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Abstract

The dynamic behavior of a non-linear 8 degrees of freedom vehicle model having active suspensions and
a PID controlled passenger seat is examined. The non-linearity occurs due to dry friction on the dampers.
The suspensions are considered as McPherson strut-type independent suspensions. Three cases of control
strategies are taken into account. In the first case, only the passenger seat is controlled. In the second case,
only the vehicle body is controlled. In the third case, both the vehicle body and the passenger seat are
controlled at the same time. Since the PID control method can be applied easily and is well known, it has
an important place in control applications. The time responses of the non-linear vehicle model due to road
disturbance and the frequency responses of the harmonically linearised non-linear vehicle model are obtained
for each control strategy. At the end, the performances of these strategies are compared and discussed.
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Introduction

Vehicle suspension can be treated as a dynamic sys-
tem using vehicle properties and simulating the re-
sponse of the vehicle to various inputs and distur-
bances. Suspension serves the basic function of iso-
lating passengers and the chassis from the roughness
of the road to provide a more comfortable ride. Due
to developments in the control technology, electroni-
cally controlled suspensions have gained more inter-
est. These suspensions have active components con-
trolled by a microprocessor. By using this arrange-
ment, significant achievements in vehicle response
can be carried out. Selection of the control method
is also important during the design process. In this
study PID controllers parallel to McPherson strut-
type independent suspensions are used. The ma-
jor advantages of this control method are its rela-
tive simplicity in design and the availability of well-
known standard hardware. To simplify models, a
number of researchers assumed vehicle models to be

linear. However, such models contain non-linearities
that should be taken into account. By including non-
linearities such as dry friction on dampers, the re-
sults become more realistic.

In the last decade many researchers applied some
linear and non-linear control methods to vehicle
models. Because of simplicity, quarter car mod-
els were mostly preferred. Redfield and Karnopp
(1988) examined the optimal performance compar-
isons of variable component suspensions on a quar-
ter car model. Yue et al. (1989) applied some lin-
ear control methods to a quarter car model. Stein
and Ballo (1991) designed a passenger seat for off-
road vehicles with active suspensions. Hac (1992)
applied optimal linear preview control on the active
suspensions of a quarter car model. Rakheja et al.
(1994) added a passenger seat in their analysis. A
passenger seat suspension system was described by
a generalized 2 degrees of freedom model and with
non-linearities such as shock absorber damping, link-
age friction and bump stops. Since the quarter car
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model is insufficient to give information about the
angular motions of a vehicle, some researchers used
more complex models like half and full car models.
These models give information about the pitch, roll
and bounce motions of a vehicle body. Crolla and
Abdel Hady (1991) compared some active suspension
control methods on a full car model. Integrated or
filtered white noise was taken as the road input. The
same researchers applied linear optimal control law
to a similar model in 1992. Hrovat (1993) compared
the performances of active and passive suspension
systems on quarter, half and full car models using
optimal control laws. Dry friction on dampers is one
of the main factors affecting ride comfort. On good
road surfaces and at low vehicle speeds, the effect of
road input cannot overcome dry friction force and,
therefore, the suspensions are almost locked, which
is known as Boulevard Jerk, and an uncomfortable
vibration mode becomes effective due to reduced de-
grees of freedom (Silvester, 1966). Some applica-
tions using non-linearity on active suspensions were
achieved. Alleyne et al. (1993) compared sliding
mode controlled active suspensions with PID con-
trolled active suspensions. Yagiz et al. (2000) ap-
plied sliding mode controlled active suspensions to a
linear 7 degrees of freedom vehicle model.

A study has been carried out for linear motors
where a satisfactory response to PID controllers can
be obtained (Otten et al., 1997). The operating prin-
ciple of the linear motor is shown in Figure 1. It is
composed of 2 main parts. These are a number of
base-mounted permanent magnets forming the sta-
tor and a translator formed by a number of iron-core
coils. By applying a 3-phase current to 3 adjoining
coils of the translator, a sequence of attracting and
repelling forces between the poles and the permanent
magnets is generated. This results in a thrust force
experienced by the translator. The motor is a syn-
chronous, permanent-magnet motor with electronic
commutation.

translator

permanent
magnets

Figure 1. Operating principle of a linear motor.

In this study, the aim is to compare some control
strategies applied on the purely linear and harmoni-
cally linearized non-linear full car model in order to
obtain ride comfort using a PID control. A passen-
ger seat is included in the vehicle model so that the
response of the passenger due to a road disturbance
can be observed. There are 3 strategies that have
been taken into account. The first strategy includes
conventional suspensions and a controlled passenger
seat. In the second strategy, the model has active
suspensions and a normal passenger seat. The last
model is fully controlled, i.e. both the suspensions
and passenger seat have controllers.

Vehicle Model

The non-linear full car model used in this study is
shown in Figure 2. It includes all possible control
strategies. This full car model has 8 degrees of free-
dom, namely x1, x2, x3, x4, x5, x6, x7= θ and x8=
α . These are the motion of the right front axle,
the motion of the left front axle, the motion of the
right rear axle, the motion of the left rear axle, the
bounce motion of the passenger seat, the bounce mo-
tion of the vehicle body, the pitch motion of the ve-
hicle body and the roll motion of the vehicle body,
respectively. The aim is to improve the ride comfort
of the passengers. The common application in mod-
eling the vehicle with a passenger seat is to add only
1 passenger seat preferably in the driver seat posi-
tion (Baumal et al., 1998) though considering only 1
suspended seat implies that other seats are assumed
to be fixed rigidly to the chassis. This assumption
does not exactly match a physically real vehicle.

In general, the state-space form of a non-linear
dynamic system can be written as follows:

ẋ = f (x) + [B] u (1)

Here, x = [x1x2x3....x16]T where x9 = ẋ1 , x10 =
ẋ2 and so on. f (x) is vector functions composed
of first order differential equations that can be non-
linear, [B] is the controller coefficient matrix and
u = [u1u2u3u4u5]T is the control input vector writ-
ten for the most general case in this study. f (x)
and [B] are given in the Appendix along with the
nomenclature of vehicle parameters. Mathemati-
cally, u1, u2, u3 and u4 do not have to exist together.
In order to control vehicle body motions, 3 controller
forces are sufficient since the body has 3 degrees of
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Figure 2. The non-linear full car model with a passenger seat.

freedom in this study. These are bounce, pitch and
roll motions. But for practical reasons, 4 controllers
parallel to the suspensions are introduced. The yaw
motion is neglected. Finally, 5 controllers are used
including the one under the passenger seat.

As mentioned before, the major non-linearity of
the model comes from dry friction on the dampers.
Geometric non-linearity has also been included. Dry
friction on the dampers depends on the relative speed
(Vr) between related damper ends. Experiments
show that the dry friction model (Figure 3) has a
viscous band character rather than being of a classi-
cal bang-bang type. The band ε is very small, and
this prevents the complete locking of the suspension
ends. Low speeds on perfect roads generate dry fric-
tion force around ±R that practically (not ideally)
locks the suspension generating a high equivalent vis-
cous friction effect as introduced by Unlusoy and Ya-
giz (1986). The band ε only prevents ideal locking,
as found by Yagiz (1986) after comparing his simula-
tion results with a set of experimental ones obtained
by Unlusoy (1979). The parameters are given in the
Appendix.

PID Controller Design

The closed loop diagram of the feedback system is
shown in Figure 4.

Here, xref(t) is the desired value for the output
of the system, x(t) is the output, e(t) is the error
and u(t) is the control signal. PID control has been
used widely and successfully in industry. The control

input u(t) is obtained as follows:

ui(t) = K[ei(t) + 1
τi

t∫
0

ei(t)dt+ τd
dei(t)
dt ]

(i = 1, 2, 3, 4, 5)
(2)

ei(t) = xiref(t)− xi(t) (3)

-ε

f(Vr)

Vr

R

-R

ε

Figure 3. Dry friction model.

Xref(t) u(t)e(t)

Controller System

X(t)

Figure 4. Closed loop block diagram with controller.

K, τi and τd are proportionality constant, inte-
gral time and derivative time, respectively. These
values are obtained using the Ziegler-Nichols method
(Ogata, 1990). In this method, should a unit change
in reference value, using only a proportional con-
troller, a proportionality constant of Kmak that re-
sults in continuous oscillatory motion in the system
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is found. Then the period Pu of this oscillation is
estimated. At the end, the PID parameters are de-
cided as

K = 0.6 ∗Kmak, τi = Pu/2, τd = Pu/8 (4)

The vehicle model has been reduced to 1 degree
of freedom equivalent systems for each degree of free-
dom having related natural frequencies and, by ap-
plying Ziegler-Nichols method, the PID constants are
obtained. The errors are measured independently
and the controllers are independent. The PID algo-
rithm only allows the use of independent controllers.
The related parameters for each controller are pre-
sented in the Appendix.

Simulation

In the simulation stage, first the non-linear model is
used in order to obtain time responses. Second, for
the frequency responses, the non-linear dry friction
model is harmonically linearized using a describing
function method. Accelerometers are used as sen-
sors. These sensors are placed only to measure the
states to be controlled. The data provided by these
sensors are processed by micro-controllers having the
PID algorithms designed. The noise is filtered using
a low-pass filter, which allows the signals within the
frequency range of the related vehicle dynamics.

Time response of the non-linear vehicle model

The vehicle is assumed to travel over the bump (Fig-
ure 5). The bump parameters are presented in the
Appendix.

z

y

h

3LL 4L

Figure 5. Road disturbance.

There is a time delay between the front and rear
wheel inputs. This time delay is as follows:

δt = (a + b)/V (5)

where (a + b) is the distance between the front and
rear axles and V is the velocity of the vehicle. Ve-
hicle body displacements for linear and non-linear
models are presented for controlled and uncontrolled
cases in Figure 6. It has been observed that the non-
linear system is more damped due to the effect of dry
friction.
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Figure 6. Vehicle body displacements for linear and non-linear models.
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Figure 7. Time responses of the vehicle body displacement and its accelerations, pitch and roll angular displacement and
their accelerations for controlled and uncontrolled cases for non-linear models.

The time responses of vehicle body displacement
and its accelerations, sprung mass pitch and roll an-
gular displacement and their accelerations and pas-
senger seat displacements are shown in Figures 7 and
8 for controlled and uncontrolled cases for the non-
linear model. The maximum displacement and ac-
celerations of the active system are less than those
of the passive system, and the active system returns
to rest faster. As shown in Figure 8, the improve-
ment obtained from the application of active suspen-
sions for a passenger is clearly seen. For the third
case, where the vehicle body and passenger seat are
controlled together, the passenger is almost insensi-
tive to the disturbance. This method, using selected
strategy, is very effective. The vertical acceleration
of the passenger is also an important criterion, which
mainly affects ride comfort since the force generated
by the inertia of the passenger creates disturbances.
In other words, minimizing the vertical displacement
may not mean an improvement in itself alone, as an
improvement in the acceleration is also obtained.

In Figure 9, the acceleration of the passenger in

different cases of the non-linear model is shown. The
PID controller decreases the amplitude of the accel-
eration in all 3 cases when compared with the un-
controlled example. The most suitable strategy is,
therefore, the third one.

Another criterion is the control forces used since
it is directly related with the cost of the controller.
Figure 10 shows the controller force inputs for the
selected strategies. In the first case, using a maxi-
mum control force of 60 N can damp the passenger’s
vertical displacement. However, no comment can be
made for the angular displacement of the passenger
in this case. In the third case, the front and rear sus-
pensions apply a maximum force of about 5000 N.
The amount of force applied to the passenger seat
decreases since the body is controlled and the pas-
senger seat is slightly isolated. A 3 N maximum force
is sufficient to bring the passenger to the reference
value of zero displacement. In simulation, a satu-
ration value of ± 100 N for the linear motor of the
passenger seat and a saturation value of ± 10000 N
for the suspension linear motors was used.
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Figure 8. Time responses of passenger displacement for the non-linear model.
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Figure 10. Control force inputs for various strategies.

Frequency response of the vehicle model

Frequency response is another key to understand
the behavior of a dynamic system. Frequency re-
sponse analysis is the main tool in interpreting the
dynamic behavior of vehicles. Since the frequency
response plot of a non-linear system is dependent on
input and is not unique (there are infinite response
plots for infinite inputs), the dry friction model is
harmonically linearized in frequency response anal-
ysis whereas non-linear ones were used in time re-
sponse analysis. Linearization without ignoring non-
linearity is achieved by using the describing function
method for dry friction on dampers as developed by
Yagiz (1986) and assuming that the vehicle body an-
gular motions are small. In this technique, the effect
of a non-linear dry friction model is replaced by a
linear equivalent damping coefficient (Ce) obtained
by the describing function method.

Ce =
1

π.Vro

2.π∫
0

f(Vr).Sinω.t.d(ωt) (6)

The sinusoidal response of non-linearity is given
in Figure 11, where relative velocity is given by

Vr(t) = Vro.Sinω.t (7)

the dry friction force is

f(Vr) =

 +R Vr ≥ ε
n.Vr −ε < Vr < ε
−R Vr ≤ ε

(8)

Let ω.t = θ when Vr = ε. Then Eq. (7) becomes

ε = Vro.Sinθ (9)

and

θ = Sin−1

(
ε

Vro

)
(10)

367



GÜÇLÜ
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The output is again symmetrical at about π/2
(Figure 11) and Eq. (6) can be rearranged using Eq.
(8) as below:

Ce =
4

π.Vro

θ∫
0

(n.Vr) .Sinωt.d (ωt) +
4

π.Vro

π/2∫
θ

RSinωt.d (ωt)

(11)

The integration of Eq. (11) gives the following

formulation known as the expression for the equiva-
lent damping coefficient:

Ce =
n

π
(2.θ− Sin2.θ) +

4.R
π.Vro

Cosθ (12)

If Vro < ε then dry friction is represented by a
viscous band of slope n. Therefore,

Ce = n (13)
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In Figure 12, the frequency response plots of the
passenger seat displacements and accelerations for
all strategies are considered for both those with Ce
and those without Ce in order to observe the dif-
ference between the purely linear and harmonically
linearized non-linear cases. When the frequency re-
sponse plots of an uncontrolled passenger seat for
purely linear and harmonically linearized cases are
compared, a new natural frequency around 2 Hz is
observed as a damper locking effect including the dry
friction. Three visual groups of resonance frequen-
cies in the uncontrolled case are observed in logarith-
mic plots. These belong to vehicle body motions, the
passenger and unsprung masses, respectively. Actu-
ally, the linear vehicle model has 8 resonance fre-
quencies. The values of related natural frequencies
are obtained by solving the eigenvalue problem us-
ing Matlab. These values are 0.975, 1.183, 1.396,
2.202, 12.261, 12.264, 16.387 and 16.388 Hz, respec-
tively. In all control strategies, the amplitudes of res-
onance frequencies of almost all degrees of freedom
decrease, the only exception being in unsprung mass
resonances. The overall magnitudes also decrease in
the controlled cases. The improvement observed in
the unsprung mass resonance frequencies is not very
effective as in the other examples. The reason for
this is that the controllers only work on the vehicle
body and the passenger seat. The third case gives
the maximum displacement and acceleration isola-
tion for the passenger as shown in the figures. As
seen in Figure 12, the best improvement in terms of
ride comfort is obtained when both the vehicle body
and passenger seat are under control action.

Conclusion

The main idea behind proposing this controller is the
ability to use these types of controllers on vehicles
with developing technology. PID control, which is
easy to design and has good performance, has been
applied. The simulation results prove that, among
3 control strategies considered, using controllers un-
der the vehicle body and passenger seat will provide
the best ride comfort. The first case, only having a
controller under the passenger seat, cannot guaran-
tee ride comfort since it does not have control over
the angular motions of the vehicle or the passenger.
The second case, where only the vehicle body is un-

der control, provides sufficient vehicle motions, but
it does not provide good control over passenger com-
fort. Therefore, the third strategy should be taken
into account by considering the control of the ve-
hicle body and passenger seat together. Using the
third strategy, the bounce motion of the passenger
almost vanishes with an extra controller that applies
very small force input. A successful improvement
has also been obtained in the isolation of the verti-
cal acceleration of passengers. Frequency response
plots of a passenger for these alternatives support
the results obtained. When frequency responses of
the passenger seat for linear and non-linear models
are compared for controlled and uncontrolled cases,
the damper locking effect of dry friction is also ob-
served. In conclusion, adding a controller under the
passenger seat improves ride comfort greatly.

Nomenclature

a, b distances of axle to the center of gravity of
the vehicle body

c, d distances of unsprung masses to the center
of gravity of the axles

e, f distances of passenger seat to the center of
gravity of the vehicle body

csi ith damping coefficient of suspension
cs5 damping coefficient of passenger seat
e(t) error
f(Vri) ith dry friction force
ksi ith spring constant of suspension
ks5 spring constant of passenger seat
kti ith stiffness coefficient of tire
m1 ith mass of axle
m5 mass of the passenger
u(t) control signal
x(t) output
xref (t) desired value
xi ith state variable
zi(t) ith road excitation
Ix7 mass moment of inertia of the vehicle body

for pitch motion
Ix8 mass moment of inertia of the vehicle body

for roll motion
K proportionality constant
M mass of the vehicle body
τd derivative time
τi integral time
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Appendix

The parameters of the vehicle:

M = 1100 kg, Ix7= 1848 kg.m2, Ix8= 550 kg.m2

m1= m2= 25 kg, m3= m4= 45 kg, m5= 90 kg

ks1 = ks2 = 15000 N/m, ks3 = ks4 = 17000 N/m, ks5 = 15000 N/m

cs1= cs2 = cs3= cs4 = 2500 N.s/m, cs5 = 150 N.s/m

kt1 = kt2 = kt3 = kt4 = 250000 N/m

a = 1.2 m, b = 1.4 m, c = 0.5 m, d = 1.0 m, e = 0.3 m, f = 0.25 m

The parameters of the road bump:

h = 0.035 m, L = 0.025 m
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Dry friction parameters:

R = 22 N, ε = 0.0012 m/s

State equations excluding control inputs:

f1(x) = x9, f2(x) = x10, f3(x) = x11, f4(x) = x12

f5(x) = x13, f6(x) = x14, f7(x) = x15, f8(x) = x16

f9(x) = 1/m1{− (ks1 + kt1) x1 + ks1 x6 + a ks1Sin x7 − c ks1 Sin x8 − cs1 x9 + cs1 x14

+a cs1Cosx7 x15 − c cs1Cosx8 x16 + kt1 z1 + f (Vr1)}

f10(x) = 1/m2{− (ks2 + kt2) x2 + ks2 x6 + a ks2 Sin x7 + d ks2Sin x8 − cs2 x10 + cs2 x14

+a cs2Cosx7 x15 + d cs2Cosx8 x16 + kt2 z2 + f (Vr2)}

f11(x) = 1/m3{− (ks3 + kt3) x3 + ks3 x6 − b ks3 Sin x7 − c ks3Sin x8 − cs3 x11 + cs3 x14

−b cs3Cosx7 x15 − c cs3Cosx8 x16 + kt3 z3 + f (Vr3)}

f12(x) = 1/m4{− (ks4 + kt4) x4 + ks4 x6 − b ks4 Sin x7 + d ks4Sin x8 − cs4 x12 + cs4 x14

−b cs4Cosx7 x15 + d cs4Cosx8 x16 + kt4 z4 + f (Vr4)}

f13(x) = 1/m5{−ks5 x5 + ks5 x6 + e ks5 Sin x7 + f ks5 Sin x8 − cs5 x14 + cs5 x14

+e cs5Cosx7 x15 + f cs5Cosx8 x16}

f14(x) = 1/M{ks1 x1 + ks2 x2 + ks3 x3 + ks4 x4 + ks5 x5 − (ks1 + ks2 + ks3 + ks4 + ks5) x6

− (a (ks1 + ks2) − b (ks3 + ks4) + e ks5) Sin x7 − (d (ks2 + ks4)− c (ks1 + ks3) + f ks5)Sin x8

+cs1 x9 + cs2 x10 + cs3 x11 + cs4 x12 + cs5 x13 − (cs1 + cs2 + cs3 + cs4 + cs5)x14

− (a (cs1 + cs2)− b (cs3 + cs4) + e cs5)Cosx7x15 − (d (cs2 + cs4) − c (cs1 + cs3) + f cs5)Cosx8 x16

−f (Vr1)− f (Vr2) − f (Vr3) − f (Vr4)}

f15(x) = 1/Ix7{a ks1 x1 + a ks2 x2 − b ks3 x3 − b ks4 x4 + e ks5 x5 − (a (ks1 + ks2)− b (ks3 + ks4) + e ks5)x6

−
(
a2 (ks1 + ks2) + b2 (ks3 + ks4) + e2ks5

)
Sinx7 − (d (a ks2 − b ks4) − c (a ks1 − b ks3) + e f ks5)Sinx8

+a cs1 x9 + a cs2 x10 − b cs3 x11 − b cs4 x12 + e cs5 x13 − (a (cs1 + cs2)− b (cs3 + cs4) + e cs5) x14

−
(
a2 (cs1 + cs2) + b2 (cs3 + cs4) + e2cs5

)
Cosx7x15 − (d (a cs2 − b cs4)− c (a cs1 − b cs3) + e f cs5)Cosx8x16

−a f (Vr1) − a f (Vr2) + b f (Vr3) + b f (Vr4)}Cosx7
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f16(x) = 1/Ix8{−c ks1 x1 + d ks2 x2 − c ks3 x3 + d ks4 x4 + f ks5 x5 − (d (ks2 + ks4)− c (ks1 + ks3) + f ks5) x6

− (d (a ks2 − b ks4) − c (a ks1 − b ks3) + e f ks5)Sinx7 − (d2(ks2 + ks4) + c2 (ks1 + ks3) + f2ks5)Sinx8

−c cs1 x9 + d cs2 x10 − c cs3 x11 + d cs4 x12 + f cs5 x13 − (d (cs2 + cs4)− c (cs1 + cs3) + f cs5) x14

− (d (a cs2 − b cs4)− c (a cs1 − b cs3) + e f cs5)Cosx7x15 − (d2(cs2 + cs4) + c2(cs1 + cs3) + f2cs5)Cosx8x16

−c f (Vr1) + d f (Vr2)− c f (Vr3) + d f (Vr4)}Cosx8

f (Vri) = Cei(
.
yi −

.
xi) (i = 1, 2, 3, 4)

y1 = x6 + aSinx7 − c Sinx8

y2 = x6 + aSin x7 + d Sin x8

y3 = x6 − b Sin x7 − c Sin x8

y4 = x6 − b Sin x7 + d Sin x8

Cei =


n if

∣∣∣ .yi − .
xi

∣∣∣ < ε

n
π
(2θi − Sin2θi) + 4R

π| .yi− .xi|Cosθi else

where θi = Sin−1 ε

| .yi− .xi|

The controller force matrix:

[B] =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

− b d
(a+b) (c+d)m1

− d
(a+b) (c+d)m1

1
(c+d)m1

−d(b+e)+f(a+b)
(a+b) (c+d)m1

− b c
(a+b) (c+d)m2

− c
(a+b) (c+d)m2

− 1
(c+d)m2

−c(b+e)−f(a+b)
(a+b) (c+d)m2

− a d
(a+b) (c+d)m3

d
(a+b) (c+d)m3

0 − d (a−e)
(a+b) (c+d)m3

− a c
(a+b) (c+d)m4

c
(a+b) (c+d)m4

0 − c (a−e)
(a+b) (c+d)m4

0 0 0 1
m5

1
M 0 0 0
0 1

Ix7
0 0

0 0 1
Ix8

0


Controller parameters for vehicle body bounce:

Kmak1 = 11× 106 N/m, K1 = 6.6× 106 N/m

Pu1= 3.5 s, τi1= 1.75 s, τd1= 0.4375 s
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Controller parameters for vehicle body pitch:

Kmak2 = 23× 106 Nm/rad, K2 = 13.8× 106 Nm/rad

Pu2= 2.3 s, τi2= 1.15 s, τd2= 0.2875 s

Controller parameters for vehicle body roll:

Kmak3 = 12× 106 Nm/rad, K3 = 7.2× 106 Nm/rad

Pu3 = 1.5 s, τi3= 0.75 s, τd3= 0.1875 s

Controller parameters for passenger seat:

Kmak4 = 25× 105 N/m, K4 = 15× 105 N/m

Pu4= 0.05 s, τi4= 0.025 s, τd4= 0.00625 s
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