, M., “Pressure Distribution in a Slider
Bearing Lubricated with Second and Third Grade
Fluids”. Mathematical and Computational Applica-
tions, 7, 15-22, 2002.

304


