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Abstract

A 2-stage discrete-time linear quadratic reliable control technique is applied to the regulation of irri-
gation canals. The Saint-Venant equations of open-channel flow are linearized using the Taylor series and
a finite difference approximation of the original nonlinear, partial differential equations. The concepts of
linear optimal control theory are applied to derive a feedback control algorithm for constant level control
of an irrigation canal. Two-step linear quadratic update equations and a sequential gain updating scheme
are used to drive a linear quadratic reliable formulation. An example problem with a single pool is consid-
ered for evaluating the performance of the reliable control technique used to design an optimal control for
irrigation canals. The results from the 2-stage reliable control technique are compared to the results from
a standard linear quadratic regulator (LQR). The 2-stage reliable control formulation provides both good
stability and performance gain margins in the canal operation. The results of this study show that a 2-stage
linear quadratic reliable control for irrigation canals offers an alternative to the standard optimal control
formulation if there is a lack of flow depth and flow rate data at some measurement points in the irrigation
canal.
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Introduction

Water is becoming a scarce resource and irrigation
water districts are under pressure to use water more
judiciously. Improved operation of water resource fa-
cilities, such as canals and reservoirs, has been touted
as necessary for making proper use of these limited
water supplies. With the ever-increasing demand for
water, the need for improved management of avail-
able water resources is of utmost importance, partic-
ularly when the development of new water resources
is prohibitively expensive. Irrigated agriculture gen-
erally uses large volumes of water compared to mu-
nicipalities and industry, and competition for good
quality water is at an all time high in many regions
around the world. Thus it is recognized that im-

proved water management practices in agriculture
can lead to substantial benefits in terms of water
availability for expanded agricultural activity and for
other uses, and can directly address many environ-
mental concerns. Irrigation water delivery systems
are designed and managed to receive water from a
source and distribute it among farms, where it is
used to meet agricultural demands. Water man-
agement improvement in irrigation canal systems is
widely recognized as an important step in attaining
better management at the farm level. Improvements
in the operation and maintenance of an irrigation
delivery system can be translated into better over-
all water management in an irrigation project, and
automation of irrigation canal gate structures can be
an effective way to achieve such improvements. Con-
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veyance and distribution of irrigation canals can be
improved to better meet the requirements of farmers
by providing modern methods of canal control. The
demand for irrigation water varies with time, among
other factors, due to weather conditions. There-
fore, to avoid overflows and always be able to sat-
isfy the demand the canal system must be controlled
to maintain desired flow rates and water surface el-
evations. The use of flexible irrigation deliveries is
necessary for efficient on-farm irrigation water man-
agement. Thus, the conversion from rigid to flexible
delivery schedules will require better canal control to
provide good uniform deliveries.

In the past, the concepts of standard optimal lin-
ear quadratic regulator control theory have been ap-
plied for driving feedback control algorithms for real-
time irrigation canals (Reddy et al., 1992; Malaterre,
1997; Reddy, 1999). However, most of these papers
assumed that all of the data are available for the
canal system. The outages of measurement devices
and a lack of flow depth measurements or flow rates
at some measurement points were not taken into ac-
count in the design of the controller for the canal
system. The standard solution of a linear quadratic
problem cannot handle the lack of flow depths and
flow rate data at some measurement points. Reddy
(1999) demonstrated the application of a stochastic
optimal control algorithm for an irrigation canal with
5 pools but the possibility of a lack of flow depths and
flow rates at some measurement points was not con-
sidered in the study. In recent years, the concepts
of reliable linear quadratic design approaches were
developed for driving the optimal control algorithms
for real-time control (e.g., Siljak, 1980; Yang et al.,
1998; Veillette, 1995; Paz and Medanic, 1991; Hsieh,
2003). It should be noted that previous reliable con-
trol designs were focused on a H∞ framework and
not on the usual quadratic one. H∞ optimization is
used to shape the singular values of specified transfer
functions over frequency. The main advantage of us-
ing reliable linear quadratic control is good stability,
performance and flexibility when dealing with mea-
surement device outages and a lack of data in the
irrigation canal. The objectives of the present pa-
per are to present a 2-stage linear quadratic reliable
controller for the operation of irrigation canals in the
absence of flow depth or flow rate data at some mea-
surement points and to evaluate the performance of
the controller in comparison with a standard linear
quadratic regulator (LQR) controller.

Mathematical modeling of open-channel flow

In the operation of irrigation canals, decisions re-
garding the changes in gate opening in response to
arbitrary (random) changes in the water withdrawal
rates into lateral or branch canals are required to
maintain the flow rate into the laterals close to the
desired value. This is accomplished by maintaining
the depth of flow or the volume of water in a given
pool at a target value. This problem is similar to
the process control problem in which the state of
the system is maintained close to the desired value
by using real-time feedback control. Linear control
theory is well developed and is easier to apply than
nonlinear control theory. The Saint-Venant equa-
tions, presented below, are used to model flow in a
canal:

∂A/∂t + ∂Q/∂x = ql (1)

∂Q/∂t+ ∂(Q2/A)/∂x+ gA(∂y/∂x − S0 + Sf ) = 0
(2)

in which A = wetted area, m2; ql= lateral flow, m2/s;
y = water depth, m; t = time, s; x = longitudinal
direction of channel, m; g = gravitational accelera-
tion, m2/s; S0 = canal bottom slope (m/m); R =
hydraulic radius, A/P (m); P = wetted perimeter
(m); and Sf = the friction slope, m/m, and is de-
fined as

Sf = Q|Q|/K2 (3)

in which K = hydraulic conveyance of canal =
AR2/3/n; R = hydraulic radius, m; and n = Man-
ning roughness coefficient, s/m1/3. In deriving Eq.
(2), the effect of the net acceleration terms stemming
from removal of a fraction of the surface stream was
assumed negligible. Lateral canals in the main canal
are usually scattered throughout the length of the
supply canal. Manually controlled discharge regu-
lators are used at the head of lateral canals. The
mathematical representation of flow through these
structures is given as follows:

ql = Cdblwl(2g(Z − Zl)1/2 for submerged flow (4)

ql = Cdblwl(2g(Z −Es)1/2 for free flow (5)
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in which ql = lateral discharge rate, m3/s; Cd = out-
let discharge coefficient; bl = width of outlet struc-
ture, m; wl = height of gate opening of outlet struc-
ture, m; Z= water surface elevation in supply canal,
m; and Zl = water surface elevation in lateral canal,
m; and Es = sill elevation of head regulator, m. Ob-
viously the flow rate through a head regulator de-
pends upon the water surface elevation in the sup-
ply canal. The water surface elevation in the lat-
eral canal is a function of the discharge rate through
the head regulator. Therefore, this equation is an
implicit equation. In the case of free flow, the dis-
charge rate through the head regulator is indepen-
dent of the water surface elevation in the lateral
canal. Therefore, once the required discharge into a
lateral is specified, then the gate opening is adjusted
to get the required flow rate through the head reg-
ulator, assuming that the water surface elevation in
the supply canal is maintained constant at the target
level. When a manually controlled head regulator is
used, for simulation purposes the gate opening or the
variation in gate opening is specified as a function of
time. Conversely, when an automated discharge rate
regulator is used, for simulation purposes the lateral
discharge rate as a function of time is specified as a
known input, i.e. q1=fq(t). In the regulation of the
main canal, decisions regarding the opening of gates
in response to random changes in water withdrawal
rates into lateral canals are required to maintain the
flow rate into laterals close to the desired value. This
is accomplished by either maintaining the depth of
flow in the immediate vicinity of the turnout struc-
tures in the supply canal constant or by maintaining
the volume of water in the canal pools at the target
value. When the latter option is used, the outlets
are often fitted with discharge rate regulators. The
water levels or the volumes of water stored in the
canal pools are regulated using a series of spatially
distributed gates (control elements). Hence, irriga-
tion canals are modeled as distributed control sys-
tems. Therefore, in the solution of Eqs. (1) and (2),
additional boundary conditions are specified at the
control structures in terms of the flow continuity and
the gate discharge equations, which are given by

Qi−1,Nr = Qgi = Qi,1 (continuity) (6)

Qgi = Cdibiui(2g(Zi−1,N − Zi,1)1/2 (gate discharge)
(7)

in which Qi−1,N = flow rate through downstream
gate (or node N) of pool i − 1, m3/s; Qgi = flow

rate through upstream gate of pool i, m3/s; Qi,1 =
flow rate through upstream gate (or node 1) of pool
i, m3/s; Cdi = discharge coefficient of gate i; bi =
width of gate i, m; ui = opening of gate i, m; Zi−1,N

= water surface elevation at node N of pool i − 1,
m; Zi,1 = water surface elevation at node 1 of pool i,
m; and i = pool index (i = 0 refers to the upstream
constant level reservoir).

Linearization and discretization of system
equations: Linear control theory is well developed
and is easier to apply than nonlinear control the-
ory. The Saint-Venant open-channel equations are
linearized about an average operating condition of
the canal to apply the linear control theory concepts
to the problem. After applying a finite-difference
approximation and the Taylor series expansions to
Eqs. (1) and (2), a set of linear, ordinary differen-
tial equations are obtained for the canal with control
gates and turnouts:

A11δQ
+
j + A12δz

+
j + A13δQ

+
j+1 + A14δz

+
j+1 =

A′11δQj + A′12δzj + A′13δQj+1 + A′14δzj+1 + C1

(8)

A21δQ
+j +A22δz

+
j + A23δQ

+
j+1 +A24δz

+
j+1 =

A′21δQj + A′22δzj + A′23δQj+1 + A′24δzj+1 + C2

(9)

where δQ+
j and δz +

j = discharge and water-level in-
crements from time level n + 1 at node j; δQ j and
δzj = discharge and water-level increments from time
level n at node j; C1 and C2 are distribution matri-
ces; and A11, A′21, . . . . A12, A22 are the coefficients
of the continuity and momentum equations, respec-
tively, computed with known values at time level n.
Similar equations are derived for channel segments
that contain a gate structure, a weir or some other
type of hydraulic structure. The matrix form of the
above equations for the canal can be defined as fol-
lows:

 A11 A12 A13 A14

A21 A22 A23 A24

−(∂f/∂zj )e1− (∂f/∂zj+2)e


︸ ︷︷ ︸

AL



δQ+
j

δz+
j

δQ+
j+1

δz+
j+1

δQ+
j+2

δz+
j+2

 =
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 A′11 A′12 A′13 A′14

A′21 A′22 A′23 A′24

−(∂f/∂zj )e1− (∂f/∂zj+2)e


︸ ︷︷ ︸

AR


δQj
δzj
δQj+1

δzj+1

δQj+2

δzj+2

+

 0
0
−(∂f/∂zj )e


︸ ︷︷ ︸

B

(10)

From the matrix form of the equations above, the
state of system equation at any sampling interval k
can be written in a compact form as follows:

ALδx(k + 1) = ARδx(k) + Bδu(k) (11)

where A = lxl system feedback matrix, B= lxm con-
trol distribution matrix, and k = time increment, s.
The elements of the matrices A and B depend upon
the initial condition. Equation (11) can be written
in a state-variable form along with the output equa-
tions as follows:

δx(k + 1) = Φδx(k) + Γδu(k) (12)

δy(k) = Hδx(k) (13)

where Φ = (AL)−1 ∗AR , Γ = (AL)−1 ∗B,and δx(k)
= lx1 state vector, δu(k) = mx1 control vector, δy(k)
= rx1 vector of output (measured variables), H =
rxloutput matrix, l = number of dependent (state)
variables in the system, m = number of controls
(gates) in the canal, p = number of outlets in the
canal, and r = number of outputs. The elements of
the matrices Φ, Γ, and Ψ depend upon the canal pa-
rameters, the sampling interval, and the assumed av-
erage operating condition of the canal. In Eq. (11),
the vector of state variables is defined as follows:

δx = (δQi,1 , δZi,2, δQi,2 , . . . δZi,N−1, δQi,n−1, δQi,N )
(14)

Standard optimal linear quadratic regulator
(LQR)

In the control literature, much attention has been de-
voted to linear quadratic regulator design problems,
largely as a result of their elegant problem formula-
tion, solution tractability, and robust properties with
respect to fairly large variations of system param-
eters. The problem of designing a linear feedback
control system minimizing a quadratic performance
index can be reduced to the problem of obtaining a
positive definite solution of a matrix Riccati equa-
tion. An important characteristic of transient per-
formance of an open canal is its stability. Once a
canal is disturbed from its original equilibrium con-
dition, the responses to the disturbance will be sta-
ble, neutral, or unstable. The stability requirement
of the considered system is defined in terms of the
eigenvalues, which are the roots of the characteristic
equation of matrix Φ and must have values less than
unity. The oscillatory behavior of a canal water sur-
face is associated with the presence of complex roots
in the solution of the characteristic equation of the
system. The response amplitude grows continuously
if the absolute value of the complex roots is greater
than unity, decays to zero if the absolute value is less
than unity, and oscillates at a constant amplitude if
the real part of the roots is zero. Furthermore, be-
cause of inertia, it is almost impossible to derive the
deviation in water surface elevation (error) instan-
taneously to zero. Thus the output of the system
lags the desired input and results in overshoot or
oscillation of the water level about its equilibrium
position. The objective of control theory is to find
a control law that will bring an initially disturbed
water surface to the desired target water level in the
presence of external disturbances acting on the canal.
This can be accomplished by applying a large pro-
portional control in which the change in gate opening
is proportional to the changes in flow depths and flow
rates; this has the following form:

δu(k) = −K(k)δx(k) (15)

where K(k) =controller gain matrix. Controllabil-
ity ensures the stability of the system and maintains
the water level at any desired value by suppressing
the influence of external disturbances. A canal is
said to be controllable if it is possible to derive it
from any initial water level to any specified water
level (state) within a finite number of steps. Equa-
tion (15), which was used throughout the study, is
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called the discrete state equation and control law.
This equation describes the condition or evolution of
the basic internal variables of the system. The vari-
ables in the equation (i.e. δx) are called the state
variables. In optimal control theory, the elements of
gain matrix K can be obtained by formulating the
control problem as an optimization problem in which
the cost function to be minimized is given as follows:

J =
K∞∑
i=1

[δx(k)TQxlxlδx(k) + δu(k)TRmxmδu(k)]

(16)

subject to the constraint that

−δx(k + 1) + Φδx(k) + Γδu(k) = 0k = 0, . . . , K∞
(17)

where K∞= number of sampling intervals consid-
ered to derive the steady state controller; Qx lxl =
state cost weighting matrix; and Rmxm = control
cost weighting matrix. The matrices Qx and R are
symmetric, and to satisfy the non-negative definite
condition, they are usually selected to be diagonal
with all diagonal elements positive or zero. The first
term in Eq. (16) represents the penalty on the de-
viation of the state variables from the average oper-
ating (or target) condition, where the second term
represents the cost of control. This term is included
in an attempt to limit the magnitude of the con-
trol signal δu(k). Unless a cost is imposed for use of
control, the design that emerges is liable to gener-
ate control signals that cannot be achieved by the
actuator. In this case the saturation of the con-
trol signal will occur, resulting in a system behavior
that is different from the closed loop system behav-
ior that was predicted assuming that saturation will
not occur. Therefore, the control signal weighting
matrix elements are selected to be large enough to
avoid saturation of the control signal under normal
operating conditions. Equations (16) and (17) con-
stitute a constrained-minimization problem that can
be solved using Lagrange multipliers. This produces
a set of coupled difference equations that must be
solved recursively backwards in time. However, since
irrigation canals run for a long time, and the dynam-
ics of the canals are usually very slow, a steady state
controller is more desirable. For the steady state
case, the solution for δu(k) is the same form as Eq.
(15), except that K is given by

K = [R+ ΓTPΓ]−1ΓTPΦ (18)

P is a solution of the discrete algebraic Riccati
equation (DARE):

ΦTPΦ−ΦTPΓS−1ΓTPΦ +Qx = P (19)

where S = R + ΓT S Γ; R = RT > 0 and Qx = QxT

= HTH ≥ 0. The solution of the discrete algebraic
Riccati equation is fundamental for the implemen-
tation of optimal control. The control law defined
by Eq. (15) brings an initially disturbed system to
an equilibrium condition in the absence of any exter-
nal disturbances acting on the system. In hydraulic
engineering problems, the depth of flow, flow rate,
and velocity as a function of distance can be con-
sidered the state or internal variables. Sometimes,
the volume of water in a given reach of a canal can
also be considered a state variable. In this paper,
the water surface elevation and flow rate were con-
sidered the state variables. Given initial conditions
[δx(0)], δu, and δq, Eq. (16) can be solved for vari-
ations in flow depth and flow rate as a function of
time. If the system is really at equilibrium [i.e. δx
(0) = 0 at time t = 0] and there is no change in the
lateral withdrawal rates (disturbances), the system
would continue to be at equilibrium forever; then
there is no need for any control action. Conversely,
in the presence of disturbances (known or random),
the system would deviate from the equilibrium con-
dition. The actual condition of the system may be
either above or below the equilibrium condition, de-
pending upon the sign and magnitude of the distur-
bances. If the system deviates significantly from the
equilibrium condition, the discharge rates into the
laterals will be different (either more or less) than
the desired values. But in canal operations, the main
objective is to keep these deviations to a minimum
so that a nearly constant rate of flow is maintained
through the turnouts.

Two-stage linear quadratic reliable controller

If there are outages of measurement devices or a lack
of flow depth measurements or flow rates at some
measurement points in an irrigation canal, the above
standard linear quadratic optimal control may not
be the most suitable one. Instead, the 2-stage linear
quadratic reliable control seems to be an attractive
means to guarantee the canal system’s stability and
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performance. A control system designed to toler-
ate outages of measurement devices and a lack of
data, while retaining desired control system proper-
ties, will be called a reliable control system. The ma-
jor objective of reliable control design is to synthesize
a control structure so that the system performs sat-
isfactorily under outages of measurement sensors or
unavailability of data while maintaining a good per-
formance in the nominal condition. To begin with,
the following 2-step linear quadratic optimal control
update equations, which are inspired by the well-
known 2-step Kalman filter update equations, are
presented: (1) Control weighting update equations:

δu(k) = −
−
Kδ

−
K(k) (20)

−
K = [Γ′PΓ +R]−1Γ′P (21)

−
P = P [I − Γ

−
K ] (22)

and (2) State weighting update equations:

δx̂(k) = Φδx(k) (23)

P = Φ′
−
PΦ +Qx (24)

Then, using a dual of the sequential measurement
update equations (Singer and Sea, 1971) in the con-
trol weighting update equations, Eq. (19) can be
reformulated as follows

ΦTP (I − ΓΩx
−

KΩx)(I − ΓΩ
−
KΩ)Φ −Qrel = P (25)

where

Qrel = Qx+ (
−
KΩΦ)′[(ΓΩ)′

−
PΓΩ + RΩ)]

−
KΩΦ (26)

−
KΩx = (RΩ)−1(ΓΩx)′P (I − ΓΩx

−
KΩx) (27)

−
KΩ = (RΩ)−1(ΓΩ)′P (I − ΓΩx

−
KΩx)(I − ΓΩx

−
KΩx)

(28)

in which Ω denotes the selected nodes where data are
available and Ωx denotes the selected nodes where
data are not available because of outages of mea-
surement sensors or a lack of data. As seen in the
above equations, in fact the 2-stage linear quadratic
reliable control can be seen as a standard linear
quadratic regulator with a modified state weighting
matrix (Hsieh, 2003). In other words, the reliable lin-
ear quadratic control can be obtained by a standard
LQR design with a modified state-weighting matrix,
i.e. Qx is replaced by Qrel. Bitmead and Gevers
(1991) show that if Φ,ΓΩ is a stabilizable pair and
Φ, Qx is a detectable pair, then there exists a unique
and positive definite symmetric solution P for Eq.
(25).

Results and Discussion

To demonstrate and compare the feasibility of the 2-
stage linear quadratic reliable controller, an optimal
regulation problem for a discrete-time single pool ir-
rigation canal was simulated (Figure 1). An exam-
ple problem obtained from Reddy (1990) was used in
the study. The data used were as follows: length of
canal reach = 5000 m, number of nodes = 7, number
of subreaches used = 4, ∆x = 1250 m, channel slope
= 0.0003, side slope = 1.0, bottom width = 1.7 m,
turnout demand = 2.5 m3/s, discharge required at
the end of the canal = 0.52 m3/s, upstream reservoir
elevation = 103.2 m, downstream reservoir elevation
= 101.14 m, target depth at downstream end = 1.2
m, gate width = 1.7 m, and gate discharge coeffi-
cient = 0.75. First the data were used to calculate
the steady state values, which in turn were used to
compute the initial gate openings and the elements
of the Φ, Γ, H matrices using a sampling interval
of 30 s. The analysis was started by evaluating the
system stability. All the eigenvalues of the feedback
matrix were positive and had values less than one.
The system was also found to be both controllable
and observable. In the derivation of the control ma-
trix, Γ, elements, it was assumed that both the up-
stream and downstream gates of each reach could be
manipulated to control the system dynamics. The
downstream-end gate position was frozen at the orig-
inal steady state value, and only the upstream-end
gate of the given reach was controlled to maintain
the system at the equilibrium condition. The effect
of variations in the opening of the downstream gate
must be taken into account through real-time feed-
back of the actual depths immediately upstream and
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downstream of the downstream gate (node N). In
the derivation of the feedback gain matrix, R was
set equal to 100,000, whereas Qx was set equal to
an identity matrix of dimension 10 (the dimensions
of the system). In the absence of a well-defined pro-
cedure for selecting the elements of these matrices,
these values were selected based upon trial and error.

upstream pool

 downstream pool

z(j+1)
u(j+1)

lateral withdrawal

gate 2gate 1

z(j-1)

u(j)
z

1 3       2 1 1

Q

3           2 1

Nodes types

Figure 1. Schematic of an irrigation canal pool.

Figure 2 illustrates the variations in downstream
depth of flow in the pool for both 2-stage linear
quadratic reliable and standard linear quadratic reg-
ulator (LQR) controllers. At 7500 s, the variation
in downstream flow depth in the pool is 0.04 m for
the 2-stage reliable controller, whereas it is 0.0534
m for the standard LQR controller. It is obvious
that there is no significant difference in flow depth
variations between the 2-stage reliable controller and

standard LQR controller. However, the former holds
less flow depth variations at the downstream of the
canal. As shown in Figure 3, along the simulation,
the incremental gate openings for the 2-stage reli-
able controller have values less than those of the
standard LQR controller’s incremental gate open-
ings; but there are no significant differences between
the 2 controllers’ incremental gate openings. In Fig-
ure 4, the cumulative gate opening is 0.019 m for the
two-stage reliable controller and 0.0398 m for the
standard LQR controller at the end of the simula-
tion. Cumulative gate openings for the 2-stage reli-
able controller have variations less than those of the
standard one. Figure 4 shows that the 2-stage con-
troller cumulative gate openings will reach the equi-
librium condition quicker than the standard LQR
controller. Finally, the final gate openings for both
the standard LQR and 2-stage reliable controllers
are 0.4199 m and 0.3991 m, respectively (Figure 5).
There are no significant differences between the final
gate openings of the 2 controllers. As shown in the
above numerical example, 2-stage linear quadratic
reliable design can provide better stability than the
standard one. The overall results of this study show
that the proposed 2-stage linear quadratic reliable
controller offers an efficient alternative to the stan-
dard LQR controller when dealing with the absence
of flow depth measurements or flow rates at some
measurement points.
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Figure 2. Flow depth variations for standard LQR and 2-stage reliable controllers.
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Figure 3. Incremental gate openings for standard LQR and 2-stage reliable controllers.
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Figure 4. Cumulative gate openings for standard LQR and 2-stage reliable controllers.
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Figure 5. Final gate openings for standard LQR and two-stage reliable controllers.

Conclusions

The Saint-Venant equations of open-channel flow
were linearized around the average condition of an
example single pool canal. Two-step linear quadratic
update equations and a sequential gain updating
scheme were used to drive a linear quadratic reli-
able controller formulation. This formulation was
applied to drive a control algorithm for constant-
level control of an irrigation canal. The performance

of 2-stage linear quadratic reliable control was com-
pared with the performance of the standard LQR
controller. The 2-stage linear quadratic reliable con-
troller provides both good stability and performance
under outages of measurement devices or unavail-
ability of data in the canal. The results showed that
the 2-stage linear quadratic reliable formulation of-
fers an efficient alternative to standard LQR control
when dealing with the lack of flow depth measure-
ments or flow rates at some measurement points.
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Notations

δx̂ estimated values of the state variables -
θ weighting coefficient -
Ab horizontal water surface area of the basin width m
B width of the water surface m
bl width of outlet structure m
Cd outlet discharge coefficient -
D hydraulic depth m
Es sill elevation of head regulator m
g acceleration due to gravity m/s2

I identity matrix of appropriate dimension -
J cost function used in optimal control -
k numbers or sampling interval -
K(k) controller gain matrix -
K∞ number of sampling intervals considered to derive -
M(ω) magnitude ratio -
P solution of the discrete algebraic Riccati equation -
Q discharge in the channel m3/s
q discharge per unit m2/s
ql lateral in or out flow m2/s
Qx state weighting matrix -
Sf slope of energy line -
So canal bottom slope -
t time s
T top width of the canal m
V mean velocity m/s
V state matrix in the RDNN P -
wl height of gate opening of outlet structure m
x length of the canal reach m
y depth of water in the canal m
Yd(z) desired output of control system -
z water level as referred to a horizontal datum m
γ unit weight of water N/m3

∆ smallest structured perturbation -
δ q vector of system disturbances m3/s
δ u vector of system inputs (gate openings) m
∆ x length of subsurface m
δ y vector of system outputs m
Φ system transition matrix -
Ψ disturbance distribution matrix -
Ω the selected nodes where data available -
Ω x the selected nodes were data is not available -
Γ control distribution matrix -
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